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Some multiplicative aspects of ideal structure theory®
by
J. G. Horne, Jr. (Lexington, Kent.)

1. Introduction. While we consider some general rings in this
paper, the ideal structure theory mentioned in the title is that part of
the general theory which one iy more apt to think of in connection with
the study of Banach Algebras and of various rings of continuous functions.
Most concepts are defined for arbitrary rings and a number of isolated
lemmas and theorems are proved for these concepts in such rings. However,
the majority of our results employ the assumption of strong-semi-simplicity
and an ample supply of ‘“local” identities. The results subsequent to
section B wuse the additional assumption that the structure space is
a Hausdorff space. Thus the various classes of rings considered are all
sufficiently broad to include the s.s.s. G.S. algebras of Wilecox [12].
Our hypotheses have in common with those in [2] and [7] the property
that they are inherited by homomorphic images of rings which possess them.

The motivation for this paper has been the desire to bring to the
fore and to isolate a number of purely multiplicative aspects of ideal
strueture theory. In this paper, our attention is confined to those aspects
which center in the notion of relative identity. Our tools are the concepts
of 0-ideal and prime-like ideal. We have generalized the natural definition
of relative identity as given for commutative rings in [7] and obtain,
incidentally, extensions of theorems 4.7 and 4.9 of that paper to arbitrary
rings. The notion of relative identity is also more general (for the class
of non-commutative rings) than the notion of relative unit used in [3].
Hence the notion of O-ideal is bit more general and the notion of prime-
like ideal is a bit more restrictive than that used there.

The results of this paper may be summarized as follows: we obtain
a number of results concerning the ideal structure (including the O-ideal
strueture) of s.s.5. G. 8. rings which have heretofore been obtained

* Tarly forms of some of the ideas in this paper are to be found in the author’s
doctoral dissertation submitted to Tulane University. The paper [3] contains other
ideas of that thesis.

Portions of this paper were presented to the American Mathematical Society
on August 19, 1958, under the fitle “Rings with effective O-ideal structure”.
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sither for rings of continuous functions (as in [4] and [5]), or under the
agsumption of an identity (as in [3], § 4). Novelfies include:

(1) the definition of the topology I' on the collection of maximal
0-ideals to yield a space homeomorphic with the structure space;

(2) the use of dual O-ideals to obtain the invariance of maximal

‘regular ideals under multiplicative isomorphisms;

(3) the theorem that any primary ideal in a s, 8.8 G. 5. ring is
also a s 8. 8. G. 8. ring;

(4) the use of the previous theorem fo generalize the equivalence
of conditions (a) and (¢} of [8], Theorem 3.3, and to prove the theorem
of Shirota [11] and Oivin and Yood [1] that a locally compact Tlausdortt
apce X is characterized by the multiplicative semigroups on Co(X) and
Co(X) (see section 5 for a definition of these terms).

2. Notation and terminology. In general, for sets 4 and B,
AN\B denotes the corplement of B in 4. For a family of sets %, U denotes
the set | J{d: AW} and NUA—="{d: 4 <AL

If © is a family of proper subsets of some set R, then the Stone
(dual Btone) topology on ¥ is the topology Z[A4] which has the collection
of sets N(H) = {8 eG: 7¢ SHO() = {8 ¢ S: e8] as a sub-basis for its
open sets. The resulting topological spaces are denoted by Sy and &,
regpectively. The sets of sub-basis elements were termed the Stone and
dual Stone paratopologies respectively in [3]. However, all of the theorems
of that work evidently remain valid if every occurrence of the word
“paratopology’® is replaced by the word “topology”. For all of these
‘theorems concern either compactness or continuity and it is well known
that each of these notions can be described completely in terms of a sub-
basis. We have occasion to use this fact in Theorem 4.6 for example.

If no mention is made to the contrary, the closure of a subset 4.
of a topological space is denoted by A~; its interior is denoted by A°.

Throughout this work, R denotes a ring. The word ideal always
means two-sided ideal. For fe R, [f] denotes the principal (two-sided)
ideal generated by 7. As in [9], we call an ideal JCR a reqular idoal if
R/J has an identity (such ideals are called modular in [6]). If ¢ e R maps
into the identity in E\J we write ¢ = 1(J). Naturally, f = 0(J) means f e,

By the structure space of R is meant the collection S(R) of maximal
regular ideals of R together with the Stone topology. Since wo have no
oceasion to use any other topology on G(R), we find no harm in writing
&(R) when we mean S(R);. '

Much of our work requires the restriction that B he a strongly-semi-
simple ring (abbreviated s.s.s. ring). This means that NG(R) is the
zero ideal.
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In the context of this paper, it is more usnal to describe the Stone
topology in terms of the notions of Aull and %kermel. The hull of a subset
J C R is the collection k(J) = {§ ¢ §(R): J C 8}. The kernel of a collection
&FCS(R) is the ideal %(F) = NF Of course the closure of a subset
AC G(R) is the set h{k(A)).

‘We now introduce some notation and conventions for the purpose
of exploiting several similarities between the rings we are about to study
and various rings of continuous functions. Thus for feR we set (1)
3{f)={8eS(R): feS}andregard J(f) as the zero set of f. Its complement
N(f) is the non-zero set of f. The set N(f)™ is the support of f (some authors
refer to this set as the carrier of f — see [9], p. 84, for example). It is also
natural to define the identity set G(f) = {8 e S(R): f = 1(8)}. Obviously
both J(f) and E(f) are closed sets.

For a subset § C S(R), we find it convenient to extend the above
notation and write f = 0(g¥) and f = 1{¥) when we mean f = O(k(%)) and
f = 1(k(%)). These statements are equivalent, respectively, to the state-
ments f=0(8) and f=1(8) for all §¥. Also, if J is an ideal then
f = 0(J) implies f = 0(h(J)) and f =1(J) implies f = 1(h(J)}.

‘We have frequent occasion o use Gillman’s set & (8) [2]. For § ¢ S(R),
N(S)={feR: 8e3(fi°}. Then N(8) is an ideal contained in § and
by Theorem 3.1 of [2], S(R) is a Hausdorff space if the hull of N (8) is
always precisely {S}. Note that in our above notation, fe N (8) if and
only if f = 0(M) for some open set U containing S. Also, if e = 1 () for
sach U then e = 1{N¥(8)). ‘

Other terms are defined as they are needed.

3. Relative and local identities. The following definition of
relative identity generalizes that given in [7], definition 4.3, and has
many pleasant properties which other generelizations of that notion do
not possess. In non-commutative rengs, it is distinet from the notion
of relative unit used in [3]. Thus it leads to a different notion of O-ideal
and prime-like ideal from that in [3], but it appears to be the correct
one for our present purposes.

DeriniTioN 3.1. An clement ¢ B is a relative identity for fe R
it for every xe[f], ex = e = z. An element f has a relative identity if
such an element e exists.

Recall that the ,,circle product” of two elements f, g ¢ B is defined
by fog=7F+g—f9. We have the important ' :

Lemma 3.2. If e is a relative identity for f, and g is arbitrary, then
eo g and go e are relative identities for f.

(%) Conceivably a second name for O(f); however, in the remainder of the paper
©(f) denotes the set of maximal O-ideals containing f.
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Proof. For » e [f] there are four elementary equations to he checkod.
The details are omitted.

It follows immediately that Lemma 4.4 of [7] is valid in arbitrary
rings using the above definition of relative identity:

LevmA 3.3. If fi, ..., fu hove velative identities e, ..., én respectively
then the element € = ¢, 0 ... o ¢, i & relative identity for the set {fy, ..., fn}-

Remark 3.4. Note that this common relative identity ¢ is a “ring
combination’ of the individual relative identities. Hence if all the ¢
belong to some ideal J then eed.

LeymA 3.5. Suppose that ¢ is a relative identity for f. Then e == 1{N(f)
(or equivalently N(f) C € (e)). Thus, if 8« S(R) and f ¢ 8 then ¢ = 1{N(8))
and N (8) is a regulor ideal.

Proof. We shall show that R(f) C 3(ex—a) for each # ¢ RB. A gimilar
argument shows that N(f) C 3 (we— ). Since N(f) is an open set, 8 ¢ N(/)
imples ¢ = 1(N(S)) by definition of N (8). Since N(8)C S8 it follows
that e = 1(¥ (f).

Let « € B be arbitrary. If N(f) ¢ 3 (exz— &) then there exists T e S(R)
such that f¢ T and ex—o ¢ T. Now a maximal regular ideal is prime.
Hence, there exists y e B such that (ex—x)yfé¢ T [10]. However, (ez— 2)yf
= exyf—ayf = 0 ¢ T, which is a contradiction. Hence, N(f) C 3(¢x—2).

As a partial converse we have

Lewwa 3.6. If R 48 a s. 8. 8. ring and if N(f) C E(e) then ¢ is a relative
identity for f.

Proof. Let S ¢S (R) be arbitrary and suppose z e[f]. If 8¢ R(f)
then f e 8 so ex—x e § and we—w ¢ S gince § is an ideal. If § ¢ R(f), then
¢ =1(8) by hypothesis, 50 ex—x eS8 and ze—z 8. Since Ris a 8. 5. 5. ring,
ep—2=0=ge—x 50 ¢ is a relative identity for f.

Lemma 3.5 yields the following version of Theorem 4.7 of [7] for
arbitrary rings:

TaeorEM 3.7. (Kohls) Suppose that R is a ring such that for each
8 e G(R) there exists f ¢ S which has a relative identity. Then & (R) 18 locally
compact.

Proof. Let 8¢S (R). Thereis f¢ 8 and ¢<R such that ¢ i o relative
identity for f. By Lemma 3.5, ¢ = 1(1) where I is the open. set N(f).
Therefore, if J'= () then R/J Las an identity. By Corollary 1.2 of [2],
U is compact. Hence § has a neighborhood whose closure ig compact.

The hypothesis of the previous theorem is a valuable woakening
of the assumption that a ring have an identity. It was used at several
points in [8]. Presently we show that in g. s. 8. rings it is equivalent to
a hypothesis used by Wilcox [12]. We use it extensively in the sequel
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(note especially section 6). Taking our cue from Loomis's reference to
“local identities” ([9], p. 83) we adopt

DeFIniTioN 8.8. If R is & ring such that for each S e &(R) there
exists /¢ § which has a relative identity, then we shall call B a local
identity ring (abbreviated L i. ring).

According to the previous theorem, 1. i. ring has a locally compact
structure space.

Remark 3.9. An easily proved fact which we shall have occasion
to use later is that the homomorphic image of a L i. ring is a L i. ring.

The second condition of the following theorem is the hypothesis
(B) of [12].

TEEOREM 3.10. Leét R be o s. 5. 5. ving. Then the following conditions )
are equivalent:

(1) R i3 a li. ring.

(2) Every 8 eS(R) is comtained in,an open set whose closure has
regular kernel.

Proof. Suppose that R is a L i. ring and let § ¢ (R). Then there
exists f¢ § and e e R such that ¢ is a relative identity for f. By Lemma 3.5,
RN(f) CE(e), 50 N(f)~ C E(e¢), since E(e) is a closed set. Thus ¢ = (RN,
or what is the same thing, ¢ = 1(70(57{(]‘)“")). Thus § is contained in the
open set N(f) whose closure has regular kernel.

Assume, conversely, that (2) holds and let 8¢ &(R). Then there
is an open set U containing S and an element ¢ e B such that e=1 {#(U);
that is, WC E(e¢). Since Sel, § does not belong to the closed set
T = (S(B\U, so 8 %({F). Thus there exists fe%(F)\S, and for such f,
N() CUCE(e). By Lemma 3.6, ¢ is a relative identity for 7. Hence R
is a 1.i. ring.

The next result is used in the remainder of the paper as well as to
obtain immediately a version of another result in [7] for arbitrary rings:

TEmOREM 3.11. Suppose that § C S(R) is compact and J is an ideal.
If for each S e§ there ewists f¢ 8 such that J eontains a relative identity
for f, then there ewists ¢ ¢ J such that e = 1(N (S)) for every 8 «§. Hence,
if B is a Li. ring then the ideals J(F) = N{N(8): 8 «F} and ¥(F) are
regular ideals.

Proof. In virtus of the assumption concerning relative identities
and the compactness of ¥, there exists a finite set of elements fy, ..., fr e B

n
and corresponding relative identities e, ..., e, eJ such that § CJ R(f).
feel

Now ¢=¢,c...06,¢ed, and by Lemma 3.3, ¢ is a relative identity for
the set {f;, ..., f»}. By Lemma 3.5, ¢ = 1{N(8)) for each 8§ CF. The first
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part of the final conclusion is obtained by taking J == K and the second
part follows from it since N(S)C 8.

Remark 3.12. Our use of J(F) in the previous theorem agroes
with that in [12] where J(F) was defined to congist of the collection of
elements f such that f = 0() for some open set U D F. Butb this collection
obviously coincides with the set (M {¥(8): Se¢F}. In particular, if F= {9}
then J(F) = N(S).

It is apparent from Theorem 3.11 that if R is a strongly-semi-simple
L i. ring and G(R) is compact, then R has an identity. The proof of the
converse proposition which appears in [7] is valid in such rings. Henco
we have the following version of Theorem 4.9 of that paper.

Tuworem 3.13. (Kobls) Let R be a strongly-semi-simple 1.1 ring.
Then G(R) s compact if and only if R has an identity.

Next is an analogue of Lemma 25 C of [9], which we use oxiensively
in the sequel. -

Lmvwa 3.14. Let R be a 1. 1. ring. If §o C S(R) is compact and disjoint
from the hull (J) of an ideal J then there emists ¢ ¢ J such that e = 1(F)-

Proof. By theorem 3.11, §, has a regular kernel. By [9], p. 62, for
example, there exists ¢ eJ such that e = 1((%,))- Therefore, ¢ = 1(F,).

Rémark 3.15. It follows from the previous lemma that if R is
al. i. ring then compact sets in G(R) are closed. For if § C G(.B) is compact
and S ¢, then § 2 k(F): Simply choose z¢ 8. By the lemma, there oxists
¢ <8 such that ¢ =1(§F). Thus ez—x e (K(F)\S). )

Now consider the set J(oo) defined in [12] to consist of the sef of
elements f such that N(f) is contained in a compact set &. By the remark,
N(f)”CF, so f has compact support. Certainly if § has compact support
then fedJ(oo0). Hence we have o

Remark 3.16. Tn 1. i. rings the set J (o0} is the set of elements
having ecompact support.

Finally, we use Lemms 3.14 to show that strongly-semi-gsimple
L i. rings possess an abundance of divisors of zero.

TeEmoREM 3.17. Suppose that R is a strongly-semi-simple 1. i. ring
and let 8 ¢ G(R). Then the members of N(8) are divisors of sero. '
. Proof. Suppose feN(S). Then §¢RN(, s0 J = BR(H7) is an
ideal whose hull is disjoint from {S}. By the previous lemma, thers exists
ecd suc'h that ¢ = 1(8). Thus ef and fe both belong o (M &(k), while
6= 0. Bince R is a 5. 8. 5. ring, of = fe=0, 80 fis a divisor of zoro.

. Re'ma;rk 3.18. According to [13], the group algebra of o group
which i a product of a compact group and a locally compact abelian
group Is a 8. 8. 8. G. 8. algebra and hence a strongly-semi-simple 1. i. ring

icm
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in virtue of Theorem 3.10. The previous theorem yields an abundance
of divisors of zero in such algebras. On the other hand, Zelazko [14] has
given a construction of a divisor of zero in an arbitrary (non-trivial)
group algebra.

4. O-ideals and prime-like ideals. The notion of relative
identity leads to the relations

0 ={(f,e): e is a relative identity for f},
and
02 = {(f, e): for some €', fO¢' and ¢'O¢}.

Obviously both relations are transitive and 02C O.

Warning. A difference is to be noted in the above definition of O
and of the relation bearing this designation in [3]. The present relation
evidently includes that in [3] and the two coinecide in commutative rings.

In any case, we have the notions of O-ideal and 0O*-ideal as special
cases of definition 1.2 of [3], and as we shall see, most of the results listed
there for O-ideals are valid for the present meaning of this term. In
particular, it is easy to see that a subset I of a ring is an 0-ideal (0?-ideal)
if and only if T is an ideal which is O-directed (02%-directed) in the sense
of [3], § 2, for example. Thus the notions of 0-ideal and 0%-ideal coalesce
in rings. In virtue of remark 3.4 we have counterparts of Lemma 4.7
and Theorem 4.8, respectively, of [3]. The proofs there suffice here with
minor changes and are omitted.

THEOREM 4.1. A subset I of a ring is an O-ideal if and only if I is
an ideal which satisfies the condition
(1) f e I implies there ewists ¢ e I such that fOe (fO%e).

TrroREM 4.2. If J 48 a collection of O-ideals then the set \/J of
finite sums taken from \UJ is an O-ideal. In particular, if I, and I, are
O-ideals then I+ I, is an O-ideal.

The relation O also yields the notion of prime-like and prime-like (02)
ideal ([3], § 2). The fact that there may exist elements which possess no
relative identities raises the need for the following extension of these ideas.

DurixirioNy 4.3. Let R be a ring and 4 a fizxed subset of B. An
ideal P C R is prime-like (prime-like (0%)) with respect to A if whenever
(f, e, k) is a triple satistying fé¢ P, fOe¢ (fO%), kee P and % e 4, then
I ¢ P. The collections of all such idealy which are proper subsets of B
ave denoted by P(R, 4) and PR, 4) respectively.

Bvidently a prime-like (prime-like (0?)) ideal of B is siraply & prime-
like (prime-like (0%)) ideal with respect to B (and hence with respect

‘Fundamenta Mathematicae, T, XLVIIL 3
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to ‘every subset of R). Every prime-like ideal is prime-like (0%) and
a sufficient condition for the converse to hold is given in [3], § 5, for
commutative rings.

If P is a prime ideal in R then it is a prime-like ideal, For suppose
7, &, 7 e R are elements such that f¢ P, fOe and keeP. Let geR be
arbitrary. Then fgkeP, for fgk= fgke, since fOe. Therefore keP,
Hence we have proved

THEOREM 4.4. Bvery prime ideal in an arbitrary ring 4s prime-like.

To see that prime-like ideals have a certain irreducible quality,
gsee Lemma 10.2.

To indicate yet another source of prime-like ideals we have tho
following theorem. Recall that an ideal P is completely prime if f, g¢ P
imply fg ¢ P.

TerorEM 4.5. If R 8 -a strongly-semi-simple L. i, ring and S ¢ G(R)
then N (8) is a prime-like (0?) ideal. If the members of G(R) are completely
prime then N (8) is prime-like.

Proof. If f¢ ¥N(S) then SeM(f) . If fOe¢' then by Lemma 35,
R(f)” CE(e’). Thus 8 e N(e’). If ke’ belongs to N (8), then there exists
an open set U such that 8e W C 3(ke'). Now if members of S(R) are
completely prime, 3(ke') = J(k)v 3(¢’), s0 § e W~ N(e) T (k) ~N(e)
C 3 (k). Hence k « N(8) and the final statement has been proved. :

If we assume instead that f02%e, then there exists ¢’ ag above so that
¢'Oc. Thus we have the additional result R(e’)” C E(e). Combined with
the above statements this yields §e(e’) CE(e). In other words,
e=1(R(¢')), 50 6 =1(N(8)). Hence if ke ¢ N(8) then obviously % ¢ N (8)
and the first statement is proved.

The proof of Theorem 3.5 and its Corollary 3.6 of [3] requires ouly
trivial modification to be valid for the collections P (R, 4) and Py(R, 4)
defined above. We have already mentioned that the word “paratopology’”
appearing in [3] can be replaced by “topology”. Hence we can stabe
the following theorem, a part of which is used in section ¢ to obtain the

compactness of the maximal O-ideal space of cerfain rings which may
Dpossess no identity.

TEEOREM 4.6. Let R be an arbitrary ring and A o fized subsot of 2.
Then the collections PB(R, A) and PR, 4) are compact in the dual Stone
topology. :

5. The operation L. Associated with the relation O is the
operation L. This operation is obviously akin to the operation I in [37

and we shall show presently that it is intimately mlmt od to the operation §
of Loomis [9] and J of Wilcox [12].
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DerFINITION 5.1. For a subset J of a ring B we seb
L(J)= {feR: fOe for some e¢eJ}.

We have occasion to use the operation I2 defined by I*(J) = L(L()),
or equivalently I*J) = {f e B: f0%e for some eedJ}.

The following elementary propositions are useful:

(i) L and I? are monotone functions; if J is an ideal then
IAJ) CL(J)CJ while IXJ) and L(J) are ideals. (The proof of the latter
statement uses remark 3.4, of courge.)

(ii) An O-ideal is contained in an ideal J if and only if it is contained
in L¥J). Hence if M is an O-ideal, L M) = L(M)=

(iii) I¥ I and J are ideals then L(I~J)=L(I)~L({J) s0 Lﬂ(InJ)
= INI) ~nI¥J).

One interegt in I? is seen in the next theorem whose easy proof is
omitted. The hypothesis that 0% is dense was used in [3] and appears
again in section 6. It is shown to be available in the class of rings studied
in section 7.

THEOREM 5.2. If R is a ring in which 02 is dense and J is an ideal
then IAJ) is an O-ideal.

A certain amount of interest attaches to the set L(R), as the following
vemarks and theorms show. If R is itself an O-ideal (for example, if B
has an identity) then L(R) = B. If R is the ring Coo(X) of complex-valued
continuous functions which vanish at infinity on a locally compact
Hausdorff space X then L(R) is the subring Co(X) consisting of those
functions having compact support (see [1] for example; also see Theorem 5.6
of this paper).

Possibly of more gene1a.1 interest is

THEOREM 5.3. Let R be an arbitary ring and let J be an ideal. If
J D L(R) then J is contained in a regular ideal.

Proof. Choose feL(R\J and let e R belsuch that fOe. Deiine
A(f) = {z e R: for all y €[], yf and fy «J}. Evidently A(f) is an ideal
containing J. Further, ¢= 1(A(f)). For suppose xR and suppose
y € [ew—a] has the form y = u(ew—z)v Where u, v may denote either
integers or elements of R. Then (u(ex— ) v)f = yexvf — uxvf = uxvf—uavf
= 0 ¢J. It is now apparent that for arbitary ¥ eex—o, yf=fy=10¢edJ.
Therefore ex—x e A(f). A similar . argument. shows ze—x e A(f), 80
e =1(4(f)} and the theorem iz proved.

The hypothesis of the following corollary is sa,tlsfled for example,
Dy the ring Cu(X) referred to above. This follows from [8], Corollary 3.6,
and ‘the remark above that L(Cw(X))= Cy(X) (observe the difference
in notation between the present paper and [8]). o

3*
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COROLLARY 5.3.1. If L(R) is contained in no. maximal ideal then
every maximal ideal is regular. :

We have the following more specialized result concerning L (ER).

THROREM 5.4. A ring R is a L i. ving if and only if the hull of L(R)
8 empty.

Proof. If R is a L i. ring and S ¢ G(R) then there exists ¢ § and
¢ e R such that fOe. Thus f e L(R)\S; since § is arbitrary, A(L(R)) = 0.

Conversely, if h(L(R))=@ then for each 8e¢G(R), L(R)¢&l.
Therefore there exists f¢ § and ¢ ¢ B such that fOe. Again since § is
arbitrary, we have that R is a 1. i ring.

Remark bB.5. In connection with the previous thoorem, see
Theorem 1.1 (a) of [12]. According to Theorem 3.10 above, the ring
considered in [12] is a 1. i. ring and ag we shall see shortly, J(oco) may
be identified with the collection of elements which possess relative
identities (i. e., with L(R) when R designates the ring). ‘

A relation can now be established between .I, the operation‘j of
Loomis ([9], p. 84) and the operation ¥ of Wilcox ([12], definition 1.3).
indeed, in 1. i rings, § = 3. For FCS(R), §(§) is the set of elements fe R
such that R(f)” is compact and disjoint from ¥, while J(F) == J(F) ~J (o0)
where J(F) is the set discussed in Remark 3.12 above and J(co) is the
set of elements mentioned in Remark 3.16. By the labter remark, if
f ed(co) then M(f)™ is compact, and if feJ(F) then §C 3(f)° whence
FARPH =@, Thus J(F)CHF). I fej(F) then N(H™ is compact so
f‘eJ(oo). Also FARM =6, so FCI()° and feJ(F). The identity
j =3 follows.

We now relate L to j:

TurorEM 5.6, Suppose that B s a sirongly-semi-simple L i ring.

Let 8(:‘ S(R) be closed. Then §{F) = L(k(F)). Thus L(R) is the set of elements
having compact support.

Pron. It M(f)~ is compact and disjoint from § then by Lemm: 3.14
there exists e¢ek(F) such that e—:—.l(ift(;f)‘). By Lomma 3.6, fOe¢, so
f e L{k(E)).

Ife € k-(%}) is a relative identity for f then ¢== l(ift(f)'") by Lemma 3.5,
50 5)3(]‘) is compact by Corollary 1.2 of [2]. Also, M(f)~ C&(e) so
ﬂt(f)TE‘{yﬁj&?. Helilce f€j(%) and we have j(§) = L{k(f)).

. e conclusion is obtained by taking § to be t Gy
invoking the defmition of (e ¥y e w he the null set, and

COROLLARY 5.6.1. With R as above, L(R) = J
L(8) =N{(8) ~nL(R). » AR (e0) and for 5 e G,

iom
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Proof. The first asserbion of the corvollary is simply the second
conclusion of the theorem, together with the definition of J(co). For
the assertion concerning 8, let ¥ = {S}. By the first conclusion of the
theorem, L(S)=j(%) since k(F) = 8. But j(F)=J(F) =J(F) nJ (o0}
From the definition of J () and ¥ (8) we have J (F)=N(S). In summary,
L(8) =J(§F) nJ{e0) = N(8) nL(E).

The previous theorem also yields the following which allows a simpler
definition of maximal O-ideal in the rings of chief interest to us here.

TeeorEM b.7. If E s ring then
IXR) = L(R).

Proof. The inclusion I¥R)C L(R) always holds. If f e L(R) then
RN(f)~ is compact by the previous corollary, and since R is a L i. ring,
h(L(R)) =@ by Theorem 5.4 Therefore 9(f)"~ h(L(R)) = @, so by
Lemma 3.14, there exists ¢’ e L(R) such that &' = l(ilt(f)—). By Lemma 3.6,
fO¢, and since ¢’ ¢ L(R), there exists ¢ ¢ B such that ¢'Oe. Hence f0%
and feI(R).

By induetion we can of course give meaning to L" for any positive
integer m. If for such n, L™R) is an O-ideal then L™(E) is the (unique}
largest O-ideal in R. Thus, in order to avoid trivialities we adopt the
following definition which is & modification of that given in [3].

DEFINITION 5.8. An O-ideal M of a ring R is a proper O-ideal
if M - LY R) for any integer n. A mawimal O-ideal is a proper 0-ideal M
which is contained in no other proper O-ideal. The collection of all
maximal O-ideals of a ring R is denoted by M(R).

REMARK 5.9. Evidently in strongly-semi-simple 1. 1. rings IMR)=L(R)
for every positive integer » in virtue of the previous theorem. Thus
in such rings, a proper O-ideal is simply an O-ideal M sach that
M + L(R).

As a consequence of Theorem 3.3, every proper O-ideal is contained
in a regular ideal and, hence, by Zern’s lemma, in a member of S(R).
That is, if M is an O-ideal there exists Se&(R) such that MCS. Hence
M CIX8). Now if 0% is dense, T2(8) is an O-ideal, so if M is a maximal
0-ideal then M = L*S). We have proved the

THEOREM 5.10. In an arbitrary ring R a proper O-ideal is contained

in @ maximal regular ideal. If O2 is dense then for every mawimal 0 -ideal M
there exists 8 e S(R) such that M = I¥8).

6. On the assumption 02 is dense. In this section we generalize
essentially all of the results in [3], §4, in so far as those results
concern rings. There seems to be liftle doubt that corresponding
generalizations exist for the class of semirings considered there. The

a  strongly-semi-stmple 1. 1.
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generalizations are in the direction of weakening the agsumplion of an
jdentity. In place of it we use the assumption

(A) The hull of I¥R) i3 empty.
This agsumption is easily seen to be equivalent to the assumption
(A) R s a Li. ring such that L*(R) = L(R).

For if (A)" holds then the hull of L*R) is empty by Thcorem 5.4,
Conversely, suppose (A) holds. By Theorem 5.3, IAR)DL(R) so
LXR) = L(R) since L(R) always contains L*(R). Thus, the hull of L(R)
is also empty, so by Theorem 5.4 again, R iy a 1 i ring.

In virtue of Theorem 5.10, condition (A)’ (and hence condition (A))
is satisfied in strongly-semi-simple 1. i. rings. It is also satisfiod if T(R) == R
and hence if B has an identy (for if R has an idenfity 1 thon for every
J € B, there is ¢ =1 such that fO¢). Our arguments evidently remain
valid if the relation 0? is everywhere replaced by a stronger (== #maller)
relation for which Theorem 6.1 below is true, Now the relation uged

in[3]is such a relation if in definition 4.2 of [3] one takes eoh, f,g)=1—g

and h,= 0. Thus the results of this section do indeed generalize the
results of that paper as far as those rogults concern rings,

TeEorEM 6.1. If ¢, &, u, and w, are elements of @ ring R and
& 0%, 0%, 0%u, then (uy— e5) 0%uy— e,). :

Proof. We mention that one should prove, a8 & preliminary result,
that this theorem is valid if the relation 02 is replaced by O thronghout.
The details are straightforward and are omitted. Now assumo the
liypotheses of the theorem. Then there exist elements f; 9 and v ¢ B such
that ¢0f0e0g and gOw,0v0u,. Applying the preliminary result to
the chain ¢, 0f0v0u,, we have (v— N O(ua—e,) and applying this resuls
to the chain 10, 0w, 0, we have (u;— ¢,) 0 (v—f). Hence (4 — €3) Oty — 6,).

' Now let P.(R) denote the collection SBz(R,L(R)) of all proper ideals
which are prime-like (02) with respect to L(R). We ’,;w: infer from
.Theorem.tl.S that Po(R), is compact. Let S(R) = {I¥P): P e Py(R)}.
if .Q(R? 18 given the dual Stone topology then I? obviously bocomes
a c‘ontmuous function. Hence Q(R), is compact. Curiongly, porhaps,
80 18 £,(E) = &(R\{L(R)}. For suppose § is a proper closod subset of
8,(R). Then F= L,(R) ~§" for some proper closed subset § of Q(R).
Therefore L(R) ¢ ' since subsets of 2(R) which contain L(R) arve dense,
ST&;;&;‘:EOI;? g'f ﬁa(lR).anld T =5, so § is compact. If avery proper c¢logod

opological space i ; ; ae 5 o
Henoa S8, isl coxipa,et_l 18 compact then the spacoe is compaet.

The next two lemmas constitute sﬁeps in the direc

thict 2,(R) = M(R). tion of showing
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. Lemma 6.2, Suppose that 8 is an ideal in o ring R and ¢, ueR
satisfy g = 1(8) and gO%. Then, for all © ¢ IXR), we have uz—2z and
au—x e I¥(8). :

Proof. There exist elements v, w, and w, e R such that ¢Ov»Ou
and 20w, Ow,. It is not difficult to show that (uz— ) O (w,— vws,) O (10, — quoy)
with similar relations holding for su—=. By hypothesis, w,— qu, ¢ §, s0
ux—o and zu— e L*(S) by definition of L3(S).

LemmA 6.3. Suppose that R satisfies condition (A) and that OF is
dense. Then for each 8 ¢ S(R) there exist q ¢ R, w ¢ T(R) such that q = 1(8),
and qO%u.

Proof. Since the hull of L¥(R) is empty, there exists f¢ § and 4’ ¢ R
such that fO%'. Since 02 iz dense, there exists ¢, « ¢ R such that
70%q0*%0%'. Thus u ¢ L(R). Further, f0% implies fOgq, so g = 1{¥(8))
by Lemma 3.5. Since N(8)C S8, ¢ =1(8) so the proof of the lemma
is complete. : .

The proofs of the follewing results possess many similarities with
their counterparts in [3]. Indeed, it would be possible to give a list of
modifications necessary o make arguments there wvalid under present
conditions. However, the list is long so it seems advisable to include
most details. »

TeEEOREM 6.4. Suppose that B satisfies condition (A) and that O is
dense. Then for each 8 ¢ S(R), IX8) is a mazimal O-ideal.

Proof. We have that L R) and L¥8) are O-ideals by Theorem 5.2.
Thus, since L(R) = LA R), L(R) is an O-ideal and L*8) is a proper O-ideal.
For if L2(8) is not a proper O -ideal then L¥8) = L(R), so L(R) CL¥8) C 8,
which is contrary to condition (A).

Suppose that M is an O-ideal which contains L(S). ¥ M C § then
M = I*8) since I*(8)C M = I¥M)CI¥N)

If M ¢S then there exist elements f, g, €, ¢, %, and us e M\S
such that f0%0%e 0%, and ¢,0%, 0%,. Now on the one hand, we have
seen that f¢ 8 and 0% imply ¢ =1(8). On the other hand, (u,- - 6,) 0*(u,— &)
by theorem 6.1. Now g(u,—e¢)= 0eS. Since § iz a prime ideal, § is
2 prime-like (0% ideal by Theorem +.4. Therefore w,—e; €8, 50
u—e, e LA(S)C M. However, e,e M, so u, e M., But this implies
M =L(R). For let 2 eL(R). Therefore »eI*R), so by Lemma 6.2,
wr—a e A(S)C M. Since #u,eM, wreM, and hence e M. Thus
M = L(R), so L*8) is not contained in any other proper O-ideal. Hence
I¥8) is o maximal O-ideal.

The previous theorem can be extended to yield the resnlt Wi(R)
= {,(R) with the aid of the following
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THEOREM 6.5, Suppose that R satisfies condition (A) and that 02 g
densé. Let P be an ideal in B which is prime-like (0%) with respeoct to L(R).
Then LY P) = L(R), or L¥}P) is a mawimal O-ideal. Henoe if G(R) is not
empty, every such P contains a maximal O-ideal.

Proof. According to Theorem 5.3, either P C 8 for some § ¢« G(R),
or L(R) C P. In the first case, P D L*(8). For otherwise there exist cloments
f, 6, and e, e IA(8)\P such that fO%,0%,. By Lemma 6.3, thore exists
¢ e R, w' e L(R) such that ¢ = 1(8) and ¢O0%/'. Since L(R) is an O-ideal
and e, e L¥(8) C L(R), there exists u ¢ R such that «'0% and e¢,0%. Then
e%(u~eg) = 0 ¢ P. Since ¢, ¢ L(R), we have u—e, ¢ P C 8. Therefore, v ¢ 8,
since 6, ¢ LA(8)C 8. This is a contradiction, since ¢ == 1(8) amd ¢Ow
imply % == 1(8). We conclude that in this case, L”(S)DL’(I’)DJJ"‘(S)
80 IX(P) is a maximal O-ideal by the previous theorem. ’

In the second case, L(R)C P. Therofore L(R)==I*P) sinco L(R)
= IAR). If G(R) is not empty then R contains maximal O-ideals by
the previous theorem again, and these are always contained in L(R).
Thus in this case too, P containg & maximal O-ideal.

_ One immediate consequence of Theorem 6.5 is that every propei'
0-ideal wh'iehl ig prime-like (0%) with respect to L(R) is maximal. An
argumel?t similar to one employed in [3], § 4, shows that the converse
holds. Since some of the details must be changed, we include the complete
proof of this latter statement. ‘ |

. ToEoREM 6.6. Suppose that R satisfies condition (A) and that 0* is
ense. Then the class of proper O-ideals which are prime-like (0% with
respect to L(R) coinoides with IN(R).

Proof. It only remains to show that ever i i
o : . y maximal O-ideal M
Is prime-like (0) with respect to L(R). Suppose f¢ M and fO%. 1t is
easy to see that ‘the.set {w ¢ B: £0%}, which we might here call L¥(e),
iy an Q-ldeal ‘whlch n}cludes f. By virtue of Theorem 4.2, M -+ I#e) 8
31:[1 ‘()-leieal. Since M is maximal, M -+ L¥e) = L(R). By Theorem B5.10,
and—u e(g)( lg)rs SO}]:ltihS: G(E). By Lemma 6.3 there are elemonts gelB
e at ¢ = 1(8) and qO%. T for
e Doy o e ! q (8) and ¢O%%. Thus for somo m ¢ M and
Now suppose %k e¢L(R) and kee M. The i
[ . 0. ke' e M, sinee e w: e’
i?eﬂ;éllz. ]Sz[mce éccell}éR) and L(R)=I¥R), 7m-~70’eIﬁ(;5*)mM 1)3:
2. Hence and we hg fhavts i i ik
it Tecpat b L(R)_e nd we have shown that M is prime-like (0%
Finally we have the long promised

THROREM 6.7. Assume condition (A) and that 02 4s dense

7]
DUR) = B(R) so M(R) is dual Stone compact. Then
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Proof. We observed earlier in this section that £,(R) is dual Stone
compact so the equality IM(E)= Lo(R) yields the final conclusion
immediately.

If MeQ(R) then M =I¥P) for some proper ideal P which is
prime-like (0%) with respect to L(R) and further M # L(R). Therefore
by Theorem 6.5, L*P) e M(R) so M e M(R). Conversely, if M e M(R)
then M = L{R) and M = I¥8) for some §e¢S(R) by Theorem 5.10.
Since § is prime, we have that § is prime-like by Theoram 4.2 50 S € P,(R).
Thus M ¢ 8,(R) and the proof is complete.

The following theorem and its corollary are analogues, respectively,
of Theorem 4.25 and its corollary in [3]. The proofs there are applicable
here with a few changes which we indicate.

TarorEM 6.8. Suppose that R is a ring such that M(R), s compact
and (N M(R) is zero. Then for every ideal J C B, J=N{M+J: M MR}
- Proof. It feN{M+J: M ¢ M(R)} then for each M e M(R), there
exists m ¢ M and g eJ such that f = m-g. Thus there exists ¢« M such
that (f—g)e=f—g, or more briefly, fefe-+J. Hence M(E)C M{D(e):
f efe+J}. The compactness of M(E), yields finite sets 6y ...,n e
and gy, ..., gn€J such that f=fe;+-g; for i=1,...,% and every M« M (R)
contains some e;. The argument given in [3] is now applicable since we
have assumed that the only element belonging to every M e M(EK) is
zero. Thus f eJ. The reverse inclusion is immediate.

COROLLARY 6.8.1. Suppose thal R satisfies the conditions of the previous
theorem. If J is am O-ideal then J = {M: M ¢ M(E) and J C M}

Proof. As in the proof in [3], we can write J = I’ ~I" where
I'=N{M+J: MeM(EB) and JC M}, and I"= N {M+J: M DM(R)
and J ¢ M}. Now if M is an O-ideal then M4J is an O-ideal by
Theorem 4.2 above, so if M is a maximal O-ideal and M pdJ then
M4 J =I™R) for some positive integer n. The Iinteger is the same
regardless of the particular M so I"=I"R) and I'~ I”=1I'. Finally
if JC M then M1 J = M, so the desired conclusion follows.

7. 8.s.8 G.S. rings. If B is a s.5. 8. G. 8. algebra in the sense
of [12] then R has a Hausdorff structure space, and, by Theorem 3.10
above, i also a L i. ring. Accordingly we adopt

DerFrxmioN 7.1. A L i. ring which has a Hausdorff structure space
is termed a G. 8. ring.

Unless the contrary is mentioned, we assume in the remainder of
thig section that R denotes a fixed s. 8.s. G. 8. ring.

Tn addition to being a locally compact Hausdorif space, © (R) is
of course a regular space. This fact enters the proof of the following
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lemma and two subsequent theorems in an entirely familiar wuy, enabling
us to abbreviate the proofs of the theorems somewhat.

Levma 7.2. Suppose that R is @ 8.58.8. G. S. ring. If feL(R) and
FC S(R) is closed and disjoint from N(f)~ then there ewists ¢ e L(R) such
that N~ ~ Ele) and R(e)" "F = B,

Proof. There are open setys U and L with compact closures such
that N(H) CUCUCB and B~ ~§ = J. By Lemma 3.14, there exists
¢¢R such that ¢=1(") and e=0(S(R)\DB), s0 N(H)~C E(e) and
N(e)” CF = O. In particular, ¢ has compact support, 0, by the second
conslusion. of Theorem 5.6, ¢ € L(R).

According to Theorem B.7, L(R)==IAR). 'Therefore IR wsutisfios
condition. (A)’ and, hence, condition (A) of the previous section. Thus
the following theorem implies that all of the results of that section are
valid here.

THEOREM 7.3. Suppose that R s a 8. 8. 8. G. S. ving. Then 02 is dense.

Proof. It f0% then there exists ¢’ <R such that f0e’0¢. Thug
RN CE(e") TR(e') CE(e), 50 N(F)™C €(e)°. Now apply the lemma three
times, beginning with the pair M(f)™ and § = S(R)\E(¢)°. This yiclds
elements ¢, o, and e, such that fOe,0e,0¢;0¢. Thus 0%, 0%, so O*
is dense.

In particular, the hypotheses of Theorem 6.8 are satistiod,

~ TemorEM 7.4. Suppose that R is a s s. 5. G. 8. ring. Then M(RB),
s compact and [ M(R) is wero.

Proof..The compactness of' M (R), is immediate from Theorem 6.7.
If f 0 then there exists § ¢ G(R) such that f ¢ §, since R is a 8. & 8. ring.
Certainly f¢ IX8), 5o, since IX(8) ¢ IN(R) by Theorem 6.4, f¢ ) M(R).
Hence (M M(R) is zero.

. Actl.mlly, the set L*S) can be replaced by the simpler set I(8) in
this setting. More generally, we have

TamorEM 7.5. Suppose that R is a 5. 8. 8. G 8. ving. If J 45 a hernel
then L(J)=IHJ), so L{J) is an O-ideal. T 2T ornet

E’roof. Let § = #(J) and suppose fOe with e¢e.f, Obviously
NI ~F =G, and since feL(R), M{fy™ is compaet by Thoeorem, 5.6.
By I_Jemma, 7.1, ap_?]ied twice, there exigh elemonts 1y 6y € It gueh, that
N~ C Eler), N(e) C E(ey) and N(e) "F = D. The two inclugious yield
106,06, by Lemma 3.6, and the final assertion implies ¢, =3 0(F). Thus
we havt-a both f0%, and ¢ ed, so fe¥J). Henco L(J)C TA(J) H'D])(;.
Teverse inclusion always holds, 50 the theorem is proved. ‘

Now recall Theorem 5.6 above and the discussion just procooding it.
As a consequence of that theorem and Theorem 7.5, we can agsert that
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if % is & hull then (%) and, hence, J(F) are O-ideals. In addition, setting
J = B(F), we have h(L(J)) = h(J) = F. For the proof of Theorem 1.2 (b)
of [12]is cleaxly valid for s. 8. 5. G. 8. ringg, 80 k(J(F)) = §. By Theorem 5.6,
L(J) = J(F), s0 ML) =F. We have proved

THEOREM T7.6. Suppose that R is a s.8. 8. G. 8. ring. Suppose §F is
a hull and let J = k(F). Then i(F) (= J(F)) is the O-ideal L(J) and
h(L (J)) =§. »

We also have the following sharpened version of Lemma 3.14.

THEOREM 7.7. Suppose that R is @ s. 8. 8. G. 8. ring. If §F CS(R) is
compact and disjoint from the Wil k(J) of an ideal J then there exvists ¢ e J
such that e =1{J(F)).

Proof. Since J(F) CJ(F) C k(F), it follows from the previous theorem
that h{J(§)) = §. According to Theorem 3.11, J(¥) is a regular ideal.
Thus J(§) is a regular ideal whose hull is disjoint from the hull of J.
Hence by the lemma of [9], p. 62, which we have used once before, there
exists ¢eJ such that e =1(J(¥)).

An element f ¢ R belongs locally to an ideal J at S e &(R) provided
there exists a neighborhood Il of §-and geJ such that f= g(2U) ([9],
. 85; [12], definition 2.2). This is evidently the same as saying f <N (8)+d.
In like manner, f belongs locally to J “at infinity” if feL(E)+J.
Theorem 6.8 above yields an alternate proof of Theorem 25 E of [9] and
Theorem 2.2 of [12].

THEOREM 7.8. Suppos‘e that R is @ 8. 8. 8. G. S. ring. Suppose that J

“is an ideal and f e R. If f belongs locally to J at every point of h(J) and at

infinity then fed. .

Proof. We shall show that these hypotheses on. f imply feL(8)+J
for every § ¢ G(R). As we have seen, L(8) ¢ M(R), and since L(8) = L¥S),
every member of 9M(R) has this form by Theorem 5.10. We will have
shown then that fe M+J for every M ¢« M(R). By Theorem 7.4, the
hypotheses of Theorem 6.8 are satisfied, so by the latter theorem, fed.

Note first that if §eGS(R) and fe (N(8)+J) ~(L(R)4+J) then
feL(8)+J. For there exist elements g, ¢’ eJ, se N(8) and s eL(E)
such. that f=s-+g and f=s+g'. There exists eeL(R) such that
(f—g)e=7—g, or f=(f—g)e+g. Using the equality f=s—g, we
have f= (s—g—g')e+g = se+g" where g’ eJ. But seeN(S) ~L(R), s0
se ¢ L(8) by Corollary 53.6.1. Hence fe L(8)+-J.

Now the hypotheses on f imply f e (N(8)-+J).~ (L(R)+J) for every
S eh(J). It 8¢ h(J) then J ¢ §. By Theorem 3.11, N (8) is a regular ideal
and as we have mentioned before, the kernel of ¥(8) is {S}. Therefore
N(8)+dJ = R. But we still have feL(R)-+J, 8o by the result in the
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previous paragraph, feL(S)+dJ, mld the proof of the theorem is
complete.

We Tist next a set of conditions which, in the pregence of strong-
sem1-s1mphclty, are equivalent to the agsumption that R is a G. S. ring.
Since a ring with identity is automatically a L i. ring, the significance
of the assumption that G(R) is a Hausdorff space is thrown into gharper
focus. Mo avoid trivialities we assume that &(R) contains at least two
elements.

THEOREM 7.9. Suppose that R is a 8.8 8. ring. Then these are
equivalent:

(1) B is a G. 8. ring.

(2) Bvery member of G(R) contains a mamimal O-ideal and every
maximal O-ideal is contained in & unique member of G(R).

(8) For every S <S(R), the hull of L(8) is {8}

(4) As restricted to S(R), L is a one-lto-one map into M (EK).

Proof. (1)=-(2): The first part of (2) follows from Theorem 6.4.
The second assertion follows from theorems 5.10, 6.7 and 7.6.

- (2)=-(8): Suppose 8 e S(R). By hypothesis, § confains a maximal
0-ideal M (S) which is contained in no other member of S(R). Now
M (8)CL(S)CS8, so the hull of L(8) is {8}.

(3)=(1): First observe that R is a Li. ring. Tor let § ¢ S(R). By
the assumption listed above, there exists 8’ ¢ &(R) such that 8 = §.
By hypothesis, L(8') ¢ 8, so there exist elements f, ¢ 8\§ such thab
fOe. Hence R is a l.i. ring. The hypotheses of Corollary 5.6.1 are now
satisfied, so L(8)C N(8). Using (3) again, the hull of L(8) is {8} so the
hull of N(8) is {§}. By Theorem 3.1 of [2], G(R) iy & Hausdorft space,
g0 R iz & G. 8. ring.

(1)=(4): The assertion that I maps S(R) into IM(R) follows from
Theorem 6.4 and Theorem 7.5. That L is one-to-one follows from
Theorem 7.6.

(4)=(3): Let 8, I' « G(R) and suppose L(8) C 7. Since L maps S(R)
inbo MR), L(S) and L(T) are joaximal O-ideals, go L(S)== L(D).
Therefore, §= T since L is one-to-one, so the hull of L(8) is {8}.

The proof of the theorem is complete.

COROLLARY 7.9.1. Suppose that B is a 8. 8. 8. ring such that T (1) == R.
(For example, suppose that B is @ 5. 5. 8. ring with identity y.) Then each of
‘the conditions (2)-(4) of the theorem is equivalent to the assertion that &(R)
18 a Hausdorff space.

Proof. This immediate, since if L(R) = R then h{L(R)) = @, so B
is a L.i. ring by Theorem 5.4.
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Remark 7.10. We mentioned in section 3 that the homomorphie
image of a strongly-semi-simple 1. i. ring is also sueh a ring. As in the
proof of Theorem 3.2 of [2], it is apparent that the homomorphic image
of a ring with Hausdorff structire space also has a Hausdorff structure
space. Using the previous corollary, we see that the ring Z of integers,
for example, is “‘quite far” from being the homomorphic image of a ring
with Hausdorff structure space. For if so then Z would have to
contain enough relative identities to distinguish between each pair of
maximal ideals.

8. The topology I' on M(R). If B is a s.5. 5. G. S. xring then
L is a one-to-one function from G(R) to IM(R). However, L is not
a homeomorphism between the structure space and M (R), in general.
For IM(R), is compact, while, by Theorem 3.13, S (R) is compact if and
only if B has an identity. We now define a topology on 9t(R) by modifying
the closure operation of 4. With this topology, L becomes a homeo-
morphism. We continue to use “~” to denote-both Stone and dual Stone
closure. Of course, it A C S(R), A~ is the closure of A in S(R), while if
A C M(R) then A~ iz the A-closure of A in WV(R).

DrriNiTION 8.1. If B C M(R) then B° is defined to be the collection
of all M e¢IMM(R) such that for some geL(R), depending on M,
M e (B\D(g)) - (Recall that O(g) = {M' ¢ M(R): g e M'}.)

It is perhaps not obvious that ¢ is a closure operation for a tiopology.
‘We prove that this is so in the process of proving the following theorem.
In anticipation of this, we denote the resulting topology by I" and the
corregponding fopological space by IN(E)r.

THEOREM 3.2. Suppose that B is a s. s. 8. G. S. ring. Then the mapping
L: S(R)->M(R)p is & homeomorphism.

Proof. We show first that if § C S(R) is compact, A CF and S, e A~
then IL(8,) e L(W)°. Next we show that if L(S,) ¢ L(W)° (A C S(R) now
arbitrary) then § %~. Since G(R) is locally compact and since ¢ is
obviously a monotone function, it follows that for arbitrary W C S(R),
L(U™) = L(W°. Thus ¢ is a closure operation in a topology I' for M(R)
and L is & homeomorphism,

Now suppose that FCS(R) is compact and S,eA CF. By
Theorem 7.7, there exists ¢ e L(R) such that e = 1(N(8)) for all §eU.
Obviously U= {8 ¢ S(R): 8 e Wand ¢ ¢ L(8)} so L{A) = L(ANLD (¢). Suppose
L(8 )¢ L(A°. Then there are elements f, ¢, and e, ¢ L(S,\\UL (W) such
that f0%, 0%,. Now e (e—e,) = e6—e e n{N(8): §eW}. Since feL(R)
but ¢ |L(A), we have f¢ | J{N(8): § <A} Bach N(8) is prime-like (0%)
by Theorem 4.5, 50 6—ey e (({N(8): 8 eWC M {8: 8§} C 8,: However,
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63 ¢ L(8,) C 8, 80 ¢ ¢8,, which iz a contradiction since ¢ == 1(8,). Llenco
L(8,) e L(A".

Now let A CS(R) be arbitrary and suppose L (S,) ¢ L(A°. Then
there exists ¢e L(R) such that L(S,) CU(L(Q[)\D({/)). Asgume S, ¢ A,
and let J = k(). By Theorem 7.6, h{L(J)} = A, and as we have seen
before, h(N(S,,)) = {S,}. Therefore by Theorem 7.7, there exisis ¢ e L(J)
such that o= 1(N(S,)). In particular, for each §e¥A~, ¢<L(S) sinco
L(J)C8. Also eg—g e L(R) ~ N(8,) = L(8,). Sinco L(S8,) CU (LA D(g)),
there exists § ¢ A such that eg—g ¢ L(8) and g ¢ L(8). Mowever, if § e
then ¢ eL(8), 80 egeL(8). Hence geL(S) which is a contradiction,
We conclude that 8, ¢~ and the proof of the theorem is complute,

For every B C M(R), B°C B, so 4 CI" IL B has an identity 1 then
4 =T since we can take g=1 in definition 8.1. Suppose, convorsely,
that 4=1I" Then M(R)r is compact, so, by the theorem, S(R) is compact,
Hence, by Theorem 3.13, B has an identity. We have proved

TeporEM 8.3. Suppose that B is a s.8.5. G. 8. ring. Then ACI,
and equality holds if and only if R has an identsty.

From the definition of I', it is apparent that if B, and R, are two
8. 8. 8. G. 8. rings which are multiplicatively isomorphic then M (R,)y and
M (R,)r are homeomorphic. Hence we have the following theoreru. This
theorem generalizes Corollary 3.3 of [1] since, by Hxample 1 of [12]
a commutative regular Banach algebra is a G.S. algebra.

TeporEM 8.4. Is R, and B, are 8. 5. 8. G. 8. rings whose mulliplicative
semigroups are isomorphic then their siructure spaces are homeomorphie.

In the next section we see that an even stronger result is true.

9. Dual O-ideals. The notion of dual 0-ideal is to some extent
of independent; interest, but it is used here to show that if R, and R,
are s.8.8. G. 8. rings and y is a multiplicative isomorphism betwaen
them, then y(8)e¢&(R,) for each SeG(R,). This provides an extension
of a part of Corollary 2.3 of [4].

DermviTIoN 9.1. A dual O-ideal in a ring R is an 07" idoal, where
07 = {(e,f): fO€}. We shall refer to a dual O-ideal more briefly ay
a K-set.

Thus & subset K C R is a K -seb provided

(1) ke K and k0% imply &' e KK, .

{2) &y; &y e K imply there exists m ¢ K such that m Ok, and mOky [3].

Since the relation O is transitive, an induction argument gshows that
if Eyy ..., ky is any finite subset of 8 K-set K then there exists m ¢ K
such that mOk;, for i =1, ..., #. Since every element of a ring is a rolative

im Ideal siructure theory 47

identity for the zero element, it follows from condition (1) that if & K-seb
K contains the zero element then K = R.

By a proper K -set is meant simply a X -set which is a proper subset
of K. A mamimal X -set is a proper K -get which is contained in no other
such K -set. o ,

One source of K - sets is the collection of sets K(8) = {k e B: SeE(k)}
where SeGS(R). - :

THEOREM 9.2. Suppose thai R is o s.5. 5 G. S. ring. If SeG(R)
then K (8) is a mazimal K -sel.

Proof. Suppose that ke¢K(S) and %O0%. Now kOK implies
N(k) CE(X), by Lemma 3.6. Since keE(S), S e¢EE), so SeE()°.
Thus %'« I((8), so K (8) satisfies (1) above..

If %y, ks e K(8), then there exists an open set U C ©(R) such that
8 e WCE(k,) NnE(k,). Now there exists an open set $ with eompact
closure such that 8¢ B C B~ CU. By Lemma 3.14, there exists m e R
such that m =1(B8~) and m= 0(S(R)\Y). By definition of K(S),
m ¢ K(8), and by Lemma 3.6, mOFk, and mOk,. Hence K (S) is a K -set.

Next assume that K is a K-set which properly contains X (S8). Then
there exists k¢ K such that 8¢ (S(R)\E(k)) . Now there are elements
My, My € K such that m; Omy0k, so RN(my)” C & (my) C N(m,y) C G(k). Tt
follows that § € 3(my)°, so my e N(S). Since m, ¢ L(R), we have m, ¢ L(8).
By using Lemma 8.14 and the local compactness of S(R) we can, in
2 now familiar faghion, find %' ¢ K(S) such that 9t(%') C 3(m,)°. There
must exist m ¢ K such that m Ok’ and mOm,. Thus RN(m)C EF&') ~ E(m,)
CN(')n N(m) = @. By the strong-semi-simplicity of B, m = 0. That
is, 0 ¢ K, 80 K= R. Hence K (8) is 2 maximal & -set.

THEOREM 9.3. Suppose that R is a s. 8. 5. G~ 8. ring. If K is a proper
K -set then K CE(S) for some 8 e G(R). Hence if K is a maxvimal K-set
then K = K (8). :

Proof. It is evident that if mOk then &(m)C E(k)° since
®(m) C N(m) C E(k). Now if ke K then G(k) + O, for there is me K
such that mOFk. Since K is a proper K-set, m = 0. Thus N(m) % @
since R is a 8. 8. 8. ring, and hence E(k) s @. If %y, ..., ky, is any finite
subset of K then there is m ¢ K such that mO#k; for ¢=1,...,n, so

(S(m)C(n\ E€(k;)°. Now %'Ok implies K eL(R). Thus RN(%")” and, hence,
i=1

(%) ave compact. Therefore there exists &'« K such that G (k') is compact.
Hence there exists 8 ¢ S(R) such that 8¢ ﬂ {€(%): & e K}. According
to above results, § e @(k)° for each k K, so FC E(S).

It is an easy matter, given a maximal K-set K and-S eS(R), to
decide when K = K(8). ) T o
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TagoreM 9.4, Suppose that B 48 a 5.8 8 G. 8. ring. Let K be
o magimal K-seb in B and let S e S(R). Then I{ = K(8) if and only if
K AL(8S)=@.

Proof. By the previous theorem, I == K(I) for some T eG(R).
I 8§ = T it is obvious that K (T) ~L(8) = @. If § # T then by combining
the fact that G (R) is a locally compact Hausdorff space with Lemma 3.14,
we can obtain ¢eL(S) such that T ¢ E(e)’. Hence L(8) AK(T) + O.

We conclude the preliminaries to the main theorem of this section
with the

Lmnia 9.5. Suppose.that R is a 8. 8.5 G. 8. ring and let 8 « S(R),
Then R\S = {f e R: [f1~K(8) +# O}.

Proof. Certainly if [fl~E(8) 5= @ then /¢ S. Suppose, conversely,
that f¢ 8. As we have seen, N (S) is a regular ideal whowe hull iy {8},
50 [/1+ N (8) = R. Now there exists % ¢ I (5), so there are elements g « [f]
and s e ¥ (8) such that g4-s = k. Since E(k) ~3(s) CE(k—8), wo have
g="hk—seR(S), so [f]~K(8)#0.

Finally we have

THEOREM 9.6. Suppose that R, and R, are 8. 5.8 G.8. rings and
suppose that y: R, R, is a multiplicative isomorphism onto. If 8, ¢ G(Ry)
then 3(8) e S(Ry).

Proof. We know that L(§,) is a maximal O-ideal in R, and K (S,)
is a maximal K -set in R,. Therefore (L(8,)} is a maximal O-ideal in R,
and y(E(Sy) is a maximal K-get in R,. Hence yx(L(8))==L(S,) for
some S, e S(R,) and g (K (8,) = K(T,) for some T, ¢ G(Ry). Since L(8y)
~XK(8;) = 0 we have L(8;) ~n K (L) = @, s0 8 = T,, by Theorem 9.4,
and hence x(E(8,))= K (8,). Now Ri\zx(8)= z(B\S), so By x(Sy)
={z(f): 2([AD~ 2(E(8y) # @}, by the lemma. Evidently x(f) = [x(f)],
80 Rz\x(Sl) = {f, € Bo: [fs] nE(8,) 5= O} Applying the lemma again, we
see that the right hand set is R,\S,. Summarizing, B,\x(8;) = B;\S;,
50 %(8;)= 8, and the proof of the theorem ig complete.

10. Concerning primary ideals. Results in this soction fall
into two categories. The first theorem generalizes Theorem 1 of [3].
In the remainder of the section we show that a primary ideal of a s.8.8. G 8.
Ting i8 a 8. 8. 8. G, 8. ring and obtain as corollaries a well known result
concerning C(X) and a generalization of a part of Theorem 3.3 of [8].

In this paper, a primary ideal is an ideal which is contained in at most
one member of S(R). This meaning for the term is thus slightly more
general than that in [9] or [12], for example.

TEEOREM 10.1. Suppose that B is a &.8.8. G. 8. ving. Then for
an ideal P CR these are equivalent:
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(1) P contains & mawximal O-ideal.

(2) P is a primary ideal.

(8) P is a prime-like (0%) 4deal with respect to L(R).

Proof. (1)=(2): If M is a maximal O-ideal then M = L(S) for
some § ¢ G(R). Now the hull of L(8) is {8}, so every maximal O-ideal
is primary. An ideal which contains a primary ideal is a prlmary ideal,
S0 (1):»(2). .

v(2):~(1): Let P be a primary ideal and let 8 be an arbifrary maximal
regnlar ideal. Then P C § or L(R)C L(8)+P. For suppose P ¢ 8. Then
ZL(8) 4P is contained in no member of G (R) since L (S) is a primary ideal.
Therefore by Theorem 5.3, L(R) C L(8)+P. From Theorem 6.8 and the
proof of Theorem 7.8, we infer that P = {L(S )+ P: 8 eG(R)}. Thus
if P is contained in no member of S(R) then P D L(R), while if PC§,
for some '8, e G(R) then PD(L(S,,)-l—.P) ~L(R)D L(8,). In either cage,
P containg a maximal O-ideal. :

(3)=(1): This follows from Theorem 6.5, since, as we noted in
section 7, the hypotheses of that theorem are satisfied in s. s. 8. G. S. rings.

{(1)=(3): If P contains a maximal 0-ideal then P D L(8) for some
8 e S(R). Suppose fé P, fO%, keL(R) and keeP. Now feL(R), &0
f¢é N(8) since f¢ L(8). There exists ¢’ ¢ & such that f0e'O¢, and ¢ ¢ 8
since otherwise feL(8)C P. By Lemma 9.5, there exists ¢ e[e’] such
that g = 1(N(8)). Therefore kg—%k e N(8) ~L(R) = L(8) C P. However,
kg = Feg, 8o kg ¢ P and hence k ¢ P. We conclude that P is & prime-like
(0?) ideal with respect to L(R).

Owr next objective is to show that a primary ideal P of a 5. 5. 8. G. 8.
ring R is a 8. 8. 8. G 8. ring. The first step is to show that the correspond-
ence g: M —M ~L(P) is one-to-one from IM(EN\{L(P)} onto MM (P). The
next series of lemmas, of some interest in themselves, lead up to this fact.

Lemma 10.2. Suppose that J is a prime-like (0%) ideal with respect
to L(R), and Iy, I, are O-ideals such that JD I~ I,. Then JD I, or JDI,.

Proof. Assume J p I, and let f € I, be arbitrary. There are elements
e, g e I;\J such that gO%. Now feel, nI,CJ, and feL(R). Therefore
f e since J is prime-like (0%) with respect to L(R). Hence I,CJ.

LemMa 10.3. Suppose that I is a proper O-ideal and M,, M, are
mazimal O-ideals. If 1D M, ~ M, then I C M, or I CM,. Hence, if I is
a maximal O-ideal then I = M, or I = M,.

Proof. There is a maximal O-ideal M such that M DI, so M DM,
~ M,. By Theorem 6.6, 3 is a prime-like (0?) ideal with respect to L(R),
80 by the previous lemmsa, we have M D M, or M D M,. Since M,; and
M, are maximal, either M = M; or M = M,, so M; DI or BM,D 1.
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In the future, we denote the fach that a given seb 4 is a proper subset
of some set B by writing 4 < B.

Lemua 10.4. Suppose that I is an O-ideal and My, M, are maximal
O-ideals, If My~ M, <1I then I= M, or I ==M,.

Proof. We have I C M, or IC M,, by the previous lemma. Iowever,
not both inelusions can hold since the inclusion. I'D My ~.M, is proper.
Suppose IC M, but I ¢ M,. Then M, is the only maximal O-ideal
containing I. For if M is a maximal O-ideal and M D I thon M D M, ~ M,.
By the previous lemma again, M = M, or M = M,, and since I ¢ M,,
we have M = M,;. By Corollary 6.8.1, I is the intersection of all {he
maximal O-ideals containing it. Hence, I = M. ‘

Suppose that J C R is a sub-ring of B and I CJ. We suy that I is
an ideal, 0-ideal, maximal O-ideal, etc. n J if I ig an ideal, O-ideal,
maximal O-ideal, ete. regpectively, as a subset of the ring J. Obviously
if I is an ideal (O-ideal) (in R) then I is an ideal (O-ideal} in J. Under
cerfain conditions the converse holds:

Lpvma 10.5. Let B be an arbitrary ring and suppose that J i3 an
ideal. If I CL(J) and I s an ideal in J then I is an ideal; if I is am O-ideal
in J then I ds an O-ideal.

Proof. Let feI and heR. By hypothesis, theroe oxigts ¢ eJ such
that fOe. Hence hf = e(hf) = (¢h)} and fh = (fh)e == f(he). Since J is an
ideal, eh eJ and heed. Since I is an ideal in J, (6h)f ¢ I and f(he) e I.
Hence if and fhel, so I is an ideal.

Next note that if e eJ and ¢ i3 a relative identity for f as an olement
in J, then ¢ is a relative identity for f. For suppose g belongs to the
principal ideal generated by f in E. If ¢ has the form g = afy, where -,
may denote either integers or elements of B, then e(afy) == e(m(efe)y)
= e(we)f(ey) = (we)f(ey), since ¢ and ey eJ, and gince ¢ is a relative
identity for f as an element of J. Bubt (we)f(ey) = w(efe)y = afy, 5o
e(afy) = ofy. A similar argument shows that (xfy)e = ofy. Since members
of [f] are sums of such g, we see that e is a relative identity for f.

It now follows that if I is an O-ideal in J then I C L{J), so I is an
ideal. The previous paragraph also shows that I satisfies condition. (1)
of Theorem 4.1, 80 I is an O-ideal. :

Remark 10.6. If J is an ideal in an arbitrary ring &, thon according
to the proof of the previous lemma, L(J) is the same, whether J is thought
of a8 a subset of R or as a ring in its own right.

Now let P, be a fixed primary ideal in R. Lot L(P,) bo donoted by
M, and let PJ denote R, if P, is contained in no meryhor of &(R), or,
otherwise, the unique member of S(R) which containg P,. Lot So(R)
denote the subset G(R)\{P%} as well as the subspace of G(R) formed
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with this set. Finally, let M,(R)r denote the subspace of M(R), formed
with the subset M,(R)= MER)\ {M,}. The proposition that P, is a s.5.58.G.8.
ring if B is such a ring is proved with the aid of the following

TezorEM 10.7. Suppose that B is a 8.8.8. G. 8. ring. Then the
mapping ¢: MM M, is one-to-one from M(R) onto M(P,).

Proof. There are two cases to consider: Either M, = L(R), or M, is
2 maximal O-ideal. In the first case, the conclusion is immediate. For
if M e My(R) then M CL(R)= M,, 50 o(M)= M. If M’ is a maximal
O-ideal in P, then M’ # M,. Also M’ is an O-ideal in R by the
previous lemma. Since every O-ideal in R is contained in L(R)
= M,CP,, M' is a maximal O-ideal in R. Hence M’'ec My(R), 80 ¢
maps onto M(P,).

Asggume that M, is a maximal 0-ideal, and suppose M e M,(R). On
the one hand, M ¢ P,. For it M C P, then M +M,C P,. By Theorem 4.2,
MM, is an O-ideal, so, by maximality, M --M,= L(R). But then
M, = L(P,) D L(R), which is a contradiction. Now, on the other hand,
M~AM, < M,, 50 MAM, is a proper O-ideal in P,. Suppose that I
is an O-ideal in P, such that I > M ~ M,. By Lemma 10.3, I is an
0-ideal in R, so by Lemma 104, I = M or I = M,. The first equality
is impossible since, as we saw above, M ¢ P,. Therefore I = M,, and
we conclude that ¢(M) e M(P,).

¥ M e M(P,) then M'< M, and M’ is an O-ideal in R. By
Corollary 6.8.1, M’ is the intersection of all of the members of M(R)
which contain it, 8o there exists M # M, such that M’ C M~ M,. Surely
M A~ M,is an O-ideal in P, so M’ = M ~ M,, by maximality, and hence ¢
maps onto IM(P,).

Suppose My, M, e M(R). I My~ M,= M, ~ M, then M;D M, M,
and M,D M, ~ M,. By Lemma 10.2, M, D M, and M,D M,, so M, = M,
and ¢ is a one-to-one mapping.

TaeoreEM 10.8. Suppose that R 48 o 8.5.8. G. 8. ring and P, 3
a primary ideal in R. Then the correspondence p: S =8~ P, is a homeo-
morphism from S,(R) onto G(P,), and P, is a 8. 8. 8. &. 8. ring. Finally,
the correspondence ¢ of the previous theorem is a homeomorphism from
mo(R)p onto w’t(.Po)p.

Proof. It follows from well known (and easily proved) properties
of maximal regular ideals in arbitrary rings that v maps G,(R) into and
indeed onto &(P,) (where, for this result, P, need be simply an arbitrary
ideal in R). Suppose 8, 8 ¢ So(B) and 8, ~ P, = 83~ P,. According to
proposition (ii) of section &, L(8,~P,) = L(8;) ~nL(P,) and L{8,~P,)
= L(8.) nL(P,). Hence L(S,) = L(8,) by the previous theorem and ¢ is
2 one-to-one mapping.

4%
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Obviously w is a continuous function from &,(&) to S(P,). To see
tliat p is actually & homeomorphism, suppose 8'n Py D M {8~ Po: 8},
where % C Gy(R). I 8’ » MU then there exists ¢ ¢ B such that ¢ == 1(8)
and ¢ = 0(2). Since §' # P}, there exists ¢’ ¢ L(P,) such that ¢’ = 1(3").
Then ee’ e {8 AP,: 8}, 80 ¢ € 8. However, eq’ = 1(8’), which is
a contradiction. Hence 8’2 ) 4 and ¢ is a homeomorphism.

Using the first paragraph of this proof and Theorem 10.7, it is now
an easy matter to prove that every maximal regular ideal in P, containg
a maximal O-ideal in P, and that every maximal O-ideal in P, is
gontained in a unigue maximal regular ideal in P,. Weo omit the details.

Certainly P, is a &. 8. 8. ring since R is a 8. 8. 8. ring and P, is an ideal
in R. Therefore P, is a 8.8. 8. G. 8. ring, by Theorem 7.9.

Finally, ¢ is & homeomorphism. For let L, denote the correspondence
between the maximal regular ideals of P, and the maximal O-idealy
of P,. Then L, i8 a homeomorphism by Theorem 8.2, and evidently
@ = LyyL™ where I is restricted to MM, (R). By Theorem 8.2, again,
L is a homeomorphism and hence so is I™. We have just shown that
v is a homeomorphism. Hence ¢ iz a homeomorphism. The proof of
the theorem is complete.

The .equivalence between conditions (1) and (2) of the following
theorem are obviously analagous to the equivalence of conditions (a)
and (e) of [8], Theorem 8.3. Subsequent to the proof of this theorem
we show that the present equivalence implies that in [8].

TarorEM 10.9. Let B be a 8.5. 8. G. 8. ving and let S, be o member
of G(R). Then the following conditions are equivalent for an ideal J CER:

(1) L(8,) CJC So. ,

(2) The mapping p: 8'—>8'~J is a homeomorphism from &(8,)
onto S(J). ‘

(3) The mapping p: M'—M'~L(J) is a homeomorphism from M(So)r
onto. EUE(J )1"-

Proof. If at any time it is known that J iy a primary ideal then (2)
and (3) are immediately equivalent. For then both J and 8, are 8. 8. 8. G 8,
rings by the previous theorem. Hence, &(8,) is homeomorphic with
M(8,)r and S(J) is homeomorphic with M(J)r nnder homoomorphisms
which we might denote by L, and L, regpectively. Thuy Lyy == L, and
the equivalence of (2) and (3) follows.

Now if J D L(8,) then J is a primary ideal by Theorem 10.1. By the
previous theorem again, v is a homeomorphigm from (S(8N\F*}) onto
S(J). If 8,2 then (G(So)/{J*}) = G(8,) so (1) implics (2).

In showing that (2)=(1), consider firgt the spocial cage J C 8, and
suppose J 5 L(S,). Then JC & for some 8" ¢S(8,) by Theorem 5.3.
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But then 8'~J=dJ¢ S(J) so p does not map & (8,) into S(J). We
conclude that if JC8, then (2)=(1). o

Now let J satisfy the hypothesis of (2) but be otherwise arbitrary.
It we set J'=dJ A S, then the mapping »': 8’8"~ J” isa homeomorphism
from &(8,) onto S(J*). For if 8 ¢S(S,) then & =TS8, for some -
TeG(R), 80 8'Ad' =(Tn8)n(8nd)=(TA8)~J =8 ~dJ. Thus
' is a homeomorphism since y is. By the work of the previous paragraph,
J' =d A8, DL(8,), 0 JDL(S,). In particular, J is a primary ideai,
80 we have already the equivalence of (2) and (8). Now if J ¢ 8, then
J D L(R), again by Theorem 5.3. But this implies that g: M’ —>M’ ~L(J)
is not a homeomorphism from M (S,)r onto M (J) which is in violation
of (3) and, hence, of (2). For L(S,) ¢ M (8,), and yet L(8,) ¢ M(J) when
J D L(R). More specifically, if M" e M(8,) then M’ = M ~L(S,) for some
M e M(R) such that M = L(S,). Thus M’'AL({J) = (M~ L(8,)) ~ L(J)
= M~ L(8,) = L(8S,). Hence we have L(8S,)CJ C 8, and (2)=(1).

Finally, condition (3) implies that J is a primary ideal so (3)=(1).
For if not, then JC8 and JC T for distinet elements &; T e S(R).
Therefore L(J) C L(8) AL(T), s0 ¢(L(8) ~ L(8,)) = (L(S) ~ L{8,)) m L(J)
=L(8,)~L({J) :(L(T)mL(So))r\L(J)=q2(L(T)nL(So)) - I both L(T)~L(8,)
and L(8)~L(8,) are distinet from ZL(S,), we have distinet elements
of IM(S,) mapping into the same element in IM(J). If, on the other
hand, L(T)~ L(8,) = L(8,), for example, then T'= 8, so JC 8, and
L(J)CL(8,). Therefore L(8,) ~L(J)=L(J)eM(J), while (L(S) ~nL(8,)}n
AL(J) = L(8,) nL(J). That is, ¢ does not map into IM(J). In either
case, we achieve a contradiction of (3). We conclude that J is a primary
ideal and infer that (3) is equivalent to (2). : .

If X is a topological space, let C{X) denote the ring of all continunous

' complex-valued functions on X. Let C*(X) denote the ring of bounded

members of C(X). For x e X, let S denote the maximal ideal in 0*(X)
which is associated with « (i.e. Sz= {fe OXX): f(z)=0}). Let
M:=L(8;). Now assnme X is a locally compact Hausdorff space.
The terms Cuw(X) and Ci(X) have already been mentioned in section 5.
Let X*= X v {co} denote the one point compactification of X with
adjoined point {oo}). M xeX* let S;={fe C(X*): f(x)= 0} and
My = L(8,). It is straight forward to show that Co(X) is isomorphic t0 Se!

Now it. follows from Theorem 5.10 of [3] that the correspondence
i B—>Myis a homeomorphism from X* onto M{C(X*)),. By Theorem 8.3,
M{C(X*),= M(C(X*),. By Theorem 10.8, the correspOnd‘che- o
MM ~L(S,) is a homeomorphism from (M (C(X*)\{L(Sw)}), omto
M (8es)r. A purely topological argument shows that u, restricted to X,

iy a homeomorphism from X onto (I} (C(X*)\L(8ew)),. Therefore gy is
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2 homeomorphism from X onto M (Se)r. Now we can evidently “identify”
M (8x) with iUt(Om(X)) and the set My ~ L(S.) with the sot M¥ ~ C(X).
The previous comments may be summarized by saying that the
correspondence a->Mgn Cy(X) I8 a homeomorphism - from X onto
M (Col X)), By Theorem 8.2, the inverse of L is a homeomorphism from
DM (Oo( X)), Onto & (0l X)). We can also identify Sz ~ 8o, With 8% A Co( X).
These latter comments can now be summarized by saying that the
correspondence o —8% n Ou(X) is & homeomorphism from X to G(Gw(X)),

By combining the results of the previous paragraph with
Theorem 10.9, we obtain the equivalence between conditions (a)
and (c) of [8], Theorem 3.3. The condition (3) of the corollary iy an
additional result.

CororTARY 10.9.1. Let X be a locally compact Hausdorff space and
let J be an ideal in O X). Then these are equivalent:

(1) On(X)CJC Ouf(X).

(2) The correspondence x—>Ssr~J 148 a homeomorphism from X
onto G(J).

(8) The correspondence m—~M%~ L(J) is a homeomorplism from X
onto M(J)r.

In virtue of Theorem 8.4 the above results algo yield a result obtained
by Shirota [11] and Civin and Yood [1].

CoROLLARY 10.9.2. Let X be a locally compact Hausdorff space and
let J be an ideal such that Co(X) CJ C O X). Then X is characterized by
the multiplicative semigroup of J.

Added in proof. T have been told that Andrunakiewitsch has some results ana-
logus to Theorem 6.6 and Corollary 6.8.1.
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