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On a metrization of polytopes
by
K. Borsuk (Warszawa)

1. Convex spaces. Lot XU be a metric space and let o(z, y) denote
the distance between two points x,y ¢ X The point z ¢ X is said to le
between & and y provided that '

(1) el@, y) =o(®,2)+o0(z,9).

The point 2 e X is said to be o centre of the pair 2,y provided that

(2) ol@,2)=e(y,2) =% o(z,y).

Evidently every centre of the pair 2,y lies between z and y.

A space X ix said to be conver (Megner [3], p. 81) provided that for
each two distinet points @, y of it there exist a point z « X different from
« and y which lies between » and ¢. It was proved by Menger ([3], p. 89,
see also Aronszajn [1]) that in complete convex spaces X each two
points «,y e X are joined by a metric segment, i.e. hy a subset of X
isometric with the real interval of length ¢(z, y). We shall denote metric
segments by the letter L with a convenient index. The existence of metric
segments with given endpoints is also ensured if X is complete and for
every pair of points @, ¥ ¢ X there exists in X at least one centre.

2, Strongly convex spaces. By a strongly convex space we under-
stand a space X in which for every two distinet points x,y ¢ X the set
of all points 2 € A lying between  and y is a metric segment. We shall
denote this segment by X(z,y). For complete spaces (in particular for
compacta), strong convexity is equivalent to the condition that every
pair of points x, ¥ ¢ X hag exactly one centre.

We eusily see that for a stroungly convex space X there exists, for
cach pair of points o, ¥ € X and every 0 ={¢ < 1, exactly one point z¢ X
such that

o(wy2) =t-0(w,y) and o2, y)=00—1)-0(x,y).

Setting 2 == Puy(t) we obtain a function of three arguments z,y, i,
its values being points of ¥. One easily sees that if X is a compactum,
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then ¢,,(t) depends continuwously on the ftriple z,y,t. Hence, in this
case, if we fix y =y, and set

Pe(®) = Pry(t)  for every ze X and 021,

then ~we obtain a family {y,} of continuous mappings vy of X into itself,
depending continuously on ¢ and safisfying, for every a ¢ X, the condi-
tions:

yole)=w, (&)=Y, .

It means that the family {;} constitutes a homotopy contracting the
compactum X in itself to the point y,. OOnseqmmﬂy every strongly conver
compactum 8 contractible to a point.

Let us mention that it is not every compactum econtraetible to a point:
that may be metrized in a strongly convex manner. Moreover, it has
been shown by K. Sieklucki [4] that already among compact polytopes
of dimension 2, there exists one that is contractible to a point but cannot
be metrized in a strongly convex manner.

3. Local strong convexity. The notion of strong convexity may
be localized in many ways. Let us formulate some conditions, each of
which constitutes some manner of local strong convexity:

Cowprrion 1. For every point z,¢ X there emists a neighbourhood
U such that for each pair of points @,y € U there emists emactly one centre
ze X.

Cowprrion 2. For every point x e X there exists in X a strongly conves
netghbourhood.

CoNDITION 3. For every point x ¢ X and every neighbourhood U of »
there epists in X a strongly convexr neighbourhood V C U.

Evidently each of those conditions implies the preceding one. More-
over it is easy to see that for compacta, condition 3 is equivalent to t‘he
following

ConprioN 3. For every « € X and every e > 0 there exists a strongly
convex and compact neighbourhood of x with diameter < &.

For our aims, it is convenient to adopt the following definition of
locally strong convexity:

DeFINiTION. A space X is said to be locally strongly convex if it
satisfies condition 3.

4. Some elementary properties of the n-sphere. By the
n-sphere (n>1) we understand the set §* of all points of the (n--1)-
dimensional Euclidean space B"*' at distance 1 from the origin. In this
note we always assume that 8" is metrized by the gpherical metrie o

Ygh
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aspigning to every two points o= (2, 2y, ..

g1 )s ¥ = (Yuslar oy Ynapy) € S7
the distance

0gnliy ) = arc.eos[m,y; -+ 1oy, -k ... iy lina]

Let us observe that

1° 8" is compact and conver but not strongly conveur.

2° The metric segments in S coineide with th
longer than the hemicirele.

3% 8" is locally strongly conver.

e ares of great circles not

More exactly, for each pair of points «, y ¢ 8% with 2enl®y ¥) < =,
the set of points lying between 2 and ¥ coincides with the smaller of two
arcs determined by z and y on the great circle on 8™ passing through
z and y. Hence for 0en(Zy ¥) << there exists in S exactly one metric
segment with endpoints z and y. We shall denote this segment by S™(zy)
and ecall it spherical segment with endpoints ¢ and y. In order to see that
condition 3, characterizing locally strong convexity, is satisfied, let us
remark that for every point ze 8" and every 0 <5< in the locus of
points y ¢ §* satisfying the inequality 0@, ¥) < 7 18 & compact, strongly
convex neighbourhood of # in 8" with diameter 27,

Let aq, ay, ..., 4,1 be the vertices of a regular (n+ 1)-dimensional
simplex inscribed into 8™ The projections of the %-sides of this simplex
from the centre of S™ on S constitute k-dimensional regular spherical
simplex on 8". Each of those spherical simplexes is strongly convex. In
particular we obtain in this manner a decomposition of 8™ into n-L2
isometric regnlar n-dimensional spherical simplexes with disjoint interiors.

5. Some elementary properties of the 2-sphere. In the
2-sphere 8* every three points z, v, z of lying in a hemisphere (in partic-
ular every three points with mutual distances < 4m) determine spherical
triangle with vertices «, y, # (which may degenerate to a segment) defined
a8 the projection from centre of 82 onto 82 of the usual triangle in E® with
vertices @, ¥, #. In particilar the spherical triangles on §?%, being projections
of the sides of a 3-dimensional regular simplex inscribed in 82, constitute
a decomposition of §2 into four regular isometric spheric triangles, called
quarters of 82 It is clear that the size of each of the angles of a quarter
of 8% is equal to 3= Moreover, let us observe that the length of each side
of a quarter is > 4.

In this note we shall need the tollowing elementary properties of §2:

L Let ay, 0y, @y be points of 8 such thai

(3) 0< oo, 0) <3 Jor i=1,2.
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Given a positive number &, let us denote by ai, for ¢ =1, 2, the point lying
on the spheric segment S*(agw;) af the distance Min (e, 05(@os 30)) from a,.
Then

{4) Qsa(aiy ;) < 93*3(“1; @)
Moreover, if

(5) ag does not lie between a, and a,
then

(6) a, does not lic between a; and a; .

II. Lét Ggy Gy, eeny Gy Gmyr bE points of 8 lying at o distomce < §=
from a point b e 8% and such that for every i= 0,1, ..., m the point b does
not Tie between a; ond a;.,. Let a; denote the size of the awgle at the vertex b

in the spherical triangle apba;i,. Hence 0 < a; < m. If 2 o; = w then

=0
T om

(M N 0ltis, G41) > 0o D)+ 0galby Gmaa) -
f=0

Proof. It is evident that for every 7= 0,1, .., m there exists an
isometrie transformation ¢; of the spherical triangle a;ba;yy onto a spher-
ical triangle ajbaj,, satystying the following conditions:

(8 ) =05 @d)=b;  @ltip1) = Gip1.
(9) Ti<i<<m and if a,= 0, for every { <v<j, then the interiors
of the spherical triangles agba;,; and ajbaj., are disjoint.

Evidently «; is equal to the size of the angle at the vertex b in the

spherical triangle aibaiy,. It follows, by the inequality Z a; = = and by (9),

that for some index 4, < m, there exists a point o’ lymg between two
snecessive points af,, 67,44 Such that

(10) b lies between a; and a', but does not lie between ¢ and ai,.
We infer by (10) that

ip—1

(11) 2 0ty Wi1) + 0@y, &7) > 0a{ @5, )+ 0a(b, ')

i=0

Moreover, we have

(12) 2 00k Ghir)+ 0gal0 s Blpp1) + @galb, @) > 0 W) -

i=ip+1
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Applying (10) and (8), we obtain by (11) and (12), the reguired
inequality (7).

XIL. Let Ggy Gy, ooy Quny Umyy DE points of S? lying at a distance < 1=
from a point b e 8* and such that for every i= 0,1, ..., m the point b does
not lie between a; and dzpq . Let o; denote the size of the angle at the vertex b

m
in the spherical triangle a;ba; and let us asswine that Z“i << w. Then there
i=0
exists a point b lying between b and a, swch that both spherical segnients
S2agh’) and S @n.b') lie in the sum of spherical triangles a;ba;y; and

Qse(aog b’)"" Qsz(b,: am+1) < Qsz(a'm b)'f" ng(bs a’m-}-l) -

IV. Let x,y,2 betheree points belonying respectively to three sides
S2ab), 8 ac), Sbe) of o quarter Q* of 8. Then

0@ Y)+ 0¥, 2) Z > 37,
where x denotes the length of each of the sids of Q2

For one easily sees that o, (0, y) = 0g,(a,y) and gg,(¥, 2) > gxlc, ¥).
By addition it follows that gg(z, #)+ 0,(y, 2) = ggla, ¢) = =.

6. Spherical metrization of a polytope. Let I be a triangu-
lation of a polytope P of dimension # > 1. Without loss of generality we
may assume that P lies in a Euclidean space EX. Then every point x lying
on a k-dimensional (k < ») simplex A e T with vertices by, by, ..., by may
be represented uniquely by the formula

E
(13) = St Dy, where ;=0 for i=0,1,..,k and Eif-—— 1.
i=0 i=0

B

Consider now a regular i-dimensional spherical simplex @, which
is the central projection of an n-dimensional side of an (n-+ 1)-dimensional
regular simplex inscribed in 8™ Tt @, @y, ..., @&, be the vertices of @™
Setting

I3
\
_’\_4 ti‘ai
N i=0
(14) ¢l (0) = -,

oy
.:\_.' ti'al"
i-0

we obtain a homeomorplism ¢% mapping . onto a k-dimensional side

of the n-dimensional spherical simplex @". Evidently @5 maps every

straight segment lying on 4 onto a spherical segment lying on 8",
Now let us put

o4(®, ¥) = an[¢g(m)7 waly)]
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for every two points , y ¢ 4. Evidently p,4 constitutes a distance-function
for 4 and it does not depend on the choice of the vertices a,, a,, R
of the regular spherical simplex @". Moreover, let us remark that if 4,, 4,
are two simplexes of 7 and the points «,y ¢ P belong to the common
part of them, then

0a(%, ) = 0u(®, ) -

Using the metrics g4, we now introduce a metric o, for the whole poly-
tope P. Suppose first that P is connected. Then for every two points
%,y ¢ P there exists a finite sequence of points

T=oy X1y Loy eeey Py Bty = Y

sach that every two successive points ux;, 2y, belong to one gimplex
dieT. A sequence @y, @y, ..., Ty of this sort will be called a passage
in the triangulation T from x to y. The number

m
(15) |0y .. | = ) 0y 2es)
. =0
will be called the length of the passage &gy Bry ey By
Let us denote by ex{®, ) the lower bound of the lengths of all PaAsSit-

ges in T from z to y. Evidently o is a distance-funetion for the connected
polytope P.

Let us show that P metriced by 0y W a convex space. It suffices to
show, that for each pair of points » y ¥ € P there exists a centre. In order
to do it, let us observe that if z,, Ty ey Bmes I8 & Passage in T from  to y,
then there exists on one of the metric segments Ay (x;, 244) C 4; a poiflt
> (called the centre of the passage By, &y, ..., Tya) Such that

[ @62y en @y2| = |24y .0 Tmi1| =} |@ey ... Tt} -

Bv the definition of the distance-function Cp, for every v=1,2, ... there
exIsts a passage @42, , ... Zum,+1 0 T from = to y satisfying the inequality
opl®, ¥) < [0y .. "Bv,m,,+1] < QT(my )+ 1.

Let ¢, denote the centre of thig Dassage. One easily sees that
“er(®,Y) < opl@, 2) <k [oylm, 9)+1p],
'QT(‘TI g/) < QT(ZV’ y) < %[egp(m? g/)+1/7] .

Since P.IS compact, th.e sequence {z,} containg a subsequence convergent
to a point z ¢ P. We infer by (16) that

(16)

JEI R

QT("I"9 ) :Qm(zay) = %‘QT(‘Z’W.’/) »

whence z is a centre of the pair x, y.
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Now, suppose that the polytope P is not connected and let
Py, Py, ..., P be the components of P. The simplexes of the triangu-
lation T' of P lying on P; constitute a triangulation T; of P;. We introduce
in P; the metric er, {(using always the same regular spherical simplex @&,
where # = dim P). By this metric every eomponent P; has a finite di-
ameter d;. Let d denote the greatest of the numbers d,, da, ..., dy. Setting

QT(m’?/)=Qipi(wsy) if z,yeP;, for i=1,2,..,k

and

opl®, y)=da+1 i a2,y belong to distinet components of P,

we obtain a distance-function ¢ for the whole polytope P. We call it
the spherical metric corresponding to the triangulation T.

7. Main theorem. The purpose of this note is to prove the following

THEEOREM. Hvery polytope of dimension < 2, metrized by the spherical
metric corresponding to one of its triangulations, is locally strongly convew.

The problem whether the analogous statement holds also for poly-
topes of dimension > 2 remains open (comp. [2], p. 108 problem 6).

Let us observe first that the proof of the theorem may be reduced
to the case in which the polytope has dimension 2 at each of its points.
Let T be a triangulation of a polytope P of dimension < 2 and let P,
denote the sum of all 2-dimensional simplexes (triangles) of 7, and P,
the closure of the set P—P,. Then

P=P UP,,

where P; is a polytope of dimension <1, and P, a polytope which has
dimension 2 at each of its points. Evidently the triangnlation I contains
a triangulation T, of the polytope P, and a triangulation T, of the poly- -
tope P,.

Let us assume that P, metrized by the distance-function g, is lo-
cally strongly convex. Moreover we eagily see that for every point w, e Py
there exists in P, a neighbourhood U,, such that for each pair of points
z,¥y € Uy, we have QTa(‘v’ y) = g {(#,y). Now it is evident that for each
point ¢ e P— (P, A P,) there exigts a compact, strongly convex neighbour-
hood with an arbitrarily small diameter. If however & ¢ P, ~ P, then, for
every &> 0, there exists a compact strongly convex neighbourhood V3
of ¢ in P; with diameter < e, It is clear that Vi consists of a finite num-
ber of metric segments, with diameters < }e, having @ as the common
endpoint. We can replace each of these segments by a subsegment con-
taining » (as one of its endpoints) and having a diameter so small that
the common part of it with P, contains only the point x. One easily sees

29%
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that the sum of all segments thus obstained and of the set V3 is & compact
strongly convex neighbourhood of # in P and the diameter of this neigh-
bourhood is < &.
Thus we infer that in the proof of the main theorem we can restrict
ourselves to the case when the polytope P has dimension 2 at every point.
Henece in the sequel, we shall always assume that the polytope P
is 2-dimensional at every point.

8. Spherical metric g, on individual triangles of T. We shall
prove the following

Lemua 1. If the points @,y belong to one triangle 4 of @ triangule-
tion T of P and oy(w,y) < br then o, y)= 0d@, y)-

Proof. Let us denote by x the length of a side of a quarter @* of 82
Then

QT(w)y)g%‘T< x and Qr(wy?/)ggd(mﬂ’/) .

By the definition of the metric o, it remains to prove that for every

PASSALE & == Lo, By s vy Ty Tmrs = ¥ 10 T from o to y, satisfying the inequal-
ity

a7) oy e Empa] < %,
we have
(18) | B0y .o Wm+11 = 0a(2yY) -

First let us consider the case when both points @, ¥ lie on the bouund-
ary of the triangle A. If three successive points u;, @445, %r4p lie in one
simplex A4’ ¢ T, then

0@y Bya) - 04 (@iqry Boga) = 02(Ws, Brpn)

and, by cancelling the point ;4,, we obtain from x;, #,, ..., &1 another
passage in T from « to y with the length < [@e® ... @] I easily follows
that it suffices to prove (18) in the case when no three successive points
Tty Tir1y Bive Delong to one simplex of 7. By (17) we have o(2;, #ra1) < %,
whence two successive points @; and #;, cannot coincide with two different
vertices of 4;. It follows that for every i = 0, 1, ..., m, there exists in 7'
a triangle 4; such that #; and x;., belong to the boundary of 4, but do
not belc?ng to the same side of 4;. It follows that if one of the points
#iy iy 18 8 vertex of 4;, then the other belongs to the opposite side of 4;
and consequently ou (%, ;1) > % contrary to inequality (17). Conse-
quently we can assume that none of the points DLyy Byy ooy Bapy Prpgr 19
2 vertex of the triangulation 7. '
Without loss of generality we may assume that 4 coincides with
a quarter of & with vertices abe and that o 82(ab) and y « 8%ab) w Sac).
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Then « and b are common vertices of triangles 4 and 4,. Since every
triangle 4; is isometric with 4, there exists for every ¢=0,1,..,m
an isometric transformation ¢; of A; onto 4 such that

(19) pfa)=a, @b)=b,
(20) (@) = @ia() for every wed;imdiy.

Then th(‘f points  @o(%) == @o(@a); Po(@) = @(@1)s ooy Pr (@) = P (&'m),
Om(@mi1) = Pm(y) lie on the boundary of A and

m
gy o B =i§_: 0l @il ) s Pel511)] -
=0

Moreover,. all these points are distinet from a, b, ¢, because, by our
assumption, none of the points @y, &, ..., Tms1 18 2 vertex of T. Finally,
since z; and 2, do not belong to the same side of A;, the points g a(wy)
= qi(@;) and @@.) (where i=1,2, .., m) do not belong to the same
side of 4. Now we distingunish two cases:

Case 1° None of the points @o(y), @i (21)y -y Pm(®m) belongs to the
side S*be). .

TFirst let us observe that all triangles Ag, 44, ..., 4, have the vertex a
in common and that ¢;(a)= a for every i=0,1,..,m By (19) it is
g0 for i = 0. Suppose that for an ¢ < m it is a e 4; and ¢;(a) = a. Then
the side of A;, opposite to the vertex a, is mapped by ¢; onto S*bc). It
follows that the point @4y is an inner point of a side L of 4; containing
the vertex . Then L is the common side of 4; and A, and, by (20), we
infer that

Pia(0) = gs(a) = a.
Consequently
24l 4) = oalem(a), em(y)] = 0al@, Pn(y)] -

We infer that each of the points ¥, gm(y) coincides with one of two points
b, ¢ lying respectively on S%ab) and §%ac) at the distance 0@, ¥)
from a. But we easily see that the sum of the lengths of all spherical
segments Sy (2;)p@i1)] constituting a connected graph joining on 4 the
point # = p(z) with the point @,(y) is not smaller than gg(, b') and
also than pg(z, ¢'). Hence '

m
g2y oo Zmaa| = Z@Sz[%(‘”i); @i(@:11)] < galw, ) .
i=0
Case 2°. Each side Sab), 8%(ac), 8%(be) contains at least one of
the points @o(ze)s @1{L1)y -v s Pl Tma)s .
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In this case there exist three successive indices 4y, 44+ 1, ip+ 2 such
that @), Pior1(Tigsa), Pio+a(@ip+e) lie on different sides, say on 8%(ab),
S2(ac) and 82%(be) respectively. Then we infer by IV of No. 5 that

[y o B = Z el ®el®) s Piliss))

=0

= 9,32(‘]’1‘0(”170)7 (Pio(w‘io+1)) + Qm(¢i0+1(mio+1)7 (Pl'o+1(win+2)) = %,

contrary to inequality (17).

Pasding to the case when at least one of the points @,y does
not lie on the boundary of the ftriangle 4, consider a passage
&= Bgy By eens Ty Ty =¥ in T from « to y. If all points »; belong to
4, then (18) is evident. If, however, not all points x; belong to 4, then
there exist two indices ¢ and § such that 0 <4< j<m-+1 and that a;, ;
lie on the boundary of 4. We may assume that x; is the first and ; the
lagt point lying on the boundary of 4. Then, for » < 7 and » > §, we have
o, € 4. Applying the already settled case, we infer that

|80y oo Bomsa] = 104 e B3]+ [@5 00 5] |5 . B

= 04, %)+ 0a(@iy @)+ 0a(25, ¥) 2 o4, y) .

Thus (18) holds also in this case.

9. Passages with shortest lengths. We shall prove the following

Lemuma 2. If z,yeP and op(w,y) < 3w then there exisis a passage.
L= Xy By eeny Ty T =Y W T from o to y such that

2o .. B = orl@, ) .

Proof. By gz, ¥) < ¥= the points , y belong to one component £,
of P. As it has already been shown, P, metrized by ¢, is convex. Hence
there exists in P, a metric segment L(wy) with endpoints x, y. Consider
the points of L(zy) in their natural order from z to Y. Setting z, = =,
let us denote by = the last point of L(zy) such that there exists in 7"
a triangle A, containing both points z, and ;. Assuming that the points
@oy By ..oy &; € L(wy) are already determined and 2; # Y, we denote by
@143 the last point of L(zy) such that there exists in T a triangle 4; con-
taining both points #; and w;,;. Tt follows that the point xM € 4; does
not belong to any triangle 4; with 0 < § < ¢. Hence the triangles A; ¢ T
are di.stinet-. Consequently in this manner we obtain only a finite nunzlbér
of DOINLS & = @g, &y, vovy Tiny Tppy1 = ¥ constituting a passage in 7' from x
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to y. Evidently for i < j the point x; precedes the point x; on the segment
L(wy). Applying the lemma 1 we infer that

m mn

1 bl .
opl, ¥) = 2 oy 2y4a) = ‘E, Qu{{rs Bigx) = |2y oo Ly -
i=0 i=o

10. Sets V;. For every point ¢ ¢ P, let us denote by 4, the sum of
all simplexes of T containing ¢, and by B, the sum of all other simplexes
of 7. Evidently

(21) 0 gpley Be) < m .

Let ¢ be an arbitrarily given positive number. We denote by Vi the
subset of P consisting of all points » satisfying the inequality

(22) ogl®, ¢) < {Minle, g,(c, Bs)] .

Bvidently V; is a compact neighbourhood of ¢ (in P) with diameter
< $Min(e, ). To prove the theorem (formulated in No. 7) it suffices
to show that V; is strongly convex.

We begin with two following lemmas:

LeMMA 3. The set Vi is convex.
Proof. Let =,y ¢ V;. By lemma 2, there exists a passage z = g,
By y eny Tipy Ter = ¥ In T from z t0 y with the length o, (z, ). It follows
by (22) that
@T(G7 @) < ggle, )+ op(, ¥) < ‘%QT(C; B,) .

Consequently the simplex 4;e T, containing «; and x;;,, has ¢ as one of
its vertices. Let z; denote the point lying on the segment 4,(cz;) at the
distance Min{}e, {-0,(¢, Bo), oh{@e, )] from ¢. Then @ =&, Zpni =14,
zieVe for 4=0,1,...,m+1 and the points uxj, o1, ..., X4 coDstitute
2 passage in 7' from » to y. Applying I of No. 5, we conclude that the
length of this passage is < |To#y ... Tmya| = 0p(®, ¥). Bub x= o and
Ty =y imply that the length of this passage is > g,(z,y). Hence
|08, oo | = opl@, y). It suffices to seb

in order to obtain a metric segment joining in V¢ the points z and .
Lemma 4. If x,y belong to one triangle 4 eT and oz, y) <=
then the set of points 2 € P lying between x and y coincides with the segment
A(xy).
Proof. By lemma 1, it suffices to show that the supposition that
a point 2 ¢ P—4 lies between x and y leads to a contradiction. Applying
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the lemma 2, we easily see that there exists a metric segment L C P with
endpoints 2 and y sueh that z e L. Now let s distinguish 3 cases:

1° Both points @, y lie on one side A = A(ab) of A. Since gz, ¥} < ir,
at Teast one of the endpoints of A belongs to P—L. It easily follows that L
contains points which do not lie on 4, but belong to one of the triangles
of T adjacent to A. If 2’ is one of such points, lying on a triangle 4" adja-
cent t0 A, then 2 lies between @, y e 4’ and 2" does not belong to A(ad)
= A*(ab), which iz impossible on account of lemma 1.

2 g,y lie on disjoint sides of A.

Tet a, b, ¢ be the vertices of 4 and x e A(ac), Y € A (be). Let M denote
the set composed of a,b, ¢ and of all points lying in the interior of any
triangle of I adjacent to A along one of its gides. Evidently M cuts P
hetween each point of 4 and each point of P— (M w 4). Since the length
of L is < I, the side A(ab) is disjoint with L. It easily follows that there
exists a point 2’ ¢ L lying in the interior ¢' of some triangle A" adjacent
to one of the sides 4(ac), 4(be), say to A(ac). It is easy to observe that
there exists a point 2, belonging to the common part of I and of the side
A'(cb’y of A’ different from A'(ac). Applying lemma 2, we obtain a passage
L= @y, Byy eory Emy B =y in T with the length g, {x, y). Moreover we may
assume that every two successive points z;, 4y, Le on the boundary
of a triangle 4; having ¢ as one of its vertices. Let us now denote by y'
the point lying on A (a6) at the distance g (cy) from ¢. By the same argu-
ment a5 that used in the proof of lemma 1, case 1° we obtain the isometries
@oy Puy -y m Of triangles A= A', A;, A, .0, 4 onto the triangle 4
{(which we may identify with a quarter Q2 of the sphere §%) in such a man-
ner that g;(®;) = @i(z;) and that the succesive points of the sequence
@ol®) = B, Q@) s P1{Ta) s eoe s Pm(®mt1) = Pm(y) Le alternatively on sides A(ac)
and A(be) and point ¢,(y) coincides with y or with g'. Since 2, # y, we
easily infer that the sum of lengths of segments A (p;(a)@s(ei4a)) i8
> py{#,y) But this sum is equal 0 |we@; . Buial = og(@, ). Thus we
obtain a contradiction.

3° At least one of the points x,y does not lie on the boundary of 4.
In this case, let ' denote the first point of the segment I (ordered natur-
ally from z to y) lying on the boundary of 4, and by ¥’ the last point
of L lying on the boundary of A. Then < lies between 2’ and y’, and thus
the proof of impossibility is reduced to the already settled cases 1° or 2°

11. Decomposition of metric segments into spherical seg-
ments. Angles. Let us prove the following

Lemma 5. If L is a metric segment on Vi, then the common part
of L with any triangle A of T either is empty or comtains only one poind,
or is a segment.
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Proof. Let »,y denote the endpoints of L and suppose that L ~ 1
contains at least two points. Let x, be the first, and y, — the last point
of the subset L ~n 4 of L (where L is naturally ordered from z to y). We
infer by lemma 4 that the set of points of I lying between x, and ¥, coincides
with the segment A(wz, y,). Hence L ~n A4 = A(w ¥,).

The segments which are common parts of a metric segment L C Ve
with single triangles of T constitute a decomposition of L into segments
with disjoint interiors:

(23) L=LyuLiv..uly.

This decomposition is uniquely determined by the triangulation T. We
call it the decomposition of L corresponding to the triangulation T. Ev-
idently the indices ¢ may be so fixed that L; = L ~4;= Aim@e,) for
t=0,1,..,m

Now let us assume that L CVe— (). Then the segments:
A5 a) 5 dilwee) s Ai@iia€)

constitute a triangle m;ew;y; isometric with a spherical triangle lying
on 8. Let a; denote the size of its angle at the point ¢. The number

a(l) = S g

i=0

will be called the amplitude of segment L C Vg relatively to ¢

TEMMA 6. For every melric segment L CVi—(c) it is 0<<a(l)<m

Proof. Applying the mnotation just introduced, consider an iso-
metric transformation g; of the triangle mer;., into 82 It is easy to observe
that these isometries ¢; may be chosen successively in such a manner
that ¢; and @ coincide on the common part of triangles »exsy; and
Bipiligs, fOT every i = 0, 1, ..., m—1. Consequently the points a; = @ia:)
and the point b = ¢yc) lie on §* and satisty the premises of II, No. 3.

m
It follows ) o < =, hecause otherwise we should have

=0 .
m m

E Qz!(mi; Dig1) = E {-_’Sz(“z‘y @ig1) > Qsz(a'ov by— st(by 1)
i=0 =0

= QT(wa o)+ ople, y) = QT(ms Y,

which is impossible, because the length of I is equal to op(@, )
mn

=2 0p{®1y Lis1).
i=0
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12. Strong convexity of V,. Now we pass to the proof that each
of the neighbourhoods V§ is strongly convex. We distinguish three fol-
lowing cases: '

Case L ¢ lies in the interior of o triangle deT.

By the lemma 1, the set V, is isometric in this case with the sphe-
rical cap in S with radins < 4n. Hence it is strongly convex.

Case IL. ¢ les in the interior of a l-dimensional simplew AeT.
Since P has dimension 2 at each of its points, there exist in 7' triangles
adjacent to A. Let 4y, 4,,..., d; be all these triangles. Then

vec ().
=l

If @, y € V;, then there exist among triangles A,, d., ..., 4, such triangles
Az and 4,, that s e, and y e 4,.

If A, = A, = A, then we infer by lemma 4 that the set of all points
z ¢ P lying between x and y coincides with the segment A (wy).

If A, # Ay, then let us denote by Z the set of all points of P lying
between # and y. By lemma 3, the set Z contains a metric segment L
joiming » and ¥ in V;. For every point z e Z we have

epl6y2) < gyle, 2)+gue, y) < %'QT(Gy B.) .

Hence Z C A.. Let us show that Z C 4, U 4,. Otherwise there exists in T
a triangle 4, # Ay, 4, such that z e (4d,—4) ~ Z. Applying lemma 3 we
infer that there exist two points #;, 2, ¢ A such that #, lies between x and 2,
and 2, lies between y and 2. Then

0215 %) = 04?1 %) < 04?1, 2)+ 047y %)
and consequently

E‘T(w7 2)+ QT(zla o)t QT(z2s ¥) < oply 7))+ QT(zh z)+91(37 %) - 9T<'~"'27 Y)
: = 0@, 2)+ 04l2, ¥) = ogl@, ¥} ,
which is impossible.

Hence Z C 4, U 4,.

Consider now-two isometries g, and. gy mapping 4, and 4, onto two
adjacent quarters @, and @, of 82 respectively and coincident on the
segment 4. Evidently in the segment g,(A) = @ (A) there exists exactly
. one point such that the sum. of its spherical distances from the points

¢o(x) and @, (y) is minimal. It follows that also in the segment 4 there
exists exaetly one point 2 such that the sum 04,(®, )+ 04 (¥, #) is minimal.
We infer that Z ~ A = (z). It follows by lemma 1 that Z p Ag(@z)+A,(y2)

whence Z is a metric segment, i. e. the set V, is strongly convex.

?
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Case ITL ¢ 4s a vertex of the triangulation T.

We have to prove that for every two points z, y « V} the set of points
z e V¢ lying between @ and y is a metric segment. We distinguwish two
following possibilities:

1° ¢ lies belween x and y.

Since the case when « and y belong to one of the triangles of 7T is
already settled by lemma 4, we may assume that the triangles A, 4,
of T, containing # and ¥ respectively, are distinct and none of the points

. @,y belong to dzn 4, In particular z # ¢ + y. Evidently the set

Ly = dy(we) v A {ye)

iy o metric segment joining # and y in V. Suppose that there exists a point
s e V¢—L, lying between # and y. Applying lemma, 3, we may find a segment
L CV; with endpoints # and ¥, which passes through 2z Then ¢ does not lie
on L, because otherwise z would lie between » and ¢, or between y and ¢,
and consequently z would belong to L,.

Consider now the decomposition of the segment L,

L = dy(ege,) v Af2125) © oo w A B 1) 5

into spherical segments with disjoint interiors, defined as in No. 11. By
lemma 6, the sum. of angles o; at ¢ in the triangles ey, is < w. It easily
tollows that there exist isometries ¢, ¢y, ..., g, mapping triangles ey
onto some triangles with disjoint interiors on §* and such that @; coincides
with @ on the segment 4 cz;.,). In particular all points g;(c) coin-

m
cide with a tixed point b e 82 Since Y a; < w, we infer that ¢; constitute

together a homeomorphie mapping qa‘bfothe sum M of all triangles xew;iy
into the sum N of triangles pg(@) be; 1(®:41) lying on 8% It follows by IIL
of No. 5 that there exists in N a simple arc L’ with length smaller than
0l (), b)+ 0(b, @(y)) joining @(x) with p(y). It is easy to observe
that the inverse homeomorphism ¢ maps L’ onto an arc ¢~X{L')CV;
having the same length as the are I’. But this is impossible, because
opl®, €)+ 9\ ) = o0h(®, Y)

2% ¢ does not lie between x and y.

By lemma 3, there exists a metric segment L C Vg joining z and y.
By our hypotheses, ¢ does not belong to L. We have to show that every
point 2 lying between « and y belongs to L.

Since the case in which x and y belong to one simplex of T is
already setitled, we may assume that the simplexes A, and 4, are distinct
and none of points z, y belongs to their common part. Applying lemma 5
we infer that there exists in 7' a system of triangles A, = 4y, Ay, ..., d= 4y
with common vertex ¢ and with disjoint interiors such that 4; and Ay,
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have g common side A;y; which has with L exactly one point @y, in
comnmon and that
T= Afwmy) o Ay{igds) oo v Apes{@mam) © dn(@mdy) -

Let «; denote the size of the angle at the vertex ¢ in the spherical
triangle memy,;. Evidently o;= §= for 0 <i<m. It follows by lemma 6
that
(24) g+ (m—1) bt ay I w,
whence m = 1 or m = 2. We consider the two cases separately:

1) m = 1. Then the triangles 4, = A, and 4, = 4, have a commaon
side A, and inequality (24) has the form

(28) Qo 0Oy << T

Suppose that there exists a point z e Vi—IL lying between o and y. Ap-
plying lemma 3, we can construct o metric segment I’ joining « and y
in 7, and passing through =z. Bvidently there exists a homeomorphism ¢
mapping A, v 4, onto the sum of two adjacent guarters on 8% which ix
an isometry on A, and also on 4,. Since

062l0 (%), 2 (1)) < 02l P(E)) -+ 260 (@(0)s W) = 00k, ©) F 00(y, €) < I,

whence in g(4,u 4,) there exists only one segment joining () and
»(y). It follows that ¢(L’) is not contained in ¢(dgzw 4,), whence there
exists a point 2’ e L'—(4,uw 4,). By an argument already used in this
proof, we infer that there exists a triangle 4’ of 7' adjacent to I, and 4,
such that

L= dg{ami) © A" (wis) w d{zay),

where #; and x; lie on the sides of 4’ common with A4, and 4, respectively.
It follows that
oll')=ap+ 3wt as < w,

wherein gy = 37—y, and ;= n—a,. We infer oo = =, which con-
tradiets (25).

2) m == 2. In this case inequality (24) has the form
(26) Gokty < f
It f0110w§ that both points x,y belong to the set D which is the swn
of the triangle 4 and of the interiors of triangles 4, and 4,. Kvidently
there e?msts a homeomorphism mapping D onto a subset of the sphere S
By quite an elementary argument we see that in the set (D) there exists
only one m.etrlc segment joining the points ¢(s) and ¢(y). Consequently
e.v.ery metric segment L' C ¥ different from L and joining x and ¥ con-
tains at least one point which does not helong to D.
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* Suppose now that there exists a point ze¢Vy-—L lying between z
and y. It follows that there exists a segment L’ CV; joining » with ¥
and passing through 2. By an argument already used in this proof, we
infer that either

(a) i L'Cd,u 4,
or there exists a triangle 4’, adjacent to 4, and also to 4,, such that
(b) L' Cdpud vd,.

Let us investigate both cases, (a) and (b). Since L’ is not contained
in D, we easily infer that in case (a) the segment I’ contains a point 2’
lying on the side of A4, or of 4, not contained in A, and consequently
the metric segment L' decomposes into two metric segments L, and L,
with common endpoint 2’. We easily infer by (26) that

(L) = a(ly)+a(Lly) > =,

which ig impossible in view of lemma 6.

In case (b) the triangle A’ contains a side A’, which lies on A, 4,
but does not lie on A,. Without loss of generality, we may assume
that A’ £ 4. Let 2’ be a point of A'~L'. We easily see that then
L' = I/ (x')+L'(¢'y) and we have, by (26),

a(L) = alL'(w2")]+a[L'(#Y)] 2 fnt-fm =7,

which is impossible in view of lemma 6.

Thus the proof of the main theorem is complete.

Remark. Since the set V; coincides with a (closed) ball (in the
space P metrized by p,) with centre ¢ and radius $-Minfe, QT(o,B,,)),
we infer that the polytope P metrized by gr satisties the following con-
dition: For every ¢ e P there exists a positive number & such that each closed
ball in P with centre ¢ and radius < & is strongly convex.
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