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Some remarks on the spaces N(L) and N(l)

by
8. ROLEWICZ (Warszawa)

Let N(t) be a non-negative Baire function. We denote by N(IL)
the space of all real measurable funections on (0,1) such that

1

onl@) = [N (2(8)dé < oo.

0

By N(I) we denote the space of all sequences x = {£,} such that

e

on(®) = D N(&) < oo.

3
i

1

(In this case N(f) can be an arbitrary non-negative function.)

The basic properties of the spaces N (L) and N (I) are deseribed in the
paper [4] of S. Mazur and W. Orlicz. In this note further results
regarding the spaces N (L) and N () are given. All the theorems are
formulated and proved in the case of spaces N (L), and the slight diffe-

rences in the statement of the corresponding theorems and proofs for N (1)
are written in parentheses.

The sequence x, is called convergent to x if gn(w,—x)— 0.
The non-negative function N (f) is called quasiconves if :
(a) There are constants K, C,r (C,r) such that

C[N ()4 N (s it NWOANE>r(<r
Nty < | COF@] - N+ > r (<),
K it N@E+N(Gs) L.

(b) For each o > 0 there are constants D,,r, such that
N{wt) < D,N@) for |ol <o and [t] > 7, (|t <7p).

(¢) N(t,) - 0 if and only if #, — 0.
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2 8. Rolewicz

8. Mazur and W. Orlicz proved in the paper [4] that if NV (¢) is a quasi-
convex function, then the set N (L) (N (1)) is a linear space, and the formula

ol = int e > 0, QN( )<e}

is a norm in this space such that ||z, — x| - 0 if and only if gy (@, -~ &) ~> 0,
The space N (L) (¥ (1)) with this norm is complete. If N (¢) iy an increasing
function for positive %, ,then [ffz| is an increasing function for each @ and
positive ¢.

Two quasiconvex functions M (f) and N(t) are called equivalent if
there are two posifive constants ¢ and b such that o < N(¢)/M (t) < b.

This paper consists of five paragraphs. In the first paragraph the
necessary and sufficient conditions for the existence of a bounded (%)
neighbourhood of zero are presented. The theorem that every open set Z
such that ¢(Z) < oo (see [5]) and suzp on(®) < oo is bounded, is proved.

Zg:

in the second paragraph. In the third paragraph I prove that the function
N(t), where 7 = 1/p, is equivalent to a convex function if and only if
a p-homogeneous norm exists in N (L) (N (I)). A necessary and sufficient
condition for the existence of linear functional is presented in the fourth
paragraph. In the fifth paragraph I give some examples and mmarlm
on equivalent functions.

1. First we define the function
n(t) = inf{a: « > 0, N(at) > 3N (t)}.

TerorREM 1. The following four conditions are equivalent:

(a) There exists in N (L) (N

(b) liminfn(t) > 0
tsoo

(1)) a bounded neighbourhood of zero;
(liminfn(t) > 0);
0
(c) There exists o constant a, 0 < a < 1, such that
at)

N (az) N(
imsup ——- < 1 (hmsu —_—Z ]
o ” N (1) VR T

(d) The functions wy(s) = N (st)|N (t) are equicontinuous in 0 for
sufficiently large t (for sufficiently small t).

Proof. (a)— (b). Suppose that limintn(¢) = ¢ (llmlllflb( ) = 0).
t-00 f-—+

Then there exist a sequence t,, — co (tm, = 0) and a qequ “nee Chyy, ~> 0

(*) A set Z is called bounded if for every sequence speZ and for every sequence
of numbers #, convergent to 0, the sequence Iy, tends to 0.
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such that N (@utn) > 3N ({,). Let ¢ be an arbitrary positive number
and let

€
t, for 0<LE< V)
wm(f) = e
p >
0 for & 3N ()
for i< —
. N T
(wm = {&,} where &, = . )
P>
[0 for 1 Z ¥

on(Tn) < e.

The sequence a,, does not converge to 0 because oy (Gn®n) > 1e.
Hence no open set is bounded.
(b) = (e). Suppose that for each o

] N (at) Nat) 1)_
0 sUR ) N T

Then there exists a sequence t, — oo (t, —0) such t‘hafz N (b |m)
> 3N (t,,). Therefore from the definition n(f,) <1 /m and hn:;lgin(t) =0

>1 (11 sp

(liminfn (¢) = 0).
i—0 . .
(e) = (d). If limsup(N(at)/N(t)) <1, then there exist numbers T'
=00

and 0 < B < 1 such that N(at) < N (¢) provided t> T. This is eai(ym fg
prove by induetion that N (™)< f™N (t) whenever o™t > T. Let
< s < o®™. We ghall investigate two cases:

(i) e™t> T, = max (T, ;) where r, is the constant given in the con-
dition (b) of the quasiconvexity for ¢ =1; then

Nist) = N((—j—— ”‘t) < DN (a™t) < D:f"N (1)
(i) o™t < Ty; then
0<a<Ty

N (st) = N(a mz) < sup N(aVsd) = M(s)

and we obtain
w,(s) < max(D, ", M(s)/4)

where A = inf N (1), and since M (s) is continuous in 0 we infer that all
t>51'0
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w;(s) are equicontinuous in 0 for ¢ > 7. (The proof for the spaces N(I)
is somewhat easier. If s < ™, then N(st) < D,f"N(t) for sufficiently
small ¢ and w,(s) < D,f™ for sufficiently small ¢).

(d) — (a). Let the functions w,(s) be equicontinuous for ¢ == 7'. Let
2, be an arbitrary sequence such that on(wn) < K. Let

Ay = {E' [m (£)] > T}
We write .
’ T, (€) for Eed,
.lfm(f) = 0 for éﬁA,

and we put a, = Tp— - Lot s, be an arbitrary sequence of numbers
convergent to 0. Since on (Sm@m) < Dy N (s, T) and QN(sm,m,'n) < w(sy) K,
where w(s) = supw;(s), the sequence &, is bounded.

>

2. Let A be a neighbourhood of zero such that 14 C 4(?) for all num-
bers ¢, |t| < 1. By the concavity module ¢(A) of the neighbourhood A we
mean the infimum of the set of all positive numbers s such that A4
C 84 (see [B]). If ¢(4) < oo, then for every positive integer & there exigty
a number K such that A" = A@...®4 C KA.

k-fold
THEOREM 2. If 4 is an open set such that ¢(A) << oo and sup py (#) < oo

gt
then A is bounded. .

Proof. Since every quasiconvex function is equivalent to an cven
function increasing for positive t (see [4], 2.6 and 1.61), we can suppose
that N (f) is an increasing funection for positive ¢, and N (t) = N (—t).
If there exists no bounded neighbourhood of zero in N (L) (N (I)), then
by Theorem 1 there exists a sequence i, —> oo (t, - 0) such that
n(ty) — 0. Let p = in.f‘1 on(2) and » = Sufllo on(z) and &k = [4r/p--1].

Xg Ze.

Let

?

(&) = N () AN (1)

% i-1)p
lt”” for hcg< S )1“7
0 otherwise

ip : (L--4)p

: i . t for e n L

(mm =&, where &, = l " [N (tm) 1 l] <n< [ Ny 1
A0 otherwise

ta=1,2,...,k

(*) By t4 we denote the set of elements ¢z where ze4. By A®B wo denote thoe
set of sum @4y, where wed and yeB.
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Lot &y = @y-+...+ ;. We have oy(zh) < p, whence zf,eA. On the
othgr hand, on(xn) > 2r and 2% (iy)@n¢ 4. And since n(t,) —0, we have
¢(A) = co. This contradiction establishes the theorem.

COROLLARY. If the space N (L) (N (1)) is a By-space, then it is a B-space
(see [4], 1.9 and 2.9).

3. 8. Mazur and W. Orlicz have proved ([4], 1.9 and 2.9) that the
space N (L) (N (1)) is a B-space if and only if N (?) is equivalent to a convex
function. This result can be generalized in the following way:

THEOREM 3. A p-homogeneous norm in the space N(L) (N(l)) ewists
if and only if the function N*(f) = N ("), where r =1[p, is equivalent
to a convexr function.

Proof. Necessity. If there exists a p-homogeneous norm |jzfj in X,
then the set A4, = {#: |z|| < &} is p-convex in Landsberg’s sense(®). The
continuation of this proof is analogous to the proof of 8. Mazur and
W. Orlicz (see [4], 1.9 and 2.9).

Sufficiency. We can suppose that N () is an increasing function
fcr positive ¢ and N (f) = N(—1t) (see [4], 1.61 and 2.84). Now we define
a one-to-one transformation U of the space N (L) (¥ (1)) onto the space
N'(L) (N7 (1)

Ulw(8) = lm(&)Fsigna (&) (U({&)) = |67 signéa).

This transformation has the following properties:

(a) ont (U (&) = o (@),
(b) ov (Ule+9) < e (1T @)+ 1T W),
(e) on(tw) = o (U ().

Sinee N*(t) is equivalent to a convex function, the space N *(L)
(N*(1)) is & B-space (see [4], 1.9 and 2.9), and we infer that for each & > 0
there exists a 6 > 0 such that if oy*(y;) < § then

€N
Let oy(w;) < 8 (i =1,2,...,n). Then
By~Fee T U@y +...+ o)
L e N\

W

< QN‘(\U<w1)\+.‘.+|U<mn)l) .

"

(3) A set A is called p-conves in Landsberg’s sense if from #,yed and @, b > 0,
and a?+bP = 1 it follows that az+byed (see [3]).


GUEST


6 8. Rolewicz

Hence there exists an open set 4 which is p-convex in Landsberg’s sense
and such that sup gy (%) < oo. By Theorem 2 this set is bounded and thus
wed

there exists a p-homogeneous norm in N (L) (N (1)) (see [3]).
COROLLARY 1. There exists no g-homogeneous nmorm in the space b e
(1) for g > p-
COROLLARY 2. There exists such a space N (L) that there ewists a ¢-ho-
mogeneous norm in N (L) for each ¢ < p, but there is no p-homogeneous norm.
In'fact for

N(a’k) tp 1k
% Yk

:N’(t) = for ay 5\: 1< (1’764{-17
where the sequence ay is chosen in such way that N(ay)/af < L/k, N (L)
has the desired property.

Remark. Let N (f) be an increasing quasiconvex function for posi-
tive ¢ and N (—t) = N (t). If there are bounded open sets in N (L) (N (l)),
then it follows from condition (b) of Theorem 1 that N~'(2t)/N~'(#) is
bounded for sufficiently large ¢ (for sufficiently small ¢). Tence, gince
N-Y(t) is increasing for positive ¢, the function N~'(?) is quasiconvex
“(see [4], 1.62 and 2.71) and the space N"N(L) (N7H(I)) i linear.

On the other hand, since N (f) is a quasiconvex function,
N(2t)/N(t) is bounded for sufficiently large ¢ (for sufficiently small ¢)
and there are open bounded sets in the space N~'(L) (N'(1)). It follows
from Theorem 3 that there exists a number » > 1 such that N~'(1") is
equivalent to a convex function M(f), whence N (), where p = 1/r,
is equivalent to the function M~'(t), which is a concave function.

4. THEOREM 4. In order that there exist linear functionals in the space
N(L) it is necessary and sufficient that
Nt
liminf —L—)— > 0.
100 13
Proof. There is a linear functional in N (L), provided thoere exists
an open convex set not identical with the whole space (*). Flence we will
seek the necessary and sufficient condition for the existence of an ()ptm
convex set not identical with the whole space.

Necessity. Let ¢ be an arbitrary positive number. Suppose that
N
liminf—@— = 0.
>0 12

(*) It is a well-known fact (see for example [2]).
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Then there exists a sequence #,— co such that N(¢,)/t,— 0. Let
k= [N (tn)]e]+1 and

I

We have gy(zh) < ¢, and it can easily be checked that

k
1 z . bin

Thus we have proved that every constant function belongs to the set
A = conv{z: gy(x) < ¢}. In a similar way we can prove that every simple
function belongs to A. Thus 4 is dense in the whole space and, because of
being open, A = N(L). Since ¢ is arbitrary, it follows that there is no
linear functional in N (L).

Sufficiency. If hmmf(N /t) > 0, then there are two positive

constants p and T such that N (8) > ult] for |t| > T. We are going to show
that 4 = conv{z: oy(z) <1} s N(L). Let z,...,», be arbitrary ele-

ments such that pn(x;) <1 (i =1, 2,...,2). Let B; = {&: |m(&)] < T);
we write
, z;(£) for £eB;, " ,
; = and @ = &;— ;.
() 0 for  Ee¢B;, * v
We write
. @t v w e
2y = ——— and ¥ = _
% n
H r
Thus, since |m£(§)| <7, we have g (£)] < T and since /,c_f lz; (&) dE < 1,
[

it follows that f l (
#(&) =T+1[ued.

£)dE < 1/u, and essinf |’ ()| < 1/u. Therefore

4. A lot of examples can be derived from the following construction.

Let N(¢) and N'(f) be two quasiconvex functions inecreasing for
positive t, and let N(¢) < N'(t) (N (t) > N'(3))-

We take the family of the functions M, (#) = p.N (t) N'(z). This family
has the following properties:
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1. Every funetion M,(¢) is quasiconvex ().

2. All functions M,(¢) are increasing for positive ?

3. Every equation M,(f) = N(t) and My(t) = N'({) has one and
only one positive solution.

We choose the sequence i, in the following way: ¢, iy an arbitrary
number such that ¢, > 7 (£, < r), where r is a constant given in the
definition of quasiconcavity.

Suppose that we have defined #y,, and leb us consider the function
My, (?) such that Mo, (bor) = N (tor). We define 4y, as the solution of the
equation M, (1) = N'(¢), and ly.. a8 the solution of the cquation N(f)
= N’ (tpa)-

We define the function M (t) as follows:

I'/ka(t) for  fy <<y (fangr ST <),
M) =N () for s <8 <lorya (g <8 <lapya)s
N'(t) for |t <ty (] > 1),
M(—t) = M(1).

It can easily be checked that:

1. The function M(#) is increasing for positive ¢,

2. N@) S M(t) S N'() (N'(t) S M(t) < N()),

3.ty — o0 (t, —0),

4. M) = My, (8) for ¢ <ty and M (1) < My, (1) for &> iy,

We shall prove that M (1) is quasiconvex. Let t and ¢’ be two positive
constants and ity << 641" < fopyy (fper << T+ < by). Then

ME+1) < My, (1+1) < 20 [ My, (0)+ My, ()] < 202[.M’(t)‘~|~]l~1’(t’)].
Leb gy S+ <y (lpgs ST+ < fyy) IE £ or ¢ in greater than
tongy (fzys) the proof is trivial. In the other case M (t-4-1') = My, (1)
(ME+1) < My, (t-+1)) and the proof is similar to that in the firgt
case.

(%) Let N(¢) and N'(f) be two increasing functions; then
L ()~ N ()] [N () — N (1) ] 3 0
NN +N )N @) = N@QN ()N @) N (1).

Hence
Mp(t+t) = pNE+1) N (1) < pO LN 1)+ N () CLN (1) + N’ (1))

»
< 208 [N )N/ (0) N (¢) N’ (V)] = 202 [ My (1) + Mp (1)].
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Let N(f) =1, N'(t)=8+¢ (N'(f) =1+¢*, N(i) =1*). Then the
funetion I (¢) constructed in the described way has the following proper-
ties:

1. M (t) is not equivalent to any concave or convex function, whence
M (L) (M(l)) is not a B-space.

2. liminfn () = 0, but limsupn(t) 5= 0 (similarly for ¢ — 0).

{0

t—>00

3. There exists a non-trivial linear funectional in M (L).
Remark 1. Let N (f) be a quasiconvex function, and let the constant
¢ given in the definition of the quasiconvexity be equal to 1; then there

. exists a concave function I (f) which is equivalent to N (7).

The proof is similar to that of Theorem 1 in paper [1].

Remark 2. There exists a space M (L) in which there exists a boun-
ded neighbourhood of zero and a non-trivial linear functional, and which
is a not a B-space.

In this case we construct M (f) as before with a small modification:
we define fy,, as a solution of the equation N (f) = N (i)Y t/taesn

“and we define

My () for ity <t <oy
<t <lyyas
[8] < ty3

M) =1 N(tg) for iy

N'(t) for
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