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VI (1960)

A sum involving the function of Mébius
by

D. H. LeaMer and 8. SELBERG (Berkeley, Cal., and Trondheim, Norway)

Let u(n) be the Mobius function. The sum

= D um)mn

n<x
may itself be summed to give

G(z) = Dg(n)
n<T

In this note we show that G(r)—2 changes sign infinitely often.
Some numerical caleculations of the first 56 sign changes are described.
These show that these ‘“zeros” of G (#)—2 are remarkably close to being
in geometric progression with two exceptions. An heuristic explanation
of this phenomenon is given.

It is equally easy to show that for any real K, the function G(z)—
changes sign infinitely often. For this purpose we may treat G(z) as a con-
tinuous, piecewise linear, function defined for » <z < n+1 by

1) G(x) = G(n)+(w—n)g(n+1).

Let s = o4 it and suppose there is a u, such that ¢(u)— K is of fixed
sign for all u > u,. For ¢ > 1 we may write .

f"" us)HK f’ at_x K, +f G(MBHK
P i

G 1
&t 2 1)

w

It
~—g

where f(s) is regular for o >

FGu)—K
U
Uy

0. Using (1) we have, with ¢ > 1,

©+L Zg(%) ;

841 °
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fw+ml

n=1

]- o0
z(&—nam'kgggmﬂ

Substituting this into (2) gives, for o > 1,

o [T

Z”! g:f) =fg,(;) du+2 {

1

\
n+1 sf n+0"+1['

[]

w
%o
1 1 w(n+1) Ode
= SO s SH&H- ;S 1) e
Now this last sum, being less than
v 1
2/
n=1

in absolute value, represents a regular function for ¢ > 0. By a theorem
of B. Landau [1] the left member of (3) is regular for ¢ > 0. But the right
member of (3) is certainly not regular for ¢ > 0. Thus G(u)—K must
change sign infinitely often.

Numerical caleulations. A preliminary caleulation of G(x) for
@ =1 (1) 6017 was made in 1954 at Norsk Regnesentral in Oslo. The
97 zeros x; of G(z)—2 in this interval were seen to be nearly in geometric
progression such that the ratio

5
T = T[Ty T

It was decided to test this phenomenon further by a more powerful com-
puter, the IBM 701 at the University of California. The function ()
was explored as far as # = 2,125,000, just beyond ;. The following table
gives first 56 zeros of G(x)—2, that is, integers s, such that G(v)—2 is
of different sign from G(z—1)—2, together with the ratio 7.

The larger values of 2, given in the table may contain small errors
due to accumulated round-off errors in g(x). However the values of 7,
are correct as given.

It is seen that zeros z, and 2, do not conform. Leaving them out
we find @, /1, = 1.2792. Averaging this with the other values of 7
(k + 47,48) we have a mean of

(4) 7 = 1.2495.
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% ! xp | k | 25 I % % ax ‘ o k l oy e

1 16 — 15 ‘ 353 | 1.2172 29 8378 | 1:2635 43 | 179979 1.22.85
2 19 { 1.1875 16 ‘ 464 | 1.3144 30| 10108 | 1.2065 44 | 230512 1.2808
3| 26 |1.3684 17| 572|1.2828 31| 12263 |1.2132 45| 297509 1.2906
4| 31 |'1.1923 18 684 |1.1958 32| 16299 | 1.3291 46| 352766 1.1857
5 39 | 1.2581 19 919 |1.3436 33 | 19995 | 1:2268 47| 430018 1.2190
6| 48 |1.2308 20! 1116 1.2144 34| 24283 | 1.2145 48, 437595 | 1.0176
7 62 | 1.2917 21 1400 | 1.2545 35 | 31359 | 1.2014 49 | 451257 | 1.0312
8 79 | 1.2742 22! 1701 | 1.2150 36 | 38843 | 1.2387 50| 588047 | 1.3031
9| 96 |1.2152 23 2178 | 1.2804 37| 48709 | 1.2540 51| 696967 | 1.1852
10| 115 | 1.1979 24 2821 | 1.2952 38| 60078 | 1.2334 52 | 881576 1.2649
11| 150 | 1.8043 25 3351 | 1.1879 39| 73075 | 1.2163 - 53 | 1067178 | 1.2105
12| 193 | 1.2867 26 4137 | 1.2346 40| 96510 | 1.3207 54 | 1381082 | 1.2941
13| 227 | 1.1762 27 5381 |1.3007 411118603 | 1.2289 55| 1751318 | 1.2681
14| 290 | 1.2775 28, 6631 |1.2323 42 146503 | 1.2352 56 | 2119483

1.2102.

By partial summation
(8) Go—1) = zg(e) — M (2)

where, as usual

M@) = D un).

n<T

This identity was used to fest the amount of round-off error in ¢ and g.
As g(@) converges to zero with inecreasing « it becomes more difficult to
decide just when G(x—1) and

¢o) = Glo—1)+g(a)
are of different sign.

Since
DL =1/t(s+1) (00
A
we have
+ 00 14+00% g1
mig(w) = f 1l g [ F B
oty 8 Cls+1) S sl L(s)
Algo .
1+o0i
. 2'ds
2miM (m) = I_L o)
Hence by (5)
Hreot 2°ds
2ni@(e—1) = e
miG(e—1) s
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Assuming that the zeros of (s) are all simple and noting that

C(O) = "%a
we have, by the residue theorem,
(6) Go—1)—2 = —27-——“’:—
o{1—e)l'(e) -
where the sum extends over the zeros g of £(s). The contribution made
by the trivial zeros (¢ = —2, —4, —6,...) is of order #™* and is negli-

gible in comparison to that made by the complex zeros
o =%+t and p=1—pi

where y, > 0, on the assumption of the Riemann hypothesis.
With this notation (6) becomes

cos{y,logz —a,}
£ @A DI ()

(1) Ga—1)—2 =8z (a, = argl' (o)

If we neglect all terms but the first, we obtain a erude approxima-
tion to G(z—1)—2 whieh is periodic in loga of halfperiod

nfy, = .22226061.
Thus we can expect that, on the average, the roots of G(w)—2 will bo
in geometric progression of ratio
€M = 1.2488968
which agrees fairly well with the evidence (4).
The unexpected zeros #,, and x, result from a conspiracy between

the other zeros of {(s) to upset the usual dominating first zeros $4y,i.
The series (7) can be used to calculate isolated values of G (x) with

limited aceuracy. Thus the first 25 terins give 12.204 for the value of m—-’

G(323000) whereas the true value is close to 12.360. Values of v,,q,,
1€’ (3+ »,0)| were kindly supplied independently by Drs. C. B. Haselgrove
and R. 8. Lehman from as yet unpublished tables.
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: ERRATA
In the line immediately following formula (7) on page 78 replace
: F(ytug)] = [§h—u;—1)1—1
by .
Bug+ug)] = 3 (b—v, —1)]—1L.
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