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On addition chains
by
P. Erpis (Budapest)

Consider a sequence @, =1 < a; < @, <... <az =7 of integers
such that every a; (1>>1) can be written as the sum a;+a; of two pre-
ceding elements of the sequence. Such a sequence has been called by
A. Scholz (2) an addition chain. He defines 1(n) as the smallest k for which
there exists an addition chain 1 =a, < a; < ... <@ =N

Clearly 1(n) >logn/log2, the equality occurring only if » = 2%
Scholz conjectured that

: log2

@ lim I(n) 22 — 1
n—00 logn

and A. Brauer (2) proved (1). In fact Brauer proved that
. 1\ logn }

2 n) < = or—

@ (n) 121;{(1+ 'r) log2 + 2

1
log ogn] it

where 2™ < n < 2™*., From (2) by choosing 7 = [(1——8) Tog2

follows that

logn logn ( logn )
3 1t — .
® (m) < log2 + loglogn loglogn,

In the present note I am going to prove that (3) is the best possible.
In fact I shall prove the following
THEOREM. For almost all n (3. e. for all n except a sequence of density 0)

_ logn logn ( logn )
" log2 ' loglogm loglogmn, '

1(n)

1

() Jahresbericht der Deutschen Math. Vercinigung 47 (1937), p. 41
() Bull. Amer. Math. Soe. 45 (1939), p. 736-739.
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In view of (3) it will suffice to prove that for every ¢ the number of
integers m satisfying
logn

n logn
—<m<n, Im< “Toglogn

2 log2

(4) +(1
is o(n). In fact we shall prove that the number of integers satisfying (4)
is less than »'~" for some 5 = 7(e) > 0.

To prove our assertion we shall show (as the stronger result) that
the number of addition chains 1 = ay < a; < ... < @y, satisfying

logn

logn
Tog?

k< loglogn

{5)

| =

< < 7, +(1—¢)
is less than n'~" for some 5 >0 (y = 5(s)).

An addition chain is clearly determined by its-length & and by a mapp-
ing v(i), 1 <i < k—1, which agsociates with ¢ two indices §{ and j;®
not exceeding 4. To such a mapping there corresponds an addition chain
if and only if for every 4, a0+ ap @) > a;.

‘We split the indices i, 2 <4 < k—1, info three classes. In the first
class are the indices ¢ for which a;,, = 2a;. In the second class are the ¢’s
for which @;,;<<2e; and a;,; > (1+ 6)"a;,_, for every r>0 (5 =6(s)
is a sufficiently small positive number). In the third class are the i's for
which a;,, < 2¢; and @y, < (1-0)"@;,_, for some r > 0. Denote the
number of i's in the classes by %y, Us, Uy, Uyt Us~+ Uy = k—1.

Asgsume now that (5) is satisfied, we are going to estimate the number
of addition chains satistying (5). First we show that (5) implies

(6)

Uyt Uz == 0(k).

To prove (6) observe that if a;., # 2a; then a; ., < a;+ a;—,. Thug
from a; < 2a;_,; we obtain

(M

Oipr < 361

Thus from (5) and (7), since there are at least [ (us+ uy)] = [$(k— u,
—1)]—1 intervals (i—1,4+1), 1 < ¢ < k—1, which are disjoint half-
open (i. e. open to the left) and for which ¢ is in the second or third class,
we have

lkzu < ot (tig-+ug)/100
~u1

n
E < ap < 2u1+13(k—u1)/2 —_ 2Ia =
@

logn
log2

U+ Ug
100

or k> (1+ )-1, which contradicts (4) if (6) is not sat-

isfied.
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The number of ways in which we can split the indices ¢ into three

classes having u,, ug, u; elements (u;+us+u; = k—1) equals (uk_‘—_; )x
% 3
X “2:“3). Now since u,+ us = o(k), (“2:'%) < Qlatts — (1+o(1))", also
2

k By (kY %

(u2+u8) (u2+u3) = (O(k)) = (1+0o(1))*. Further for u, and u, we have at
most %* choices. Thus the total number of ways of splitting the indices
into three classes is (1+o(1))". Henceforth we consider a fixed splitting
of the indices into three classes.

For the ¢’s of the first class a;,; = 2a,;, and thus a;, is uniquely
determined. If 7 belongs to the second class then from a;,, 2> (14 6)7a; .,
it clearly follows that there are at most ¢; = ¢,{6) a’s in the interval
(0a;, a;). From g¢;,, = (1 0)a; it follows that only the a’s of the inter-
val (da;, a;) have to be considered in defining @;,,. Thus there are at
most ¢; choices for a;,,, and henee for the number of addition chains
satisfying () the contribution of the 4’s of the second class it at most
e = (14+o0(1))" _

The number of possible choices given by the u, indices of the third

2
clags is less than (Z ) To see this observe that the indices 4;, 7y, ..., fu,
3.
which belong to the third class have already been fixed and our sequence is
completely determined if we fix the indices i, j;00); j(2, ji62 jffaua’, j:guz)
which define a; i, @415 -+, Biy 41+ Because of a; ., <a5,, <... < iy i1
their order is determined uniquely (thiz is easy to see by induetion).
The total number of pairs (u, v), 1 <u <o <k, equals (7;) +k < k2,
whence the result.
Thus we have proved that the number of addition chains satisfying

(8) is less than
(8) Datowf Y (E),
k ug

where the summation is extended over all possible choices of & and u,,
satisfying (5). Now we show
a) logn

1——)—.
) Y < ( 2/loglogn

To prove (9) observe that if ¢ is in the third class then for some »;, > 0
(10) Gig1 < @iy (1+ ).

The intervals (9+1—7;,i+1) cover all the 4's of the third class.
From these intervals we form (in a unique way) a set of non-overlapping
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intervals (ts, ¥), 8 =1,2,...,1 which contain all the intervals
(i4+1—#;, ¢+1), where ¢ is in the third elass. )

A simple argument shows by (10) and the construction of the inter-
vals (ug, vs) that

(11) g, < @y (L4 0.

The intervals u, < # < v, 1 < ¢ <t cover all the ¢'s of the third

class. Thus
¢

D) (05— ug) = s

8=1

From (B), (11), (12) and a;, < 2a; we infer thab

(12)

(13) g— < oy < P14 0)M < 2F Vel

for sufficiently small é = (). Thus from (13)

1
a) ogn Y

k~—ua(1—3— > Tog2

)

(14)

(14) and (3) clearly implies (9).
From (), (9) and (8) we infer that the number of addition chains sat-
isfying (5) is less than

ogn [4
(15) (1o (w3,
where
_ [(Logn logn ] - [( _.i) .,.3951?'__]
_[(h)gz -Hl_a)loglogn) o B=l 9/ loglogn
Now
B B
(16) (‘;) < (%) ¥ = (L4o(1))°s™ (%)

= (L4 0(1)]" (log m)P(+°0) = pl=eittol,

From (15) and (16) we finally infer that the number of addition
chains satistying (5) is less than n'~*/2+°® < u1~7 for 4 < /2, which com-
pletes the proof of our Theorem.

It would be of interest to obtain a more accurate estimation of I(n)
and in particular to try to obtain an asymptotic distribution function
for I(n), but I have not succeeded in making any progress in this direc-
tion.

We can modify the definition of an addition chain as follows: a se-
quence 1 =@, <ty < ... <@ =n ig said to be an addition chain of
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order r if each a; is the sum of r or fewer a;'s where the indices do not exceed
j. Denote by 1.(n) the length of the shortest addition chain of order »
with a, = n. Using a modification of the method of Brauer and of this
note we can prove that for all »

logn logn ( logn )
l(n) <
() logr (r—1)loglogn ¢ loglogmn, ’
and that for almost all n
1 1
FOR U —— )
logr (r—1)loglogn loglogn

Peter Ungér in a letter has asked me the followig question: Define
U'(n) as the smallest % for which there exists a sequence a, = 1, a,, a, ...,
a, = n where for each §, a; = ayta,, uw <j, v <] (@, <a,<... 8
not assumed here). The problem has arisen in trying to compute 2" with
the smallest number of multiplications and divisions. Clearly I’ (n) < 1(n)
and it can be shown that our Theorem holds for I'(n) too.
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