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On the cubes of Kloosterman sums
by
D. H. and EuMmA LeaMER (Berkeley, Cal.)

Let p be a prime > 3 and let y(s) be the quadratic character of s
modulo p. The p Kloosterman sums

-1 B
S(d,p) =8() = D & (A=001)p-1),

he=1

where ¢ = exp{2=i/p} and
bk = 1(modp),
are of two main types acecrding as x(4) = +1 or —1. Following Salié
[1], we write
fle) = 8(1), gle) = 8(N)
where x(N,) = —1. The functions
f&) =F() and g()=g(e7) (»=0(1)p—1)

constitute the Kloosterman Sums twice over. This includes the degen-

erate cases
Fe*) = g(&0) = 8(0) = —1.

Therefore if we write

p—1

p—1
M EN =0 D) o) =on
v=0

v=0

we have
Pp—1

outon =2 ) (S

A=0
Salié gave the following results
0y = —ai———-x(—l)p, 0y = p*—2p, 0y = P*%

1
W o3+ 05 = 2(x(—3)p*+2p}.
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In this paper we prove

THEOREM 1.
N P2y (—1)—1}42p it p=6n-1,
@ o= P F2p(l+2y(—1)4%) it p =6n+1 = A2+ 3B,

i~ 42 it
p2p{l—27(—1)4% it

p =6n—1,

3 =[ ,
P = 6n4+1 = A24-3B2.

These results were discovered empirically by an ingpection of nume-
rical results in 1952. After repeatedly unsuccessful attempts over the
intervening years, a proof of these formulas was completed in 1959, It
was seen at the outset that Theorem 1 would follow from

LemwmaA 1.
=R ) Gyt 1) 2p it p=6n-1,
x2{x (Z+y = .
z=1 y=1 Y 44 if  p =6n-+l= A2L3RB?

and it was Lemma 1 which proved to be the real difficulty.
In what follows we use the Kronecker symbol modulo p

8 1 if  a=b(modp), '
“ o it astb(modp). =
It will be convenient to refer to three other lemmas.
LEMmA 2
p-1 B
3 = y(VpieI L gk,
y=0
-1 -
3 2 = y(pp e,
y={
Levwma 3.
-1
D alrrn)gvtm) = —1+pat,.
»=0

Lemma 2 is the well-known Gauss gum in two guises (seo for oxample
[2]). Lemma 3 is a familiar result of W. Jacobsthal [37.
The proof of Lemma 1 leads us to consider a double sum

=

—1 p-1

(4) %( L + au) g

U=1

M

(1*+ an?)

e

—
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On the cubes of Kloosterman swms 17

which has properties similar to a single sum of Jacobsthal. Two proper-
ties are given by

LemMA 4. Let p = 1+-¢f, ¢ = 2u—1. Then

Pp-1
(5) D bela) =p—
a=1
-1

(6) {we(a)}® = (p—1)[(e—1)p>-+1].

a:

k-3

]
-

‘We begin with a proof of Lemma 4. The first part is easy. In (4) we
eliminate the letter # in favor of 2 defined by

w = at*'z (mod p)
50 that we have
n—-1 p—1

2 2

=1 2=1

(7) Pe(a) =

Noting that

(t*+2) x (t+a=2).

-1

S alttat) = — (1)

a=1

we obtuin
»-1 p—1
Z vo(a) = — (Y gt 2) g Zx(t“) =p—1.
=1 2=l t=1

a=1

To prove (6) we again use (7) and write

—1 -1 p—-1
T = Y gl i+ g ) Y (et o glatw).
a=l z,%,8,0=1 a=1

By Lemma 3 the inner sum is

—1+p ‘s(zl,,)z z(ww).

Eliminating # and # in favor of s and ¢ defined by

v =us, z=ot (modp)
we find ‘

p-1 -1

3 (pela)r = Y [— ") —x(t5") +pxlis ) 8] X

a=1 8,t=1
p»-1

x D) glo+u)g(v-+i(us)).

u,v=1

2
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Again, by Lemma 3 the inner sum is
{—1+p&" — 2 (")} (p—1).

Substituting this into our sum we find

p—1 »-1
-1 Y {wela)r = ) {lels* ™)+ 2"+ 2(18")]
a=1 8,t=1 )

—plx(s)+x(ts* )] 8

—plx (1" ™)+ 2 (1)1 8"} + p* 2 8" .

8,t=1
This last sum is seen to be

2 1 =2u—1 =e.

821
Hence
p-1 -
(p—1)" ) {yela 2 (ts* 1)+ 2 (8)+ 2 (1) 411
a=1 8,t=1

~p2 () + 291

~p 2 [2(8)+ x(s3)]+ ep?

= (p—1)*—2p(p—1)+ep* = (¢e—1)p*+1.

This completes the proof of Lemma 4.
Is is clear that the values y,(a) (@ = 1 (1) p—1) are not all distinet.
In fact we see from (4) that

Vo(aw®) = ps(a),  w = 0(modp).

Thus the p—1 o’s fall into ¢ sets of f equal values. If g is a primitive root
of p, the distinet ’s may be represented by

(1), ve(9), valg?)s .-y "/’a(ge—l)

and Lemma 4 can be restated in the form

e~1

8) D vl =,

v=0
e—1

9 {e(9))r = el(e—1)p*+1].

ey
Il
o
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In the sum over t in (4), ¢* takes on each of its values ¢ times. Hence every
y is a multiple of ¢.
It can be seen, furthermore, that

w(1) is odd,
ve(g") is even (1 < h < e).

In fact, in considering the terms of (4) that vanish, we see that both
factors of a term of y.(a) can vanish simultaneously only when # =1
and when

1 = (—1)°a(modp),

that is, only when a is congruent to an e-th power (modp). Thus w,(1)
is of different parity from the other representative y's. Since ¢is odd, the
only possibility in view of (8) is that y,(1) is odd.

‘We now prove Lemma 1. Let Q denote the sum in question and let
A be the set of lattice points (¢, y) for which

I<z<p—l, O<y<p—l, yFp—x—1.
Thus A consists of (p—2)(p—3) points. Let
Q= Y y@+F+DrE+y+1);

(x,Ca
then

P—1 p—-1
= Y a@z@— > x(y)(7)
&=1 y=1
-2

+2(—1)— D' zlo+1—(o+1)x(F—a)
x=1
n—2

= 0—2(p—1)+1—x(—1) ) x2(@+2)x(z—1).

Z=1
By Lemma 3 we have
(10) Q' = Q—2p+3+x(—1)+2x(2).
Under the transformation

_ i+ w) ")

e’ VS u_w

(mod p)

with its unique inverse
1
1= L , W= _____ﬂm(w—l— ) (modp)
1+y yy+1)
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the set A is mapped into a set A’ given by

I<t<p—1, O0<u<p, u ==t (modp), u FAp—I
moreover
“ _ (Bt (t+u)) ( (t+-u®) (t+1) )
1(@+7-+1)2(E+y+1) x( H(u— 1) (11) 1t -+ u) (4 —12)
= y (834 u) g (3 +u?).
Hence
Q= 3 petur@+e)
(twca’
p—1 12—11 o1
_é' ;;1 2 () (4 ut) — ;1' plu—1) y(u?—1)

»-Zx S 1) g (1717 — 2x(t8+t2)x(t3+t*)

iz i=1

= (1) +2+27(2) +2(-1)
in which we have used Lemma 3. Therefore in view of (10)
{11) 2 =2p—1+yps(1).

Suppose first that p = 6n—1. Then as ¢ ranges over a complote
residue system so also does ¢* and so, by Lemma 3,

p—=1p-1 p-1 p—1 .
pa(l) = Y Y 2B +u)p(B+u?) = (4w (14w
U=l f=1 U=1 =1
p-1
= M {~1+4ps —z(u)} = —p+1+p = 1.
u=1

Hence in this case 2 = 2p, in accordance with Lemma 1. It remaing

to congider the case p = 6n-+1 = 42+4-3B? and to determine w,(1).
For brevity we write

vs(l) = @,

va(9) = b,  ya(g?) =c.

By (8) and (9)

atb+6 =3, a*+b2+ct =3(2p2+1).
Henee
2b¢ = (a+b+ ) —(a* -+ b2+ 0%) —

= 9—61)2_.

2a (b ¢)
3—2a(3—a) = 6(1—p?)+2a>—6a

icm

On the cubés of Kloosterman sums 21

and
b2+ ¢ =6p*+3—a.
Subtracting we find .
(b—c)? = 12p*—3(a—1)?
or
p? = [(a—1)[21*+3 [(b—¢)[6]%.

where the numbers in the square brackets are integers by the general
remarks made following the proof of Lemma 4. But

p* = (242—p)2+3(24B)?
is the essentially unique representation of p2 by the form x2-{-3y2. Hence
a—1 = i2(2A2—p). )
The upper sign must be taken since « is a multiple of 3. Therefore -
o = (1) = 14+442—2p.
Substituting this into (11) gives 2 = 442 This completes the proof of

Lemma 1.

-1 p-1

2 FHUHE

It remains to prove Theorem 1. Using Lemma 2, we can write
-1
=2 )
=0 z,v =1 y=0
—1

= Vpde-um? Z 2 (F+G+7)TVH

©,9,2=1

(5 U2t

p~1
T+Y+E EHY+s
+p Lkt

z,¥,2=1

»
= 1/1“-[(10-1)/212 2 x(ﬁ+i+1)x(§)8(u+”+l)e

u,v,2=1
»—1
bp 3wy 3
_o_uye=l B+0+1=0
U+v-+1=0 (modp)

Summing over z we find

oy =pr(—1)Q+p* D 1-p 2 L
UpD+1=0 %tv+1=0
UB+1=0

The conditions in the first sum imply

w4+ u+1 =v2+0+1 = 0 (modp)
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and so the number of solutions is 1-x(—3). In the second sum there
iz exactly one u for each v #% p—1. Hence the sum is p—2. Therefore
we have )

oy = 2(—1)pR+p2(1+2(—3))—p(p—2) = p*x(— 3) + p{2+ 2(—1) 2}.

Separating the cases p = 6n+1 and substituting from Lemma 1 we have
(2). (8) now follows from (1). This completes the proof of Theorem 1.
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On new “explicit formulas” in prime number theory 1
by

8. KNAPOWSKI (Poznan)

1. The first part of this paper hag been concerned with new expli-
cit formulas for

p(z—0)+ p(r+0)

(@) = 3 where y(z) = ) A(m)= D logp,

nE pM<
depending upon the zeros of the partial sums Uy(s) = ) 1/n° of the zeta-
n<N
series. The following formmula has been established ([2], Theorem):

. log N'! a°
(1.1) yo(@) = N - —
- @
¢ = B+ iy running through the zeros of Uy(s), 2 <z < N, and N being
sufficiently large. In the particular case of N = [e"] we have obtained

a2°
(1.2) vol@) =o— D' = +0(loga).
yi<el®, -1

Tt seems to be worth while to generalise (1.1), (1.2) and find similar
formulas depending upon the zeros of other Dirichlet-polynomials approx-
imating to {(s). The most interesting case is that of the Riesz means

logn .
By(s) = Z(lﬂlogN)"_B’ § = o it,
<N g

congidering that they converge to £(s) in the closed half-plane ¢ 21,

© s #1 (see [3] and [4]). We are now going to study that case. We shall,

in fact, find some analogies with (1.1), (1.2) and at the same time touch
on the distribution of zeros of Ry(s). It seems plausible that Ey(s) do not
vanish in the whole half-plane ¢ > 1. Yef, for the time being, we are only
able to determine a certain portion of this half-plane which is free of
the zeros of Ry(s). We may note in passing that the regions announced
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