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An abstract form of the measure theoretic method
of exhaustion

by

W. Stowikowski (Warszawa)

In many instances of partially ordered sets X it is very desirable
to obtain a least upper bound of some Z C X, especially in the case where
it is unique, as the least upper bound of some countable subset of Z.
If this is possible, the order completion of X, when it exists, is in a sense
Rq-accessible.

Such is the situation in the case where X is the family of all
measurable functions on a measure space (X, M, u), which is of vital
importance to the theory of stochastic processes. A similar situation
exists for some classes of partially ordered linear spaces of Kantorovitch
as well as in many other instances.

In this paper this common situation is described in an abstract form
and a theorem is proved which is named the Principle of Exhaustion.
This theorem can be of some use in dealing with particular problems
of the kind.

In particular, from the point of view of the measure theory, this
theorem can be regarded as an abstract formulation of the so called
method of exhaustion (e. g. see [1], p. 76). It may appear surprising that
this method, which is a very frequent tool in the measure theory, turns
out to be due entirely to partial ordering. On the other hand, if a measure
defined on a ¢-field B is regarded as an order-preserving mapping of B
(partially ordered by inclusion) into the real line (with the usual ordering)
(see [2]), then it can be seen that this generalization is quite natural.
It is very interesting that the Radon-Nikodym theorem can be obtained
directly by the application of the Principle of Exhaustion as it is stated
in [1]. It should be noticed, however, that there is a proof of the Radon-
Nikodym theorem, where the Principle of Bxhaustion is omitted
(see e. g. [3]).

Let X be an arbitrary abstract set. X is called partially ordered,
if there is a relation # < y in X which is transitive and semi-antisymmetric,
i. e. such that » <y and y <z imples z =y.
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Ap arbitrary Z C X is said to be a net of elements of X, if for each
pair %,y e Z there is an element ze Z such that @,y <2

A net ZC X is bounded, if there iz an 2,¢ X with Z=<a, (where

g: xeZ implies 2 < o).
? <i06tm§3:(1:1 X be an ;ﬁ’bibrm‘y net, We call #, ¢ X the limit of Z and
we write zy=1mZ, if

a. 7 < g,

b. I Z < g, then x, << wp.

Tt is easy to see that limZ is simply the least upper bonml of Z.

Let % be an arbitrary fixed cardinal number. A net ZC X iy said
to be an s-net, it Z=x. We say that X is s-complete, if: cach bounded
x-net Z C X has the limit in X. X is said to be complete, if it is 8- completic
for each 8 << X. A complete partially ordered set X is said to be & - accessible,
if each bounded net ZC X contains an s-subnet UC Z with lino U==1limZ.

Let X and Y be partially ordered sets and let f be o mapping of X
into ¥. We say that f is monofone, if @ <o’ implies fr < fo', we say that
f is strictlly monotone, if f is monotone and # <2’ and fe= fz’ implies
z =g, and we say that f is x-continuous, if for each s-net ZC X we
have limfZ = f(limZ), provided limZ exists; f is continuous, if it iy
%-continuous for each x < X.

In the case where f is monotone the condition of x,-continuity is
equivalent to the following one: for each countable non-decreasing
sequence (&) (1. €. such that z, < @y for m=1,2, ...}, limfa,=f (limax,),
provided limax, exists.

In fact, let Z be an arbitrary s-net in X and let lim % exist. We can
set Z = (w,), where (z,) is a countable sequence. Let % = m,, &, = @y,,
where # < n,, <@, and T, = Ty, s Where Ty 3 K @y, Op < Ly
Clearly (%) is non-decreasing and lim %, = lim Z, im {%, = lim fZ. Therefore
imfZ = limfZ, = flim%, = flimZ and hence f is 8, continuous.

TregorEM 1 (the Principle of Bxhaustion). Let f be a strictly monotone
continuous mapping of a partially ordered s -complete set X into a partially
ordered complete and %-accessible set Y. Then

(a) X s complete and %-accessible, -

(b) If ZC X is o net with all the %-subnets Downded and, if 17 s
bounded, then so is Z,

(e) f is continuous.

At first we give some applications of Theorem 1.
A, Let (T, B, u) be a meagure space, where T is an abgiract wet,

B a o-field of subsets of T and 4 a o-meagure defined on B, We denote
by § the set of all classes of B-measurable functions, where x ==y, if
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@(t) = y(t) almost everywhere. It is well-kmown that with the usual
partial ordering 8 is an s, complete partially ordered set.
Similarly

L2 {zes: [ lefe@)[an(t) < + oo},
where g is a strictly monotone mapping of B into itself, is an n,-complete

subset of 8.

‘We prove the following

THrOREM 2. (i) If 4 s o-finite, then § s complete, w4 accessible.

(i) If there is a decomposition of T into & mutually almost disjoint
sets from B with finite positive measures, then § s complete, & - accessible
and is not &'-accessible for x' <x (1).

(iii) If & is a strictly monotone mapping of R into dtself, then the set
L, C 8 is complete, x,-accessible.

From (i) immediately follows the Theorem on the existence of
a separable stochastic process (see [1], Theorem 2.4).

Further, we obtain the ecompleteness of the Kantoroviteh linear
lattices of measurable functions on & given measure space (see [4]).

Let ¥= R = the real line, X= 8. If u is o-finite, then there is an
integrable funetion @, > 0 such that w,e = 2oy holds in the case of z =y
only, and we have

z(t)

Frolw) 225 f 2(t) T7]20)]

for each we§ (if 1 is finite, we can set a,(t) =1). Clearly R is compléte,
%o-accessible. Hence, by virtue of the theorem, if y is o-finite, then §
is complete, x,-accessible and (i) holds.

In the case where u is not o-finite let §§ consist of mutually almost

du(t) < 4+ oo

disjoint sets of finite measure with 7'= | JA and let & = R
A

‘We denote by R¥ the Cartesian product of s copies of the real line R,
i e. the sef of all real-valued functions {t(4)} defined on the set .
We introduce in E* a relation of partial ordering setting #, <1, if, for each
A €F, t(4) <ty(4). Since R is complete, 5, accessible, R¥ is complete,
8§y = x-accessible. We define a mapping g of § into B¥ as follows:

_ %(1)
g(z) ~{fx44(t) mdﬂ(t)} :
where y4 is the characteristic function of 4 ¢%. Each component
" #(t)
(%) jXA(f)mdﬂ(t)

() From (i) it follows that there exists exactly one cardinal number x that
satisfies the eonditions of (ii).

Fundamenta Mathematicae, 'T. XLVIII. 6
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of g{x) is monotone and, in virtue of preceding exa.n.lple,' it is cgntinuoug.
Thus, g(z) is monotone and continuous. Further, in v:rtx'xe“ of (%), ¢ i
strictly monotone and by the Principle of Exhaustion we infer that § is
complete, % -accessible. Clearly, if u(4)>0 for e'fmch 4 €, then‘ 'the net
generated by {¥4: A ¢F} is not s'-accessible for 8 < and thus (if) hol.ds.

Mo prove (iii) let in the sequel @ denote a strictly monotone mapping
of B into itself.

The mapping

fa(@) & [ afw(t) du ()

of I, info R is strictly monotone and x-continnous. Hence, m virtue
of the Principle of Exhaustion, L, is complete &,-aceessible and (iii) holds.

Thus the proof of Theorem 2 is complete.

B. Now we will show that the Principle of Exhaustion, as formulated
in our Theorem, is essentially the only tool which is wsed in [1] to prove
the Radon-Nikodym theorem.

In order to obtain the Radon-Nikodym theorem. it ig sufficient to
show that, if » and u are finite non-negative ¢-measures on a meagsure
space (T, B) and if » is abgolutely continuous with respect to 4, them
there exists a finite valued B-measurable function f, such that »(F)

= E! Jodp.
Let IR be the family of all measurable finite-valued functions f with

[ fau <v(B) for EB. Clearly for f,, f, e I there are B, H, ¢ B such
E

that B, vE,= T and
t) for [teFH
(f1Vfa)t—{f1( ) [ L

fit) for tekH,.

Hence, It is a net with respect to the usual partial ordering.

If f, is & u-essentially maximal function in M, then it satisfi(?s the
equality »(B) = [ f,du. Indeed, if for a certain Hye B, »(E,) > ]; Folis,

E 0
then there is a number &> 0 with ()~ [ fodu > eu(B,). By virtue
Ey

of the Hahn decomposition there is a maximal positive set A, (3) of
(E) = v(B)— [ fodu—ep(E).

We have fo+exq,¢ & and fo+ ey, non <fy a. 6. .

(*) A maximal positive set (i, e. a maximal set having all subsets with non-negative
measures) can be obtained likewise by taking the upper bounds of “maximal” families
of mutmally disjoint sets with positive (or negative) measures, It can be checked directly

that such families are often countable and so the Principle of Exhaustion, as formulated
in Theorem 1, is superfluous,

’
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But M is x,-complete and o(f) = Jidu is u essentially sirietly
monotone, and by the Principle of Exhaustion there is an fo € Pt which
is u essentially maximal and the Radon-Nikodym theorem is proved.

Before the proof of Theorem 1 we introduce some useful definitions
and lemmas. .

Let X be a partially ordered set and let Z be an arbitrary subset of X,
We call Z n-closed in X, if, for each s-net, UCZ, imU ¢ %, provided
it exists in X. The meet of all x-closed sets containing the given set
ZCX is said to be the s-closure of Z and is denoted by Z.

Let f be a mapping of the set X into a partially ordered set ¥ and
let Z*C X be an extension of Z. We say that Z* is admissible with respect
to f if, for each ye ¥, /Z <y implies f2* <.

Leuwma 1. (a) If X is n-complete and 7 is a net, then Z is o net also.

(b} If f is an x-continuous mapping of X into & partially ordered
set Y, then for each subset ZC X, ZCZ is admissible with respect to f.

Prooif. Let U be an arbitrary subset of X. We get U°= the set
of all limits HmW of the x-nets WC U.
Clearly UC:U° and

(1) If X is x-complete and U is a net, then U® is also a net.

(2) If f is an x-continuous mapping of X into a partially ordered
set ¥, then U°C U iz admissible with respect to f.

In fact, let U be a net and let x,, @, ¢ U°. Then, there are s-nets
U, U, C X with lim U, = @, im U, = #,. Since U is & net, there is an
s-net U, C U with U;wU,C U,. If X is s-complete and lim Uy = o,
then z; < @, and 2, <&y, and so U° is a net and (1) holds.

If fU <y and Z € U% then there is an s-net U'CU with Iim U’ = z.
Since f is & continmous, it follows that f(lim U’) = fZ <y, and so U0 is
admissible with respect to f and (2) holds.

KRow, let Z be an arbitrary subset of X and let (Z;)s<, be a transfinite
sequence, where Z, = Z, Zg; = Z¢ and Z, =£U Zg it n is a limit number.

<n

It is clear that for a sufficiently large ordinal number &, we have Zigyy1 = Zg,

and then Z = | J Z;. If Z; is a net, then, by (1), Ze,, is also a net and if
&<fe

Z; are nets for & <7, where 7 is a limit number, then Z; is also a net.
Hence if Z is a net, then so is Z and (a) holds. Let f satisfy the assumptions
of (b). By virtue of (2) if Z;D Z is admissible with respect to f, then so
is Z5+1:) Z.

If Z;DZ are admissible for & <7, where 7 is a limit number,
then Z,D Z is also admissible. Hence (b) holds and thus Lemma 1 is
proved.

6%
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Lemma 2. Let f be a stricily monotone mapping of f’ partially O’r.de'red
set X into o partially ordered set Y and let Z be a net in X. If fo, is the
least upper bound of {7 and z, € Z, then @, 48 the least upper bound of Z.

Proof. Let zeZ. Since Z is a net, there is 2g€ Z such that 2y < 2,
o < 2;. Since fx, is the least upper bound of fZ, we. hawc:b 12z < fx, and
gince f is monotone, fz, < fz,. Hence o, = fzg. But f is strictly monotone
and therefore z, = @,. Hence # < @, and this completes the proof,

LEMMA 3. An -continuous, mapping | of an w-acoessible complete
partially ordered set X into an -complete partially ordered set X 1is con-
tinuous.

Proof. Let U be an arbitrary bounded net in X.

By the x-accessibility of X, there is an s-net U,C U with lim U,
= lim U. By the &-continuity of f we have f(lim U) == f(lim Uy) = Um (fU,)
< lim(;U). But U <lm¥U and fU < f(limU), limfU < f(lim U). Hence
F(lim U) =lm(fU) and f is continuous.

Proof of Theorem 1. Suppose that each s-subset of Z is bounded
in X and let fZ be bounded in Y. Since Y is complete and x-accessible,
there is a subset Z,C 7% with Z,<s such that Yo M fZ = limfZ,.
But Z is a net and hence there is an x-net Z;, with Z,CZ,CZ. Clearly
yo=limfZ,. Since X i3 x-complete, there iy @, =1limZ, and by the
& -continuity of f we obtain fz,=y,. By Lemma 1, y,= limfZ and since
@, € Z we can apply Lemma 2. Hence, &, is the least upper bound of Z
and therefore also the least upper bound of Z. Thus X is complete and
s -accesgible. The continuity of f follows immediately from Lemma 3
and thus Theorem 1 is proved.
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A problem on Baire classes
_ by
G. Lederer (Reading)

Introduction. In what follows all sets are subsets of [0, 1], all
functions are defined thereover and have real values.
E. Marczewski introduced the following definition:

A function f(z) is almost continuous with respect to a closed set F at
a point x, in F, if a function g(») exists, such that g(z) = f(x) 2. e, and
it im g (@) = f(w,).
zxy
TER
He raised the following problem:

P. Let f(x) be such that for every non-empty closed set F there is
@y in F such that f(x) is almost continuous w.r. t. F at «,. Is then f(x)
a. e, equal to a function of Baire class <1%

A modified form of the problem has been generalized by T. Traczyk
to one concerning a Boolean algebra on which a certain topology is defined.
He proved that under conditions of P a set X of zero measure exists,
sueh that f(z) is of Baire class <1 w.r.t. [0,1]—-X.

Independently the present author has generalized in a different
direction and has concluded that — under conditions of P — a function
g(») of Baire class <1 w.r.t. [0,1] exists, such that f(x) = g(z) a.e.
This conclusion is a special case of theorem IT of this paper — which
does not seem to be covered by Traczyk’s work. ’

Though theorem II provides a more general result than is asked
for in Professor Marczewski’s question, I wish to emphasize that it was
his problem that gave me the original incentive.

I must express my gratitude to Mr. H. Kestelman for a very valuable
suggestion which shortened the argument leading to theorem I considerably.

Lastly I wish to thank the referee of Fundamenta Mathematicae
for useful suggestions shortening the text.

Statement of the theorems. Before stating theorems I and IT
let us introduce the following definition:

Given a closed set ¥, and a point x, in F, a function f(z) has property
D(a) with respect to F at x,, if for any &>'0 there is an open neighbourhood
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