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Concerning dense metric subspaces of certain
non-metric spaces

by
J. N. Younglove (Austin, Tex.)

In this paper it is shown that if X ig a space satisfying R. L. Moore’s
Axioms 0 and 1, [1], then X contains a complete metric subspace X’ such
that the set of all points of X’ forms a dense subset of the set of all points
of Z. A sufficient condition is given for a point set M in order that it
be the set of all points of some such X’. The terminology used in the
paper is largely that of R. L. Moore.

Axtom 0. Every region is a point set.

Axrom 1. There exists a sequence @y, G, @, ... such that

(1) for each positive integer m, G, is a collection of regions covering
the set of all points, .

(2) for each positive integer #, Gy, is a subecollection of G,,

(3) if R is a region and 4 is a point of R and B is a point of R, there
is a positive integer n such that if g is a region of G, containing 4, then
g is a subset of B and, unless B is 4, § does not contain B,

(4) if My, M,, M, ... is a sequence of closed point sets and for each
positive integer n there is a region ¢, of G, such that M, is a subset of §
and for each positive integer n, Mp4, is & subset of M, then there is
a point common to all the sets of this sequence.

It has been shown that every space satisfying Axiom 0 and the
following Axjom C is metric [2]:

Axiom C. There exists o sequence G4, Gy, Gy, ... satisfying con-
ditions (1), (2) and (4) of Axiom 1 together with the following condition

(3) it 4 is @ point of a region R and B is a point of R, there is
a posibive integer o such that if « is a region of @, containing 4, and y
ig a region of @, intersecting @, then z-+y is a subset of B and, unless B
iy 4, x-]-y does not contain B.

PropERIY Q. A point set M is said to have Property Q provided
it is true that it @ is a collection of domains covering 8, the set of all
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points, then there is a collection W of domains covering § with the
following properties:
(1) each domain of W is a subset of some domain of &,

(2) if P is a point of M and wy, w,, Wy, ... 18 an infinite sequence
of distinet domains of W and for each positive integer n, 4, and B,
are points of w, and the sequence A,, 4,, 4;,.. has P as a sequential
limit point, then the sequence B, B,, By, ... has P as a sequential limit
point.

A collection W of domains covering § and having properties (1)
and (2) will be said to have the Q property with respect to G and M.

The statement that a is an Axjom 1 sequence meanys that « is
a sequence (, Gy, Gy, ... of collections of domains and if ecach domain
of @, is called a region, then a hag the properties (1) to (4) as ligled in
Axiom 1.

Suppose that « is an Axiom 1 sequence Gy, Gy, Gy, ... and P is a point.
The statement that a satisfies Axiom C at P means that if K is a region

eontaining P, then there iy a positive integer # such that and y are
intersecting regions of &, whose sum containg P, the r sum is
a subset of R. It is to be noted here that if o sabisfies A C at each

point of §, then Axiom C holds in X, henee X is metriec.

If « is an Axiom 1 sequence Gy, Gy, Gy, ... and there is a point P
such that o satisties Axiom O at P, then the set of all such points will
be denoted by M,. The statement of Theorem 1 assorts that M, exists
and is an inner limiting set. This is sufficient to ensure the existence
of an Axiom 1 sequence @, G, G, ... for a space X’ whose points are
the points of M, such that for each », if g is an element of G4, then g
is a subset of an element of @, ([1], p. 83). Since a satisfies Axiom. O at
each point of M,, it follows that G, G4, G4, ... satisfies Axiom ¢ and
thus, 2’ is a complete metric space.

The statement of Theorem 3 asserts that in an Axiom 1 space X,
i M is a point set having Property Q, then there is an Axiom 1 sequence a
such that M, contains M. From this it follows that if 8, the set of all
points, possesses Property Q, then there is an Axiom 1 soquonce a such
that M, is . Hence, J is metric it § possesses Property Q.

The statement that X is paracompact means that if ¢ is & colloction
of domains covering §-then there is a collection H of dormaing covering §
such that each domain of H is a subset of some domain of &, and, if P
is & point, there is a region containing P that does not intersect infinitely
many domains of H. It is to be noted that if hyy hay by, ... i8 an infinite
sequence of distinct domains of A and for each 1y Pp i3 a point of hy,
then the set (P;+P,+P;+..) has no limit point. This leads directly
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to the conclusion that if X is a paracompact space satisfying Axioms 0
and 1 then, since § must possess Property Q, X is metric.

TEEOREM 1. If space satisfies Awioms 0 and 1 and a is an Aziom 1
sequence, then M, is an inner Wmiting set dense in S.

Proof. Let Gy, G,, G, ... denote the elements of «a. Suppose that
there is a region B such that if P is a point of R and » is a positive
integer, then there are two intersecting regions of @, whose sum contains P
but is not a subset of B. Suppose that P, is a point of R, 7, i8 a positive
integer such that every region of @, that contains P, is a subset of R,
and o, and y, are two intersecting regions of @, such that #, containg P;
and @, ¥, is not a subset of B. The common part of o, and , is a subset
of B and contains a point P,. There is a positive integer #, greater than n,
such that every region of @,, that contains P, is a subset of (2, - 47,), & pair 2,
and y, of intersecting regions of Gy, such that a, contains Py, Z, is a subset
of (#-1) and further such that @,44, is not a subset of R. This may
be continued fo produce a sequence , &, &4, ... of regions such that
there is a point 4 of B common to the sets of the sequence %, Zy, Ty, -...
The point 4 is also a point of each region of a sequence ¥y, ¥/, ¥ss -
such that for mno positive integer = is y, a subset of R. This is a
contradiction.

Let R, denofe a region. There is a point P, of R, and a positive
integer n, such that if 1y are intersecting regions of &,, whose sum
contains- P,, then o subset of R,. Let R, denote a region of Gy,
containing P; such that R, is a subset of R;. There are three sequences,
Pyy Py, Py, ...y By, By, Ry, ... and #y, 75, %y, ... such that P;, B, R, and n;
are as described above and for each positive integer § greater than 1, P;
is a point of R; and n; is a positive integer greater than ws;_; such that
if » and y are two intersecting regions of Gy, whose sum contains Pj,
then x-+y is a subset of R;. Further, the region R;i; is a region of
Gy, containing P; such that R;., is a subset of R;. There is a point P
common to all sets of the sequence R,, Ry, R, .... Let g denote a region
containing P. There i a positive integer ¢ such that R; is a subset of g.
P is a point of R;. There is an integer %k greater than ¢ such that
every region of @, that contains P is a subset of Ryy,. Thus, if » andy
are intersecting regions of G, whose sum contains P, both must
intersect R;.,. Consequently, 4y is a subset of R;. This completes the
proof that M, is dense in 8.

If M, is 8, then M, is an inner limiting set. Suppose that there is
a point of § not in M,. Let N, denote the point set §—M,. If P is a point
of N, and there is a positive integer » such that if ¢ is a region of G,
containing P, and j is a positive integer,.there are two intersecting regions
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of G; whose sum eontains P but is not a subset of g, and there iy a region r
of Gu-yq and a positive integer ¢ such that if # and y are two intersecting
regions of &;whose sum containg P, then 4y is a subset of 7; then let n,
denote the integer m. If there is no such integer, let n, be 1.

For each integer ¢ such that ¢ is u, for some point P of N,, let N,
denote the set of all points ¢ of N, such that 4 > n,. Suppose that 4
is a limit point of some such ;. Let B denote a region of G4 containing 4.
Let § denote a positive integer greater than ¢ such that every region
of @; containing A is a subset of RB. Let g denote one such region. of Gy.
The region g contains a point B of N; distinet from 4. There is a positive
integer k greater than j such that every region of G which containg B
is @ subset of g. Since B is a point of N;and B is a region G4, there
are two intersecting regions of G such that fheir sum containg B but
is not a subset of R. Thus, there are two intersecting regions of G; whose
sum. containg A but is not & subset of E. This shows that N; is closed and,
consequently, N, is the sum of a countable collection of cloged point
sets. Since N, is §—M,, M, is an inner limiting set.

THEOREM 2. If 0y, o5, g, ... 18 @ sequence of Awmiom 1 sequences,
then ihere is an Aziom 1 sequence a such that for each n, M, contains M, .

Proof. For each positive integer =, let Gy1, Gnse, Gugs, .. denote the
elements of a,.

For each positive integer §, let @1, denote the collection such that @
is an element of this collection if and only if 2 is an element of @ ; which
is a subset of some region of Gp;. Let of denote the sequence
G, HAzy Fia, ... The sequence af is an Axiom 1 gsequence. Furthermore,
M,; contains M, +M,,.

For each positive integer n greater than 1 and each pogitive integer j,
let G ; be the collection such that @ is an element of this collection if
and only if # is a region of G-, ; which is a subset of a region of G, ;.
Let o, denote the sequence Gri, Gz, Gns, ... The sequence aof is an
Axiom 1 sequence and M, contains Ma1+Ma,+...—|—M,,”.

For each positive integer n, Ghi1n41 8 & subcollection of G4,. Lot a
denote the sequence @i, Gz, Ghs,... If & is a positive integer and § is
an integer greater tham %, Gj; is a subcollection of @f;. Thus M,
containg I, .

TEroREM 3. If space satisfies Axioms 0 and 1 and M 45 a point
set having Property Q, then there is an Awiom 1 sequence o such that I,
contains M.

Proof. Suppose that M is a point set having Property Q and
Gy G5y Gy, ... I8 an Axiom 1 sequence. The collection @, covers 8§, so
there is a collection W, of domains having the Q property with respect
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to Gy and . Let @5 denote the collection @;. Let G4 denote the collection
such that 2 is an element of G if and only if # is a region of G, and 7 is
o subset of some domain of W,. The collection Gj covers §, so there is
a collection W, of domains covering § and having the @ property with
respect to Gy and M.

There are two infinite sequences @4, G, G5, ... and Wy, Wy, Wy, ...
sach that G, G3, W, and W, are as described above and

(1) for each positive integer » greater than 1, # is an element of Gy
if and only if # is a region of G5, such that T is a subset of some domain
of Wy,

(2) the collection W, has the @ property with respect to @, and M.
If w is a domain of W,, then % is a subset of some domain of Wp_;.

For each positive integer 4, let H; denote the -collection
Wi+Wisa+Wige+... For each n, H, covers § and each domain of H,
is & subset of sorne region of @,. Further, H,; is a subcollection of H,.
Therefore, H,, H,, Hg,... is an Axiom 1 gequence.

Suppose that there is a point P of M and a region R containing P
such that if » is a positive integer, there are two intersecting domains
of H, whose sum containg P but is not a subset of B. There is a sequence
R, BR,, B, ... such that for each positive integer j

(1) Ry is a domain of H; which is not a subset of R and

(2) the point set (B, -+ R+ R+ ...) containg P or has P as a limit point.

If there are only finitely many distinet domains represented in the
sequence R, B,, Ry, ..., then there is a domain ¢ such that d contains
P and d is an element of infinitely many collections of the sequence
H,, H,, H,, ... This contradiets the third condition of Axiom 1. Therefore,
there are infinitely many distinet domains in the sequence R, By, Rj, ...

For each positive integer j greater than 1, let d; denote a domain
of W, such that d; contains R;. There is a domain d; of the sequence
dy, dy, d,, ... such that d; containg P since W, has the Q property with
respect to @, and M. There is a Tegion g, in G, such that g, contains d;.
Thus, g, contains P and is not a subset of R.

By using the sequence R, Ry, R;,... it can be shown that there
is a region g, of G, such that g, contains P but is not a subset of R. Further,
for each n, there is a region g, of G, such that g, contains P but is not
o subset of R. This is a contradiction.

Therefore, if « denotes the sequence H,,H,,H,,.., then I,
contains M.

TEEorREM 4. Suppose that 8 is not compact, M s an inner lWmiting

sat demse in S and there is an Axiom 1 sequence a such thai M, contains M.
There is an Axiom 1 sequence o' such that M, is M.

2%


Artur


20 J. N. Younglove

Proof. Let Gy, Gy, Gy, ... denote the elements of a. Suppose that M
is a proper subset of M,. Let B denote the set §—M. The proof is divided
into three cases. The first, second and third cases being those where g is
degenerate, non-degenerate and cloged, and not closed, respectively.

Case 1. Let P denote the point in A and let Py, Py, Py,... denote
a sequence of distinct points such that the set (Py-+ Py Py-i-...) has
no limit point. Let Ry, R,, Ry, ... denote a sequence of regions closing
down on P such that, for each positive integer n, R, is a region. of G,.
Let ¢1, ga, g5, ... denote a sequence of mutually exclugive regions such
that the closure of their sum is the sum of their closures and, for each n,
gn contains P,. For each positive integer n let d, denote the domain
(Ry+ gn—P). For each positive integer », let @, denote the collection
consisting of all regions of G, together with the domaing dn, dpi1y dpte, .
Let o' denote the sequence Gy, G4, Gs, ... If B is a point distinet from. P,
there is a positive integer { such that the only domains of G4 that contain B
are regions of G;. The only domains of G{ that contain P are regions of @;.
Thus a satisfies the first three conditions of Axiom 1. If h and % are two
intergecting domains of &;,, their common part is a subset of a region
of @,. Therefore, o' satisfies the fourth condition of Axiom 1. Hence,
it is an Axiom 1 sequence. But P does not belong to M.

If A is a point of §— B, there is a region I containing 4 and a positive
integer n such that every domain of @}, that intersects R is a region of G,.
Consequently, 8—f is a subset of M,. It follows that M, is M.

Case 2. There exists a sequence H,, Hy, Hy, ... such that for each n,
H, iz a collection of regions of ¢, properly covering g such that if, for
each #, D, denotes the sum of the regions of H, then D,.; is a proper
subset of D,. Suppose that A4 is a point of M. There is a region R
containing 4 and a positive integer j such that R does not intersect ;.
The point set # is the boundary of M and it is the common part of the
domains D,, D,, D;, ...

For each positive integer n, let d, denote the domain D,—D,.;.

Suppose that P is a point of g and R is a region containing P. There iy
o point Z of M in K and & positive integer  such that Z belongs to D,.
There is a region R’ containing Z and a positive integer § such that R’
does not in@grseet D;. Thus, there is a positive integer ¢ sucl that %
belongs to D;_; and not to D;. There is a region R containing Z and
lying in R but not intersecting D;. Since Z is a point of Di.q, R” intersoets
.D;_,. The domain R”- D;_, is a subset of B and of (Diy—Dy). Therefore,
R intersects d;—;.

The sequence dy, d,, ds, ... has the following properties:

(1) if ¢ and § are two positive integers, then d; and d; have no point
in eommon,
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(2) if P is a point of § and R is a region confaining P, then there
is a positive integer n such that d, intersects R,

(3) if P is a point of I, there is a region R containing P and a positive
integer § such that R intersects no domain of the sequence dy, d,, ds, ...
with subseript greater than j.

There is an ascending sequence of positive integers ny, 7y, n;, ... sSuch
that the following is true. If, for each integer §, A; denotes the domain
(@t Gnygr+ oo+ dp,, 1) and P is a point of §, then there is a region B
containing P such that, for infinitely many positive integers 4, A4; inter-
sects R but is not a subseb of R. Also it is true that if » and y are two
positive integers, then there is no point common to 4, and 4,.

For each positive integer =, let Gy, denote the collection consisting
of all regions of G, together with the domains A,y Api1; dniay ... Let @
denote the sequence Gi, Gz, Gg, ...

In the same faghion as in Case 1, it may be shown that o is an
Axiom 1 sequence. Further, «' does not have the properties stated in
Axiom O at any point of*8 and does have these properties at each poinf
of M. Therefore, M, is IM.

Case 3. In this case M is not a domain but since it is an inner
limiting set and M,~M exists, there is a simple countable sequence
Dy, Dy, D, ... of domains with M as their common part, such that for
each positive integer n, D, containg D,,, and §— D, intersects 3,. For
each positive integer », let f, denote the boundary of D, and let T, denote
the point set - M,. Since I is dense in 8, B, contains no domain. For
each ®, Tpyy containg 7T,. The point set (Ty+ Tp+Te+...) I8 M.

If § is a positive integer such that the common part of §; and some
region of G; that intersects T; is non-degenerate, let dj,, 42, dss, -
denote a sequence of domains with the properties stated in Case 2 for
the sequence A, A,, A, ... except that § be replaced by ;. Let U; denote
a point set such that « is in U; if and only if » is a point of T; and there
iy a region R in Gy such that R contains @, and R-§; is non-degenerate.
Tet U denote a point set such that # is in U if and only if there is
a positive integer » such that « is in U,. If there is a point P in MM
such that, for no positive integer 4, P is in Uy, let the set of all guch points
be denoted by 7.

Suppose that » is a positive integer such that U, exists. For each
point P in Ug, let Ry, be a region of G, which econtains P and some other
point of ;. For each positive integer =, let H, be a collection of domains
guch that d is an element of H, if and only if d is a region of &, or for
some positive integer § and point P in Uy, d is the common part of Biy
and A;; for some integer ¢ greater than n.
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Suppose that 4 is a point of M which is not a limit point of §. Sinco «
satisfies Axiom C at 4, there is s region R containing 4 and a positive
integer % such that no region of Gy, intersects § and R. Since cach domain
of H) which is not a region of Gy is the common part of some I, and
A;,; where 4 is greater than k, this means that each point of this common
part belongs to a region of G; which intersects 8; and thus is a point of
a region of Gy which intersects 5. Therefore, R intersects no domain of
H, which i3 not a region of G.

Suppose that A is a point of M which is a limit point of 5. Let R
denote a region containing A. Since, for each ¢, f; is closed, 4 is not
a limit point of §;. Since A belongs to M, there is a region R, containing 4
and a positive integer n, such that every region of @, that intersects I,
is a subset of B. There is a region R, which is a subset of I, and contains 4,
and a positive integer o such that if ¢ << », and § > », then R, does not
intersect the domain 4;;. Bvery domain of Hy.,, that intersects R, is
a ‘subset of R.

Suppose that A is a point of . Let B denote a region containing A.
There is a positive integer # such that every region of &, which contains 4
is a subset of R. There is a positive integer j greater than = such that
1o region of G4 containg A and intersects (8, B+ ...+ fu). Each domain
of Hyyyis a region of G4y oris of the form (R, 4,;) where 4 is greater
than n+j. Bvery region of G4; which contains 4 is a subset of R. If there
is a domain (Ryp-Ag;) which contains A but is not a subset of B then,
since Ryp is & region of Gz, o is less than n. Each point of A,; is a subset
of a region of @; which intersects f, and since z is less than n, ¢ must
be less than j. However, 4 is greater than n-j. Consequently, every domain
of H,.; which containg A is a subset of RE.

It follows now fairly readily that the sequence H,, H,, Hy, ... satisfies
the first three conditions of Axiom 1 at each point of g and the first three
conditions of Axiom C at each point of M.

Suppose that M,, M,, My, ... is a sequence of closed point sets such
that for each positive integer n, M, containg M,,, and there is a domain
dyp in H, such that M, is a subset of d,. For each positive integer 4, no
two domains in the sequence Ay, A2, 445 ... have a point in conumon. Since
each domain of H, which is not a region of @, is of the form (B A}
where ¢ is greater than n, there exists no positive integer m such thot
infinitely many domains of the sequence d, d, dy, ... are of the form
{Be.p Az.0) where o < m. Therefore, there is an ascending Sequence 1y My, gy ...
of positive integers and a sequence R, R,, B, ... of regions such. that for
each positive integer k, Ry is a region of &) and contains dy,,» Thug the
sets of the sequence M, M,, M, ... have a point in common Therefore,
the sequence H,, H,, H,, ... satisfies the fourth condition in Axiom 1.
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If # is a positive integer such that U, exists and P is a point of f.
and £ is & region containing P, then there is a positive integer j such
that 4,,; intersects E. If 4 is a point of U, then (R, 4+ f,) is non-degenerate.
From these facts it follows that the sequence H,, H,, H,, ... does not
satisty the requirements of Axiom O at any point of 7.

Suppose that P is a point of M,— (M- TU), that is to say, a point
of 7. For each positive integer x such that 7 intersects g, let T denote
T py. For no n does a region of @, intersect two points of T4.

Suppose that I’ is closed. Since M is dense in 8, every point of 7' is
a limit point of M. Consequently, there is an Axiom 1 sequence
Hi, Hj, Hy, ... satisfying the requirements of Axiom C at each point
of M but at no point of T. This is exactly analogous to the situation
in Case 2.

For each positive integer n, let @ denote a collection such that d
is an element of Gy if and only if 4 is a domain of Hj or of H,. Let o
denote the sequence Gy, G, G3, ... It readily follows that M, is 3.

Suppose that T is not closed but contains a limit point of itself.
For each positive integer » such that T, contains a limit point of T,
let V. be the set of all limit points of T that belong to T,. No region
of &, covers two points of V,. There is a well-ordered sequence « whose
terms are the p'oints of V. There iz a subsequence w; of w such that

(1) the first term of w is the first term of o,

(2) if Z is an initial segment of w, and there is a point P of V, such
that no coherent collection of three regions of G, covers P and some
poinf in Z, then the first such point in e is the first point in cw, to follow
all the points of Z in e,.

It » is & positive integer and there is a point in V, which is not in w,
where 1 < ¢ < %, then let w,., be a subsequence of o such that

(1) the first term of o which is not in w; for 1 <4 << n is the first

term of wpqq,

(2) if Z is an initial segment of wp4, a,nd there is a point P of V, not
in @; where 1 <4< n, such that no coherent collection of three regions
of Guin covers P and some point in Z, then the first such point in o is
the firgt point in wpyy to follow all the points of Z in wpyy-

Suppose that there is a point P of V, which is in no one of the
sequences w;, ws, Wy, ... For each positive integer n, there is a coherent
collection of three regions of G, that covers P and some other point of V.
Sinee P belongs to M,, it follows that P is a limit point of V,. This is
a contradiction.

Suppose that 4 is a positive integer and & is a collection of regions

~ of Gy such that each region of G contains only one point of @y, and
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each point in w,, belongs to only one region of &. Suppose thai thore
exists a point of &* which is not a point or limit point of any one region
of (. Then there is a coherent collection of three regions of Gy that
covers two points in sy, which is impossible. Therefore, if P is a poing
of @*, there ig only one region g in ¢ such that P is a point of 7. For
each positive integer § such that w; exists, let ¢; be a collection of regions
of @Quy; such that each region of C; contains only ome point of w; and
each point in «; belongs to only one region of C;. Let ¢ denote fhe
collection such that R is in ¢ if and only if there is & positive integer =
such that B is in 0, . Suppose that there is a point P of M which is a point
of (* and not a point or limit point of any region in . Since P belongs
to M,, if B is a region containing P, there is a region R, containing I’
such that every region of € that intersects R, is a subset of R.

For each positive integer » such that V,, exists, there is a collection IC,
of regions covering V¥, with properties with respect to V, as described
in the preceeding paragraph for the collection ¢ with regpect to V.
Suppose that P is a point of V,,. Since P is a limit point of 7, if R denotes
the region of K, that contains P, then R T is non-degenerate. Bach point
of T is a limit point of M so there iy a sequence of mutually exclusive
domains d,, d;, d;, ... such that

(1) for each n,d, is a subset of R,

(2) if, for each positive integer n, G;, denotes the collection consisting
of all regions of &, together with the domains d,, dyy1, dpsey .., then
the sequence Gy, Gs, G, ... is an Axiom 1 sequence which fails to satisfy
Axiom C at P.

In a manner similar to the construction of the sequence Hy, H,, Hy, ...
it may be shown that there exists an Axiom 1 sequence Hj, Hj, Hj, ...
such that for each positive integer n each domain of Hj, iy either a region
of @, or a subset of a region of some K;. Further, this sequence does
not have the properties as stated in Axiom € at any point of 7 which
is a limit point of T and has these properties at each point of M.

Suppose that there iy a point of 7' which is not a limit point of 1.
Let W denote the set of all such points. The point set T—W is closed.

There is a sequence E;, K,, B,, ... of domains with 7—W as their common,
part such that

(1) for each =, H, contains B,,,,
(2) if P is apoint of W in K, there is a positive integer @ such that P

is in B, but not in H,,,, and a region g of @, which containg P and a point ¥
of W distinet from P.

‘ If there is a point of W not in B, the set of all such points is a closed
Doint set. There is an Axiom 1 sequence I, Ly, Ly, ... such that this
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sequence fails to satisfy Axiom O at each point of W not in E, and satisfies
Axiom C at each point of M. The set of points of W that are in E, may
be divided up into the sets of a sequence Wy, W,, W, ... which possesses
the properties of the sequence Uy, U,, Us, ... that made it possible to
construct an Axiom 1 sequence that satisfied Axiom C at each point
of M and did not satisfy Axiom O at any point of U. Therefore, there
is an Axiom 1 sequence that satisfies Axiom C at each point of M butb
at no point of W.

If P is a point of S, then P is a point of U or of 7. If P is a point
of T, and T is not closed, then P is a point of W or of 7'—W. Consequently,
there iy an Axiom 1 sequence o’ such that M, is M.
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