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Tn the same way as for G, it was found that the only chain-pair for which
M({ay}, {e,}) might be greater than 546 [4 congists of the even a-chain
from F with the zero e-chain, for which, in fact, M ({a.}, {e.}) is B47/4.
A complete period of the (sole) even e¢-chain of F is:

2, —2, —2,2,2, —2, —4, —2,2,4,2, —2, —2,2,2, —2,2,2,
—92,—2,-2,2,2, -2, —2,2,2,2, —2, —2.
Another form with a very low minimum is
f = (151, 739, 193),

for which
31701 < 4 M (H)[A(f) < .3LTTD.

It should perhaps be noted that for this form, as well as for several others
with slightly higher minima which were computed precisely before F was
found, M (f) does not correspond to an even a-chain.
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On a diophantine equation
by
J. W. 8. Cassers (Cambridge)

The following theorem answers a problem put to me orally by Pro-
fessor Mordell. He tells me that he had known about the problem for
some time and that it had several times been proposed to him (1).

TeEOREM I. The system of equations

(1) r+s+t =18 =1
s insoluble in rationals 7, s, 1.

As Professor Mordell pointed out, this is equivalent to the following
TeroREM II. The only -rational solutions of

2) (r4-s+1)® = rst
have
rst = 0.

The equation of Theorem II represents a curve of genus 1 in homo-
geneous coordinates. It is, in faet, a particular case of an equation consid-
ered by Mordell [4]. He shows that it can be transformed into an appar-
ently quite different shape. Since (2) is homogeneous, we may suppose
without loss of generality that r, s, t are integers without common factor.
It follows from (2) that r, s, ¢ are coprime in pairs, and so, by (2) agé,in,

r=0% g§g=90 {=71°
where g, o, v are integers and
(3) o+ o418 = gov.

This is a special case, as Mordell remarks, of the equation
(3" a0°+bo®+ ¢r®+dgor = 0
considered by Sylvester [10] and Hurwitz [5] (ef. [9], p. 80-81).

(*) I am grateful to Professor Mordell for his comments on my MS.
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The proof of the theorems depends on the well-known standard
techniques for dealing with curves of genus 1 (cf. [13 [7], [8]). Hence
we only sketeh the proof enunciating the principal steps as lemmas usnally
without proof. Following Mordell again, we put

st = —tat, r—s=4yl.
The equation (2) takes the shape
(4) Yt = ot (a4 4)%.

We consider the Poincaré-Mordell-Weil group of points on (4) with ra-
tional coordinates, taking the point at infinity on the curve as the zero
element of the group.

LEMMA 1. The only rational points on (4) of finite order are those
with © = 0.

Thig follows at once from a eriterion of Nagell (6] rediscovered by
Lutz [3] (¢f. [9], p. 78-79, Siitze 12a,b). Alternatively, one may remark
that Lemma 1 is a special ease of the result of Hurwitz [5] about the curve
(3" (cf. also [9], p. 80, Satz 13).

LEMMA 2. If (x, ) i8 & rational point on (4), then

(5) o= X[T*, y=TYI,
where X, Y, T are integers and
(6) ged (X, T)=ged (Y, T) =1.

LeMMA 3. Let 8 be the field defined by adjcining a root of
(7 B—2—2 =0

to the rationals. Then
(1) ® has discriminant —104, class number 1 and fundamental wnit

(8) e=1+1—12,

where
Norme = 1.

A basis for the integers of K over the rational integers is 1, A, A%.
(i1) The element

(8" d =A2—21~-1
of K satisfies the equation
(9) D (P+44)2 =0,

the discriminanmt of which is 64 (—104).
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(iil) The only rational primes which ramify in R are 2 and 13. These
decompose according to the rule (®

(10) [2] =pg3, [13] =18y

where

(11) @ = 1 (modyp), @ = 0 (modyg),
= —3(modr), ® =1 (mod3).

This is all routine. Perhaps the best way to verify that ¢ is a funda-
mental unit is that given by Delaunay and Faddeev [2], p. 73-76. All
we actually need (°) is that ¢ is not a square, and this follows from ¢ = — 5
{modr), since —5 is not a quadratic residue of 13.

Lemma 4. [X— OT?] is the square of an ideal.

The equation (4) takes the shape

Y? = (X— &1 (X— &' T%) (X~ 0" T?),

VV.hE?I‘e @ is given by (8) and &', " are it conjugates. By (6) any common
divisor of X —&T? and X — &' T2 divides P— &', and so also 64.104 by
Lemma 3 (ii). Hence

[X—&T] = aya,,02,

where a, 0,5, b are integral ideals, b is prime to 26 and all the prime
ideals dividing a,,a,,; divide 2, 13 respectively. But now, by Lemma
3 (iii) and since g.c.d. (X, T%) = 1, the ideals @5, 4;; must be  powers
of prime ideals (¢). Since i

(12) Y% = Norm (X — @7?),

the truth of Lemma 4 follows.
COROLLARY. Hither

X—OT? = o2
or
X — 0T = ga?
where aeR.
For Norm (X — &712) > 0, by (12).
Lemma 5. Suppose that
(13) X— 0T = a2,

(*) We use square brackets to denote prineiple ideals.

(*) Indeed we do not even need this. Since we show from congruence consid-
erations that (14) below does not hold, it is easy to see that ¢ cannot be a square.

(*) For example, if X — @T? were divisible by pg then we should have
X =0(mod2) from q and X = T2 (mod 2) from .

Acta Arithmetica VI. 4
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Then the point (X[T2, Y [T?) is twice @ rational point in the sense of the
Poincaré- Mordell-Weil group. o
This follows substantially from the general theory (ef. [17, [7], [8],
[97, [11], [12]). Alternatively, put
a = f+gP-+hd?,
rabi ily integral. On equating the
where f, ¢, h are rational but not necessarl : uating tho
coefﬁcie;m;b3 of @ and @2 on both sides of (13) (using (9)) and eliminating f
it is easy -to see that
Th =y, g—Whk=2
satisty y? = o3+ (#,--4)2 The point (@, y,) is that required.
COROLLARY. If there are rational points on (4) with @ 5 0, then there
are such points with
(14) X — BT? = ea?.
This follows from Lemmas 1 and 5, together with Mordell’s theorem
that the group of rational points has a finite basis.
We now put
in (14), where, by Lemma 3 (i), f, g, b are integers. On using (7), (8) and
(8") and equating the coefficients of 1 and A* on both sides of (14) we
get
(15)

(16)

f2— g2 —2fh+ 4gh—h? = 212,
— f*+ 2ig—2gh+2h* = 1.

Hence, on eliminating T,

¥ — i 4fg— g —2fh 3R = 0.
On putting

(18) h=j+k

in (17) and (16) we get

(19) 4f(g+%) = g*>—3k*

and

(20) 2—2gk -+ 4fk+ 2k = — 1"
respectively. Hence, on eliminating f, we have
@1)  —{4(g+mT]

= (g — BE2)+16% g+ ) (g7 — 3K%) +-16 (2k2 — 2gk) (g + b)*.
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It g =k =0, the equations (18) and (16) show that T < 0, which is
impossible. If (g, k) # (0, 0), we shall show that (21) is impossible by
considering congruences to powers of 2.
Put
k =2k, g=2"g
where
2% ge.d. (ky, g1).
We distinguish two cases. Suppose, first, that 2|k, ¢,. Then the right hand
side of (21) is
' oM,
where
. (91— 3%)° (mod 16),
~ |1 (moas).
Secondly, suppose that 2% k,¢,. Then
) gi—3k = 2 (mod4), k,—g, =k, +g, =0 (mod?2).
Hence the right hand side of (21) is

oML,

2—3702 2
[ '(&”2__1) (mod 16)

1 (mods8).

where

Hence in neither of these two cases can — M be a perfect square. Hence
there are no solutions of (21) with (g, k) % (0,0). By Lemma 5 Corollary
this proves the theorems.
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The cyclotomic numbers of order twelve*
by

A. L. WHITEMAN (Princeton, N. J.)

1. Introduction. Let p be an odd prime and g a fixed primitive
root of p. Let ¢ be a divisor of p—1 and put p—1 = ¢f. The cyclotomic
number (¢, j) = (¢, j), is the number of values of ¥, 1 <y <p—2, for
which

(1.1) y=¢°" 14+y=¢"" (modp),

where the values of s and ¢ are each selected from the integers 0,1, ...,
f—1. A central problem in the theory of cyclotomy is to find exact for-
mulas for the constants (¢, j). Until now complete solutions have been
obtained only in the cases ¢ = 2,3,4,5,6,8,10 and 16. References
to these solutions are given in R. H. Bruck’s report [2] on the computa-
tional aspects of the problem. Since the publication of [2] two more ar-
ticles [11], [12] relevant to the subject have appeared.

This paper is concerned with the case ¢ = 12. The systematic study
of this case was initiated by L. E. Dickson [4]. The foundation for his
work is the following theorem ([4], Theorem 12): when e = 12, the 144
cyclotomic constants (2, j) depend solely upon the decompositions p = a?
+4y? and p = A2+3B2 of the prime p = 12f-+1, where © = 1(mod4)
and A = 1(mod6). In a number of instances Dickson obtained explicit
formulas to illustrate this theorem. Two examples are as follows. If 2 is
a cubic residue of p and 3 is a biguadratic residue of p, then

(1.2)
(1.3)

144(0,0);; = p— 35— 324 — 305+ 24 (4 + 1)
144(0,2);, = p+1— 24+ 24B— 120

(f even),
(f odd).

The conditions of the theorem determine # and A uniquely and deter-
mine ¥ and B uniquely except for sign. The ambiguous sign in (1.2) is

* Research done in part under Contract NSF GB5877 between the National
Science Foundation and the University of Southern California, and in part with
support from the Institute for Advanced Study.
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