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TFinally, it may be worth mentioning that our new polynomials
Pu(f; @), Tu(f; @) ebe. can also be generalized to the cases of a complex
variable and of several variables. Further investigation of these polyno-
mials is being accomplished in a joint paper of the author with L. P. Hsu,
which will appear elsewhere.
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On modular spaces

by
J. MUSIELAK and W. _ORLICZ (Poznan)

In the present paper the authors investigate functionals g(«) defined
in a real linear space X, which are called modulars. An F-norm will be
introduced in certain subspaces of the space X. In the second part of this
paper some examples of modulars are considered.

1. First, the following definition of a modular and a pseudomodular
will be given:

1.01. Given a linear space X, a functional p(x) defined on X with
values —oo < g(2) < co will be called a modular if the following con-
ditions hold:

Al o(®) =0 if and only if ® =0,

A2, o(—m) = o(x),

A3, glaz+fy) < o@)+oly) Jor ewery a,f >0, at+f=1

If o(x) satisfies the condition (0) = 0 instead of A.1, then p(x)
will be called a pseudomodular.

1.02. We now give some simple properties of pseudomodulars.
Let us assume o(x) to be a pseudomodular on X. Then

(a) e(®) =0,

(b) o(az) is a non-decreasing function of a =0 for each zeX,

ki3 k1) n
(c) g(_zlaimi) <\:,210(5'7i) for a; 2 0, ,Z:ai = 1.
A= 1= e

Moreover, if X, denotes the set of weX such that () < oo, the set X,
is comvex and symmetric with respect to 0.

The properties (a) and (b) easily follow from A.3 and A.2; (c) is ob-
tained by induction as follows:

n~1 n—1
n 'n.:jl lél a2 {; a; Lq \aw n
4 (2 aimi)= 4 Z @~y - Py <ol 5|+ o(2y) <Z olw;).
i=1 i=1 > o a; i=1
i=1 =1
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It will be noted that for a modular g{w) the inequality o(w) < o(y)
does not imply in general p(az) < ¢(ay) for every real a.

1.03. Denote by X,, a convex subset of X, symmetric with respect to 0.
Let X, be the set of alk zeX such that kxeX,, with a positive constant I
depending on . In partioular, X, denotes the set of all weX such that, for
a given k > 0, o(kz) ts findte. It is easily seen that X3 are linear subspaces
of X.

1.04. We now introduce the concept of modular convergeﬁce and
modular completeness. A sequence {z,} C X will be said to be:

(a) modular comvergent or g-comvergent to meX (in symbols: u, -> @)
if there exists a number & > 0 (depending on the sequence {z,}) such
that o[%(2,—2)] - 0 a8 n — oo;

(b) satisfying the modular Oauchy condition if o (2, — @,,) >0 a8 m, %-» oo,

Turther, a subset X; C X, will be said to be:

. (a') modular complete or g-complete if the modular Cauchy condition
implies modular convergence to an xeX,;

(b") stro'rfg.ly modular complete or strongly g-complete if the modular
Cauchy condition implies modular convergence to an ze<X; with a con-
stant %k > 0 independent of the sequence {,}C X,.

1.05. There result the following properties of modular convergence:

(a) if o(2) s o modular, then the modular Uimit is uniquely determined;

(b) i @05, Yo—>y, then avy+Pyn-> aw+ By for every real a, f.

11. In our further considerations the following conditions will be
of importance:

B.1. a, — 0 implies ¢(a,) — 0,

B.2. o(z,) = 0 implies o(am,) — O for every real o.
‘ 111, Denote by X, the set of all weX, such that B.1 holds. Then X
is conver and the Zmeqr space X, is closed with respect to g-coowemencej
as fellgws from the inequality o{ax) < 0[2a(@y— )]+ 0 (209,). Hence,
if X; is g-complele or strongly o-complete, so is Xr.
142, Let X7 be a finite-dimensional linear subspace of Xy and lot

o(®) be @ modulcw. pmoting by €1y €5y ..., 6y the basis of X}, the necessary
and sufficient condition for a sequence Dy, = Ay €1+ oo oF Ao €1, 0 e Q-GO’VI:'

vergent 0 @ = Ayey+...+Apey 18 by - A; a8 N> 0o for i =1,2,...,m
, Supposing that t.he.' limit element # = 0, we have to prove that
in—>0a8n —>ocofpri=1,2,...,m In the contrary case we could write

m
Dl =d >0,

=1
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and denoting
aky .
Yin = ——  for t=1,2,...,m;n=1,2,...,

i=1
we should obtain
n . m :
0 (702 ymei) < (_)(702 line,;) = o(kz,) =0 a8 n - oo
i=1 =1
On the other hand, it may be assumed that

Yin—vi a8 mn—>oo for ¢=1,2,...,m.

Then :
k n m m
\ 1
4 (% D) Viei) < Yolk(ri—rm)el+ e (k Z%zn@«;) —~0 as w—co.
= = =

This implies y; = 0 and Ay -> 0 as n— oo for ¢ =1,2,..., m. The fact
that if 4;, - 0 as n - oo fori =1, 2, ..., m then x, 5 0 follows from B.1.
From 1.12 there results the following statement:

143. If X} is a finite-dimensional linear space, X;C Xy X,
0.() and ps(w) being modulars on X, then o-convergence of & sequence
{w,} C X7 to weX] is equivalent to gy-convergence of &, to .

1.2. The object of this paper is to introduce an F-norm in a linear
space by means of a modular. Similar problems have been considered
by H. Nakano and his school under the additional hypothesis of con-
vexity (see e.g. [B]) or subadditivity [5] of the modular ¢(). Moreover,
the case of semi-ordered linear spaces and that of B-norms have been
chiefly investigated. Our investigation aims at obtaining some results
under weaker assumptions, fitted to the structure of the spaces under
consideration. Neither convexity nor subadditivity of the modular will
be assumed. It is to be noted that, in the case of 1. and L¥-spaces for
example (see [6] and [2]), the agsumptions of continuity and monotony
of M (u) suffice for g(z) to be a modular. In introducing the norm, a cer-
tain natural connection between the modular and the norm convergence
will be required: norm convergence should imply modular convergence.
Under the additional assumptions B.2, the two convergences are equi-
valent. A number of examples in the second part of our paper makes
clear the application of the conditions introduced in the present part.
The authors will return to this investigation in another paper.
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1.21. Given a modular o(z), let us write
el = infle > 0: g()e) < e}
The functional || is an F-norm in X;, i.e.
1° ||l = 0 if and only if @ =0,
2° e+ yll < Il + iyl

3% [l—all = |l
4° a, = a and e, —a)] - 0 imply ||oy L, — ax] > 0

The norm ||ax| 38 a non-decreasing function of « 20 for every ;neff: . We
have o(x) < |wl| for |lxl} < 1; hence morm convergence implies modular
convergence to the same limit. Moreover, if )_(:,' i strongly o-complete, then
it 18 complete in norm.

It will be noted that o(#/a) = a for an « > 0 implies |jz|| = « and
that if g(am) is a continuous function of a = 0 for every weX,, then

(z/llel) = || for every # #0, weX,. Moreover, if () is a pseudo-
modulm", then ||z|| is an F-pseudonorm; if o(x) =0 implies o(2a) =0 and
X, is strongly g-complete, then it is oomplew i pseudonomn

Conditions 1° and 3° a funetion of ¢ =0
being trivial, we now prove the mfmgle mequahty 2" Given any ¢ > 0
and a:,yeX':, we write o = |z||+%e, B = |lyll+4e. Then p(n/a) < q
e(y/p) < B, and

Q(Zi%) (a:-ﬁ §+ aﬁﬁ Z) < (Z)—{Q(%) st

Hence [+ 9| < a+p and the triangle inequality follows. To prove 4°
let us first note that

(a') a, — 0 implies ||a,z|| - 0,

(b’) gl = 0 implies [jax,| — 0 for any real «a,

these conditions being easy to verify by the basic inequalitics

¢ (zufan))

where z # 0. Applying the triangleinequality [Jay, 2, — a|| < ||oy, (0 — @)|| -
+|{ap— a) x| and the monotony of [Jow|, and using (a’) and (b'), we obtain 4°.
Now, let us assume X, to be strongly g-complete and let [~ )] = O
a8 m, n —> oo, Then g[(mn—wm)/e] — 0 for any & > 0. The strong e-com-
pleteness - of X implies the existence of an ,a eX such  that
elk(w, /e~ )]—>0 as 7 — oo, Obviously olk(w,— ea,) ]—~ olhe (i, e —

> Al for A<,
< Al for A1,
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—2,)]—+ 0 as n—> co for any 0 <e&< 1. On the other band, o[k (w,—
—,)1— 0. Hence o[k(4 -—ml/a)/Z] =0 and o[k(w,—&,)/4e]—>0 as
n — oo for any &> 0; thus |lo,—o,| — 0.

1.22. The following theorem establishes the uniqueness of the norm {x|:

Let o(z) be a modular and let ||| and ||| be two complete F-norms
in X, such that norm convergence of & sequence of elements of X, to zero
implies modular convergence of this sequence to zero. Then the norms || ||’
and ||| are equivalent in the semse that |w,—xl|' >0 if and only if
lwn— || — 0.

‘We consider the operation U(z) = from (X,, || |I'> to <X, | |-
Asgsuming fw,—2|' > 0 and [|U(x,)—yl”" - 0. we have p(x,—x)—>0
and ¢(x,—y)— 0. The modular limit being unique, this implies z = y.
Then the Banach closed graph theorem implies U (z) to be linear. Theorem
1.22 follows immediately.

1.3. In the following theorem, condition B.2
1.31. Modular convergence s equivalent to norm convergence in a subset X,
of X: if and only if condition B.2 holds for any sequence of elements of X,,.
Indeed, let the modular convergence be equivalent to the norm
convergence and let us agsume g(#,) — 0. Then |z,]| — 0; hence [law,| — 0
and p(ax,)-> 0. Conversely, let B.2 hold and let g¢(x,)— 0. Assuming
llzal > g > 0, we obtain p(x,/g) > 0. On the other hand, the definition
of the norm yields o(x,/g) > ¢, in contradiction to the above convergence.

is of importance:

1.32. We now make some remarks concerning condition B.2.

(2) If B.2 holds for amy sequence of elemenis of X, C X,, and X,, i3
the closure of X, with respect to the norm, then B.2 holds also for any sequence
of dlements of X.,. Moreover, we obviously have X,,C X;.

(b) Assuming X, to be linear, B.2 in X, is equivalent to the following
condition: if o(x,) — 0, then g(az,) — 0 for any x,<X,, ¢ being any fived
number larger tham 1.

(e) X,, being a linear space, let us assume there the existence of positive
numbers a and x such that the condition

(Ay) o{29) < #g(x)
holds for every weX,, sotisfying the inequality o(z) <
for any sequence of elements of X,,.

We first prove (a). Let {,} C X,, and o(z,) — 0. We choose a se-
quence of elements ¥,e¢X,, such that |y,—awal— 0. Then o(y,—®,) — 0
and the inequality o(3ys) < ¢(¥a—ou)+ 0 (%) = 0 and B.2 imply ¢(2ay,)
>0 for any real «. Hence o(aw,) < [20(Y,— ®n)]+ 0(2ay,) > 0 -and
o(az,) — 0. (b) and () being obvious, we note only that condition (A,)

a. Then B.2 holds
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is not necessary for B.2. A counter example is provided by the cage:
X = the space of reals, g(#)=a continuous monotone function not
satisfying (A,).

2. In the present section a number of examples of spaces with a mo-
dular will be considered. As special cases, the well-known examples of
spaces 1, L¥ and V) come under consideration,

2.1, Let X1, X3, ... be linear spaces with modulars ¢, (@,), oo(my), ...
respectively. The question arises of defining in a natural sense & modular
o(z) in the Cartesian product X = X'x X*x... by means of the mo-
dulars g4(#4), ea(#,), ... This question may be put in various ways. When
@ = (@, @y, ...), the following definitions will be introduced.:

00
1 g =D aulw), 2

¢ () = sup gy(y),
1=1 i

1 w
30 Qla) =sup > o).

n fe=l

Tt i easily seen that, if o;(w;) are modulars on X“, respeciively, then o (x),
02 (x), and o3¥(z) are modulars on X.

2.41. The following inclusion holds:
Xu~ Xy xXpx...)C S
Indeed, if @ = (2, @s, ...) belongs to the left side of this inclusion,
e. kreX,, then there exists for every ¢ 0 a number N such that

o [+
1%1&(7%) < %e; hence N}J;lgi(ankwi) < %e for any 0 <Ca, << 1. If o, 0,
N

then legi(a,,kmi) < e for sufficiently large n, and 2.11 follows. It will be

noted that the inclusion 2.11 does mot hold in general either for o*(«)
or for g¥z). .

2.112. In the sequel in 2.12-2.15 we shall alwayy take X* == X* = ...
;;(;:dfcr:h t.he sp:ee of I‘ja;(l)ii, oi(w) = M(w) = an even continuous function,

- sing for w > M(0) =0, My{u):-0 for u > her
L o ) y i(u) - for w > 0, where

(a) Xp = oL

(b) X3 ds sirongly o'-complete,

(e) if My(w) satisfy the condition

(Ay) Mi(2u) < #My(u)

where & > 0 and x are independent of i, then B.2
of elemenis of X1,

for 0 My(u) << a,

holds for amy sequence

icm®

On modular spaces 55

The easy proofs will be omitted. Let us note that, when M;(u)
= M(u) for ¢ =1,2, ..., we obtain the spaces lM, considered in many
papers, with various additional assumptions (see e. g. [4], [6]). An F-norm
of the form considered here was introduced for I* in the case of I (u)
satisfying the condition (A, for small  in paper [2].

2143, Let us take X' =X*=..=RY Mu)= M(u), where
M (u) — oo as u —> oo. Then the statements (a), (b), (e) of 2.12 hold if we
put * in place of o

2.14. Assuming M, (1) = My(u) = ... = M (u), let us denote by X the
setof allx = {a;} such that there exists a number @ with the following property:

1 n
im— Y M[k(a;—a)] =0 or every reul k.
Jim = 3 M [k (2~ a)] for every
Then Xy is strongly o*-complete, X,, is a linear space contained in X
complete with respect to the norm.
In order to prove the completeness of Xz, choose a sequence of el-
ements @,, = {a7"} of X3 satisfying the modular Cauchy condition, i.e.

1 n
%ZM(aé’—ag)—+0 a8 p,g—> o0 .
1=1

uniformly in n. Hence, the numerical sequence {a7"} satisfies the Cauchy
condition for each fixed #; hence af* — a; ag m — oo for each 7 and there
results the strong pi-completeness of Xy, We shall now prove the inclu-
sion X, C Xis. Let @ = {a;}eX,, and let 0 < a < §. Then.

12 1 ¢
= S Maa) <= N M(a;— a)+M(2aa).
%g (aa;) %;5_; (43— a) -+ M (2a0)

Since the first term on the right side of the above inequality tends to zero
ag 1 — oo and the second tends to zero as « — 0, the expression on the left
side of this inequality is small for n sufficiently large and « sufficiently
(but independently of #) small. Now, o*(axw) —~ 0 as @ — 0 results eagily.
Since X% is strongly g%-complete, it is complete in the norm. Then, to ob-
tain the norm-completeness of X, it is sufficient to prove that X, is clo-
sed with respect to the norm. Assuming {#m} C X, and [jwy,— ] =0, where
@, = {a), © = {a]}, we have, for every k>0, olk{zn—o)] — 0; thus

- "
—%Z Mk(ai*— a;)]—0 as m —> oo uniformly in =,
i=

(&)

n—> oo for m=1,2,...,

1 n
Z N M k(e —a™] >0 as
ng [k(aj )]

L being arbitrary.
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Let us choose a number & > 0; gince

M (k _Uf:—_fb,) Z Mk(a”— af ]+-~~2 Mk(al—a;) ]+

’I»l=1
W

+— Zﬂl[lc(a%—-—a" 1- |~'V Z Mk(al—ah)] < M( )

for all sufficiently large p, g and » = n(p, q), the
m — co. Thus the inequality

sequence o™ > a as

1 3

l Z M [k{a— a)]

L=t

/l-b

7w 1
< 3 Mk a4 3 M — 0]+ M (30— o]

=

,..

implies that « = {a;} ¢ X,,,; hence X,, is closed with regpect to the norm.
2.15. Assuming My(u) = My(u) = ... = M(u), we have the equality

Xy, = X if and only if for any &> 0 numbers A, > 0 and a,>> 0 exist
such that M (au) < eM(u) for every 0 < a<<ap u = A,
In order to prove the, sufficiency, let us choose a number ¢ - 0 and

take an reX 3. Then

~S”M (o))

1,—-1

M(ad,)+ee®(®) for 0 <a<ay

hence @®(az) < M(ad,)+e0®(2) and the sufficiency results. Now, we ghall
prove the necessity. Let us suppose that there exists an ¢ > 0 and two
sequences of positive numbers: u, increasing to infinity and a, decremsing
to zero, satisfying the inequality M(ansy) > eM(u,) for n =1,2,

It may be assumed that M(w,) > 5. Now, we shall define two gequences
of indices My, My, ... Ny, Mgy ..uy and a sequence of numbers a,, (YRS
by induction. Let ny be the 1eas1, positive integer such that M (u,)/ny < .
Morecver, let n; be the largest positive integer satisfying the inequality
(ny—ny). M (uy) [ny < . We define the first n, terms of the sequonce ay,
Gay ... a8 follows: a, = 0 for n < \ Ny, Gy = Uy fOr ny < n = 2y Now, lot
us suppose that the sequences n, n;, and a; are dofined fnr 4 <2k and
§ < figp—y in such a way that

1 G 3
(+) EgM(ai) <y forany w<{my,,
(+4) (g3 — Mjo—y) M (U y) <3

M1 *
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Let m;, be the least positive integer, larger than m,_; and satisfying
the inequalities

Miw) _ L e <
g, 17 m & W<y

Moreover, let my; > u;, be the largest positive integer stisafying the
inequality
ng— np) M 5
N( & — M) M (uz) <2
Ty 4

Obviously we have, for any n;, < n < ng,

(M) _ 503 )M
n 4 4 Ny

HAIO(

Now, we put a, = 0 for 5, ; <n < gy @y = Uy, TOT np < 1 < Ny
It is easily seen that

n
1 3
. E Mla; ) < = for any n < ng.
I L 2

Indeed, it is sufficient to prove the above inequality for ny; < n < iy
however, for such n,

ng_1

Y Ma) < Z]l[( gt

1
"

3

nk M (uy) < 1 2.

+ L
44
Thus, (+) and (++) are satisfied if we put =, instead of ny_,. We shall now
prove that = {a;} belongs to X, but does not belong to X.s. Evidently,
since 03(z) <2, it is sufficient to prove that ¢3(az) > & for E=1,2,...

However,
(o) = 2 M (oga;) = Tﬂl(akuk)
%

Finally, @ cannot belong to XJs, since it would belong to X, # belonging
to Xps.

2.2. The example of a modular which we shall give now is the gener-
alized variation of a funection. Let M (u) be an even continuous function,
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non-decreasing for « =0, M(0) =0, M(u) > 0 for u >
function «(t), defined in a closed flmte interval <{a, b), the value

V(@) = supZM[w (ts) —@(ti-1)],
4=l
where II: a =1, <, <...<t,=0b is an arbitrary partition of fhe
interval (a, b, is called the M-th variation of ®(f) in <a,b) (see [31).
Denoting by X the class of ail real functions in {a, b} vanishing at a,
we define in X
e(@) =V y(®).

Obviously o(@) is o modulor and X, is strongly e-compleie. Tho authors
defined a B-norm in the space X;’ in the case when M(u) is a convex
function in [3]. Several results have been obtained for M(w) convex
and satisfying the condition M (u) = o(u) as w —> 0. As an example of the
modulars, an F-norm will be introduced in X, for the opposite cage, namely

% = o[ M(u)] a5 u — 0. The following conditions will be of importance:
(A) M(u)u-—>oc0 ag uw—>0,
(B) there exists a constant » suech that M (uy-t-...-uy,)

< [ M (uy)+. ..M (uy)] for ay, ...y Uy = 0.

Condition (B) is satisfied for example, if M (u) is concave or sub-
additive for % > 0. The following lemma will be useful:

221, If M(u) satisfies (A), veX, and x(t) is continwous in {a, f>
+ C<a, by, then w(t) = const in {a, £,

In order to prove 2.21, let us suppose x(f) to be continuous in
{u, B, z(a) = ¢, #(f) = d, where ¢ < d, and let us take for each positive
integer n a partition o =1, <t <...<tm=p of {a,f) such that
z(t;) = 27™(d—c)+¢; hence

Zﬂ

Vo) > Y Mla(t)—a(ti )] = ld—ol

=1

M (2" |d— of)

~E OO AR R 00
27" d—¢| “ ’

and this contradicts the hypothesis weX,.
To formulate a further lemma, let us put for a function w(t) of
bounded variation (in the usual sense, i, e. with M (%) = [u|) in <a, b,

w(@)+ ) [w(t+0)—

i<t

8z(f) = w(a+0)— @ (t;— 0) ]+ (t)—

for a<it<0,

w(t—0)

sz(a) = 0,

where {;, ,, ... are all the points of discontinuity of x(¢). It is well-known

> 0. Given a real
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that, %(f) being of bounded variation in the usual sense, s,(¢) and #(#)—
—$,(t) are algo of bounded variation in the usual sense; moreover, () —
—8z(t) is continuous in {4, b>. The following lemma holds:

2.22. Assuming M(u) to satisfy (A) and (B), we have x(t) = s.(t)
in {a,b) for any xeX,.

If we choose an arbitrary partition a =1, < 7, <..
of the interval <a, b>, we obtain

ZM[sm(rf )—8(73-1)] = ZM{ >

=1 1<l <7y

+ [w(r,~>—w(r,-_1>1+ [#(%71—0)—a(z;—0)]}

L Ty =Db

[2(t;4-0)—a(t;—0)]+

(t—0)]+ M[w(‘ﬂf) (7)) 1+

<« ) Hlo(tt-0)—

m
+ D) Mw(t— 0) —a(zj_,— 0)1} < 34V y(a),
g=1
where we write by eonvention z(a—0) =a(a+0); hence TV, (sy,)
< 3xVy(2) < co and (w—s;)eX,. Thus, Lemma 2.21 implies, by the
continuity of z(¢)—s,(?), the equality (f)— s,(t) = const in {a, b>. This
yields z(1) = s,(t) for every te{a, b).
2.23. If M(u) satisfies the conditions (A) and (B), then X, = X,.
Agsuming »eX, and defining %(f) = #(t—0) for a <t <Db, %(a)
=uz(a) =0 and y(f) = «(t)—=F(f), we easily obtain V(%)< V().
Therefore ZeX, and 2 = $y<X,. The following inequalities hold:

) 2 N M) M [(0)] <

7

V3 (2)

< 9 2 Mz(t)].

Since V,,(2) < oo, the series Y’M[H( ;)] is convergent. Let us fix the

arrangement of the sequence tl, ts, ... and let us choose a number & > 0;
then there exists an integer N such that

_\j Mlaz(t)] < E Me(t)] < efdx
T=N+1 1=N+1

for any 0 < a < 1. Moreover, M [az(t;)] < /4N for sufficiently small a;
hence .
4\./ Mlaz(t)] < /2%
K2

and the second of the inequalities (+) implies V,,(a2) <<e for sufficiently
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small a. The relation ZeX, may be deduced from the inequalities
1 _ _
(++) ;;M[E(w 0)—&(t)] < V(@)
< | M[F @+ 0]+ N MF(t +0)—F (1)}
1

in the same way as the relation z<X, from the inequalities (+). We still
have to prove (++). The left-hand inequality being easily obtained, we prove
only the right-hand one. Lemma 2.22 implies
B(1) = s5(t) = B(a+0)+ ) [F(ly+0)—F(t)]
f=t
E(a) =0,

for w <t by

whence, given an arbitrary partition ¢ = 7o <73 <... < Ty = b of the
interval (a, b), we have

N MIE () & ()] = M{Fa+0)+ Y [El-0)—E )1
= Tpsby<)
SR S B W I USRORS (O

=2 T:,'._i‘z’;:(‘lj
< w{ME(a+0)+ > M3 (t-+0)~F ()]}
[]

2.24. Let M (u) satisfy the following condition: there ewists a wy > 0
such that supM (au)/M(u) -0 as «— 0. Then X, = X,.

u<ty

It will be noted that all convex functions M(u) satisfy 2.24.
2.25. If M (u) satisfies the condition

(Ay) M(2u) < 2 M(u) for small w,

then o(®) also satisfies the condition (A,) (see 1.32(c)); hence B.2 holds
for amy sequence of elements of X,.

2.3. In many known examples the space X consisty of M-integrable
functions. These examples will be generalized as follows, Given a get B
and a c-additive and ¢-finite measure u defined on a c-algebra 7 of sub-
sets of the set H, we take a real function M (u, v), defined in I/ x K, R
being the space of reals, satisfying the following conditions:

(a) M(u,v) =0; M(u,v) =10 if and only if v =0,

(b) M(u,v) is an even, continuous and non-decreaging (foxr v 0)
function of v, for every we B,

(c) M(u,v) iy measurable ag a function of w for every veR
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We take as X, the set of all real-valued p-measurable functions (i)
in B, finite almost everywhere on F. It is easily seen that M[t, 2(f)] is
measurable on ¥ for any x<X,; denoting by X the quotient space
X =2X,/X,, X, being the set of all »(¢) = 0 almost everywhere, we
may define a modular p(z) on X by

ele) = [ M1, 2)]du,
P

the uniqueness of this definition being granted by (a).

2.31. The modular o(x) satisfies the condition X, = X,; moreover,
X, is strongly o-complete.

The equality X, = X, being implied by the Lebesgue bounded-
-convergence theorem, we have only to prove the strong g-completeness.
First, let us assume uF << co. We apply the following lemma: '

(%) If f(t) > 0 is measurable in & set of finite measure K, then for every
&> 0 there exists & number 1 > 0 such that [f(1)du < n implies p(4) < ¢

4
for any A C B, i being independent of A.

Choose a number ¢ > 0. Writing f(t) = M (¢, &) we apply the above

lemma. We find an 7 > 0 such that for every ACE, [M(t,e)du <7
A

implies u(4) < e. If a sequence {a,} satisfies the modular Cauchy condi-
tion, then we may find a number N such that

[ M1ty @(t)—wu(t)]du < for

B

Writing A, = {te E: |5,(t)—2,(t)| > ¢}, we obtain

m,n > N.

f M (t, e)dp < 73;

4 mmn

hence p(d,,.) < & for m,n > N. Thus the sequence x,(¢) is convergent
in measure to a function #(t) in E. Taking an arbitrary subsequence o,
we may extract from z,, & sequence @, (¢) — 2(t) almost everywhere.
Then M [¢, wn(t)—mmkl(t)] - M[t, 2, (t)— 2 (1)] almost everywhere, n being
fived, and Fatow’s lemma yields

(+)

olw,— o) < 11@9({”7»_‘”1)%1) <&

l—sco
for sufficiently large u.
Now, let u(B) = oo, B = By, where uB; < oo for £ =1,2,...
1

and the sets B, are ascending. Applying the above results we obtain a func-
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tion «(f) such that ,(?) converges in measure to #(t) in each Fy and that

[ Mz —o(®]dp >0 a8 oo
By, ¢

for each k. Let us write for a fixed n, #x(t) = M [ty 20, (8) — ()] xm, (),

where yg (t) denotes the characteristic function of the set .E{,, y(t)

=M [t,m:(t)~w(t)]. Applying once more the inequality (+) with B,

ingtead of B we obtain ‘

[yettyan = [ [, @n(t)— 2 (O)]du
By

K
< lim fM[t7 wn (1) —‘mmkl(t)]d/“ < lim g (@, mmkl) Sy

o0 By, l-ro0

for sufficiently large (independently of &) n. However, y,(t) is convergent
to y(t) everywhere; hence Fatou’s lemma yields

olwn—a) = [y()dp <lm [y <e
B I—o00 J7

for sufficiently large n.

2,32. (a) If there ewists a constant x > 0 such that, I, denoting the sel
of all ueB which satisfy the inequality M(u, 20) < =M (u, v) for*all v,
w(E—B,) = 0, then B.2 holds for anmy sequence of elements of X,.

(b) Let uB < o, and assume that M (u, ) is imtegrable in B for each
finite v and satisfies the following condition: there exist a v, > 0 and
@ %> 0 such that the set of all wel satisfying the inequality M (u, 20)
< wM(w,v) for any v 2= 1, is of measure ul. Then B.2 holds for any se-
quence of elements of X, .

The assumption of (a) easily implies the condition (As) for o(@);
hence, (a) follows from 1.32 (¢). To prove (b), let us write Hy = {u:
M(u, 20) < wM(u,v) for all v >v,), Byp={t: |@a.(t)] < v,}, where
#,eX, Then g(2u,) gEf M[t, 20, (t)]du-+xe(m,). Now, lof us asswme

2,

n X
o(@,) — 0. It follows from lemma (x) that @,(f) is convergent in measuro
to zero in H, and M[¢, 2min (m,(t), v,)| also converges in measure Go zero
in E. Hence
[ B[t 20, (8)]du < [ M [t, 2min (@,(2), v0)|ds > 0,
Hyp B

and o(22,) — 0 ag n — oo; thus B.2 follows from 1.32 (D).

2,33, Finally, it will be noted that example 2.12 may be obtained
from the present example if we put B = the set of all positive integers,
u(d) = the number of elements of the set A CE, M(u,v) = M, (v)
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for u = n. Another special case of the function M (%, ») may be obtained
by putting
M (uyv) = [M(0)]",

where M (v) is an even, continuous and non-decreasing (for » > 0) func-
tion, M (0) = 0, M(v) > 0 for v > 0, and p(u) is a meagurable positive
function. on E.

24. Given an even, continuous function M (), non-decreasing for
%20, M(0) =0, M(u) >0 for > 0. We define, in the class X of all
real funections #(t) measurable in {0, co), a pseudomodular o(x) as follows:

17
o(z) = lim Tbj M[z(t)]dt.

b I'>c0

2.41. The dlass X, with the pseudomodular ¢ () defined above is strongly
o-complete. Moreover, X, = X, if and only if for every e > 0 there ewist
numbers A, > 0 and a, > 0 such that M(au) < eM(u) for any 0 < a < a,,
u = A,.

First, we prove the strong p-completeness of X;' (see also [1]). Let
the sequence {a,}C X, satisfy the modular Cauchy condition. Given
an arbitrary sequence of numbers ¢, decreasing to zero, let us choose an
increasing sequence of indices nq, 1, ... satisfying the inequalities
0(n, — @) < g for m >mn,. We now define a sequence T, T,,... by
induction. Put T, = 0; if 74, T,,..., T;_, are defined, we choose 7T}
with the following properties:

1°if T > T;, then

1 r
-T—fM[mnk(t)—mm(t)jdt<ak for k=1,2,...,i—1,
0

1 r
717[ M (@, () — @y, (D] dE < &35
[}

207, > 2T, ;.

Now, we define the function #(f) by the equalities #(f) = ,,(t) for
Ty, <t<T;. We shall prove that o[}(z,—#)] >0 as n— co. Take
an arbitrary index %k, m =k and a positive number T, where T, < T
< T,ypy- Then

T .
10 %y (1) — (1) _ 1 3 Y Dy, (1) — 0, (2)
7 J M (__———) =7 III(—————-——‘ 5 )

5 a4
=1 T,
1w (8)— @y (1) 17 ) )
il gy (V)= By} 0y f A0 T4y \V)
+ Z f_M( . )dH—T M( ; )dt.
t=k+l Tp 1 Ty
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Since
m x5 n
1 2 fM[“nk( — (010 < WZf—f M [, () — 0, (1))
T i=k+1 Tj_1 mi =Tl v
m
e \p
< - T, < 2
= 1’711&1 ’ o
and

By (8) = By 11 (
L a2l g <

Ty,

f M [, (1) o, (1) 04

T
1 ) .
b [ M0 ()= (D1 < et o,
. 0
we have o[4(w,,—#)] < 3¢, —0 as k — oo. Hence,

Q[i(mn"‘w)] < Q[%(wnk - :H"Q[%(‘l'nk z)] < de, for » = Ry

In order to prove the sufficiency in the H(xo(md pmrt of 2.41, let
us take a sequence a,—>0. Writing H, == {t > ()] == 4,} and
B, =<0, c0)—E,, we obtain

%Of M[aw(t)]dt:% f M (opn(@)]dt+ ] M (1) ]di

T By T Byrg0,1
< M{ay4,)+ eo ()

for 0 < a, < a,. In proving the necessity, we apply the method used
in the proof of 2.15, with an arbitrary sequence v, such that M (v,) > -?
for » =1,2,... instead of the sequence u,. Deljmmg the sequences
Ny 7 and ay, a5 in 2,15 but with o, instead of w,, we obtain

' (ny n,‘,) Jl(v,,) .3 1

— > - and
N 4 7

3
M(ag) << -

2

_fb;g

Aral
fork=1,2, 7 =1,2,... Then we choose v, == w,, %, being defined
as in the proof of 2 10, whele 4, 18 the sequence 1,1,2,1,2,3,.

y1,2,3,...,n,... and put ®(t) = a; in -1, 14); Lhub, we obmm

9(50) é ; a‘nd Q(akx) > -e, the sequence a; and the number & > 0 being
chosen as in 2.15.

2.42. The class X, is an F-space with respect to the pseudonorm in-
duced by the pseudomodular o(w), assuming o(x) such that o () == 0 implies
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0(21) =0 (*). Denote by X, the class of all weX, such that the pseudonorm
llo]l =05 then the quotient space X,|X, is an F-spaae complete with respect
to the norm generated by the above pseudonorm.

2.43. Tet us note that the conditions sufficient for any sequence of
elements of X to satisfy B.2 may be formulated similarly to 2.32.
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(*) The theorem remains true without last hypothesis, Namely the norm-
-completeness of the XZ‘ may be proved directly by a slight modification of the ar-

gument of the proof ou p. 63-64.
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