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Additive properties of random sequences
of positive integers

by
P. Erpnos and A. RENYI (Budapest)

§ 0. Introduction. It is well known (see e.g. [1]) that the number
of those integers # < # which ecan be represented in the form n = k2412
(% and 1 integers) has the order of magnitude » /}/logw; ag clearly the num-
ber of pairs %, I of positive integers such that %*+1* <« is ~ nz/4, the
reason why the set of numbers which can be represented as the sum of
two squares has zero density is not that the squares are too rare, but —
loosely speaking — that they are “too regularly’’ distributed, so that
among the sums k241 there are too many equal ones. This was first
demonstrated by Atkin [2], who solved the following problem, proposed
by J. E. Littlewood: If each square k2 is replaced by a random integer »,
chosen according to a certain probability law in the neighbourhood of
k2, then the sums v,+» almost surely have a positive density.

In § 1 of the present paper we introduee a class of sequences of ran-
dom integers. This construction has been used already in [3]. In §2, 3
and 4 we prove some theorems of a similar character to that of Atkin,
mentioned above. We shall show that if the random sequences », and
have approximately the same order of magnitude as the sequence ck®
with some ¢ > 0, then the sequences v+ py, %2+ y; and #,+» will have
positive density with probability 1; moreover, in all three cases the se-
quences of numbers 7 which have exactly » representations in the form
o=+, n="k+u or n=rw+vy (k<l), wil almost surely have
a positive density for each value of # (r = 0, 1,...) and these densities
form a Poisson distribution. In § 5 we shall show that the number f(n)
of representations of » in the form n = »,+»; has, in ease it tends to —+-oco,
a normal distribution in the limit. In § 6 we generalize these results for
sums of more than two terms of a random sequence of integers. In § 7
we consider the distribution of differences of a random sequence. §8
deals with random sequences v; of the order ¥**°, where ¢ > 0 is arbitra-
rily small, for which the number f(n) of representations of » in the form
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n = v+, is almost surely bounded. This result is connected with a prob-
lem of 8. Sidon ([4], [6]). §9 deals with great values of f(n) while § 10
contains the proof of the strong law of large numbers for f(n). Finally
in §11 we give a stochastic analogon of Romanoff’s theorem [67, accord-
ing to which the sequence of those numbers » which can be represented
in the form 7 = p--af, where p is prime and ¢ > 1 an integer, has pos-
itive density, while §12 contains a similar but more general theorem.

Some of the results proved in detail in the present paper have been
announced without proof in a previous paper [3] of the first-named author.

Throughout the paper we use the following notation: P(...) denotes
the probability of the event in the brackets. We denote random events
by capital letters; A denotes the event contrary to A; if 4 and B are
events, let A--B denote the event consisting in the oceurrence of at
least one of the events 4 and B, and let AB denote the event consis-
ting in the joint occurrence of the events 4 and B. 'We denote random
variables by Greek letters &, 7, v, u ete. M(£) denotes the mean value
and D?(£) the variance of the random variable & M (£|A) denotes the
conditional mean value of £ under condition 4. C,, C,, ... denote posi-
tive constants.

§ 1. Random sequences of integers. The notations introduced in
this section will be used throughout the paper.

We define the random sequences of positive integers dealt with in
the present paper as follows: Let &, (n =1, 2, ...) be a sequence of com-
pletely independent random variables sueh that &, takes on the values 1
and 0 with the corresponding probabilities p, and (1 —p,), i. . we suppose
that

(1.1 P(éy=1) =pn, P& =10}=1—p,,
where p, is an arbitrary sequence of numbers such that 0 <p, <1
and
(1.2) Z‘ Pp = +oo.
=]l
We denote by »(, v, ..., ¥, ... the values of n (in‘increésing order of

magnitude) such that &, =1. Thus » <y <...<p <. 4§, =1
(k=1,2,...) and &, =0 if v <n <. We call the sequence (v}
a random sequence of positive integers generated by the sequence {p,} of prob-
abilities. p, is clearly the probability that the number n should be con-
tained in the sequence {»}. This method of generating random seguences
of integers has already been wused in [3]. Evidently ordinary sequences
of infegers are special cases of random sequences of the above type, which
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we obtain if each p, is 1 or 0. Clearly we have

(1.3) bt bt b, =k (k=1,2,..)

and », is the least integer for which (1.3) holds for a given value of %.

It follows by the Lemma of Borel-Cantelli (see [9]) from (1.2) that
the sequence {v,} is infinite with probability 1. It follows further from
a variant of the strong law of large numbers (see [10], p. 438) that putting

(1.4)

we have with probability 1

Lt &t

=1.
P(n)

(1.5) lim

n—>+00

Thus by (1.3) and (1.5) we have with probability 1

k
(1.6) stoo P (¥k)

For instance, if p, = 0/1/7; (¢ > 0), we have P(n)~2cﬁ and thus with
probability 1

Vi 1
40

lim —%
i boroo B2

while if p, = ¢/n (¢ > 0) we have P(n)~ clogn and thus

k,—
Hm '/‘Vk = g'°,
kert-00

(1.8)

Still more can be said about the sequence {»;}. As a matter of fact,
n

by the central limit theorem ([8], p.130-131), putting ¥V (») =kzlpi we
have -

—ul
e P au.

(1.9) lim P

v
N—>+00

( "_._*é“sk—P(n) <o) = 0o) = — [
VP(n)—V(n) Vor Y,
It follows that in the case p, = o/l/ﬁ (¢ > 0) for instance we have

i. o. the fluctuations of #, around k2/4c® are of the order %" and are ap-

lim P

N—s4-00

< w) = &%),

proximately normally distributed if k is large.
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It may be added that if we change only slightly the probabilities p,,
all assertions which were true with probability 1 remain true .with the
same probability. In fact, according to a theorem of Kakutani [12], this
is true if we replace p, by p, provided that

— e
(Dn—Pn) < oo,
el Pn(l-%)

Thus in the case of p,, = ¢/Vn, we may replace p, by p, = c/V'r—b—l— djn®
with a > §. We shall see, however, that for our problems still larger
changes of the probabilities are admissible if those changes do not affect
certain averages.

) §2. Two independent random sequences. Let {} and {u;} be
independent random sequences of positive integers, generated by the

sequences {p,} and {g,} of probabilities ) p, = Y ¢, = +oo, i. €. », and
n=1 N=
uy, respectively are the k-th values of # for which El,., = 1 and respectively
7 = 1, where the random variables &, 7y, ...y &n) 7, - .. taking on only
the values 0 and 1 are completely independent, P(£, =1) = p, and
Py, =1) = q,. Let f(n) denote the number of representations of =» in
the form n = v+ ;. First we prove
TeeOoREM 1. If

(2.1) lim p, = lim g, =0
T—>+-00 N—>--00
and (1)
n—1
(2.2) lim. x=A>0
Jim k;: Picln—i ,

then f(n) has in the limil for n — oo a Poisson distribution with mean
value 2, i.e.

. Zre--}.

lim P(f(n) = 1) = (r=0,1,...).

TNy f-00 r!

(2.3)

Proof. As the random variables
by supposition independent and

- (b =1,2y...,n—1) are

n—1
fm) = D &

k=1

(2.4)

0 o
(1) Clearly (2.1) and (2.2) imply }pr = 3 qr = + oo,
k=1 K=1
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Theorem 1 follows from a well-known general theorem of probability
theory (see [8], p. 132-133).

Tet S, denote the sequence of those integers # for which f(n) =1;
Theorem 1 suggests that S, will have (with probability 1) & density equal
to Ae"*r! (r = 0,1,...). This is in fact true under general conditions,
contained in the following

THEOREM 2. If the independent random sequences v, and uy are gen-
érated by the sequences of probabilities Py and ¢, where p, and ¢, are dec-
reasing and tend to zero, if further (2.2) ds satisfied and there ewists
@ constant & with 0 < 6 < 1 such that

n
Zpk =0(n'™% and
k=1

n

D=0,

k=1

(2.5)

then, denoting by S, the set of those positive integers n which have ezactly
v representations of the form % = vg+ u, we find that S, has with proba-
bility 1 the density X e”*[r! (r=10,1,....) :

COROLLARY. Under the conditions of Theorem 2 the sequence of all those
integers which cam be represented in the form m = v+ has with proba-
bility 1 the density 1—e > o

Proof of Theorem 2. The validity of Theorem 2 is a consequence
of the fact that the random variables f(n) (» =1, 2, ...) are in a certain
sense almost independent, as will be seen from the proof given below.

Let &.(n) be equal to 1 if f(n) =7 and 0 otherwise. Then we have

(1— piﬂn——y‘)i

(2.6) M(Sr(’”')) = Zf’qun—klw - Pr, In—rk,
. Fky (h=1,2,...,7)

where the summation is extended over all r-tuples of different integers
(Fyy-ery ky) such that 1 <k <kg<...< ke <n—1.

We shall need here and in what follows the following inequalities,
valid for any sequence @, @, ..., &y Of positive numbers:

o (5 ab3) (3 af

k=1
< ak,akz---ﬂk,< .

7!
1<kr<ko<. . <kp<N

k=1
!
" (X af
%=1

The upper inequality in (2.7) is trivial; the lower inequality, which has
already been used in a previous paper ([7], p. 27 ) of the authors, also
easily follows from the polynomial theorem.

1t follows from (2.6) by using (2.7), with respect to (2.2) that

1'6_)'

r!

(2.7)

lim M (e.(n)) = (r=0,1,...).

Nt 00

(2.8)
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Now we consider M (s,(n)e,(m)) for n < m. Let A, denote the event
& = e = "7'm, =1 and Bk the event 7, = &, = &,_y = 1; further

put, A = ZAk and B = ZBkw then we evidently have

M (e (n)er(m)| AB)P(AB) = 3" Py duty Dty Gt Pty Grnoty - - Pty s, X

X n (1= Prbn—r) (1 — Prgm-1),
ketlop, lal; (1=1,2,...,%)
where 3 denotes that the summation is extended over those pairs of
r-tupl.es.l‘ <Kh<h<..<kh<nandl <l <l,<...<l < m which
are digjoint (k; % 1;) and sueh that the »-tuples (n—%k,, ..., n—k,) anhd
(m—1,...,m—1,) are also disjoint. Thus
(2.9)

M (e,(n)e,(m)| AB)P(AB) < M (er(m) M (20 (m)).
Now clearly 4-B = A-+B and thus
M (e (n) e, (m))

= M (s(n) e (m)| A +B) P(A+B)+ M (5, (n) &(m)|4-B)P(AB)

(2.10)

and as & (n )s,(m) 1, we have

1

(P(41) +P(By).

3

(2.11)  M(e.(n)e,(m)|A+B)P(4+B) < P(A+B) <

k

]
-

Thus from (2.9), (2.10) and (2.11) it follows that

. n—1
(212) M (er(m) en (m)) =M (e () M (e (m)) < D (01 Go—t Gt + G Prrc Pus)
k=1

and thus
(2.13)  M(ep(n) e, (m)) — M (s, (n)). M (e, (m))
n—1
< (m—nt D) kZ;kan S Qm—n'\"pm ") -

Let us denote by {,(N) the number of those values of »
f(n) =r, i. e. put

< N for which

(2.14)

2| =
:M
L 2
£
S
=
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It follows from (2.8) that

) et
lim 3 (5, () =
Nesto0 T

5

(2.15)

further, by (2.13) and by our supposition (2.5) we have

" N-1
N—%
(2.16) D, (W) < 022 (pk+qk)~(——N—2—l 0( 1.;)
k=1

Thus by the inequality of Chebyshev (see [9]) we obtain for £ >0

2.17) P(l6 (M) — M (6 ()| > ¢) = 0 (zvl‘d)

Thus the series

(2.18) ZP |20 () — M (L (Ny)] > &)
is convergent if N; = [{*/°] for any &> 0 and thus by the Lemma of Borel-
Cantelli and by (2.18) we have with probability 1

r —i

lim £ (N)=—— (r=20,1,..).

J>+ oo

(2.19)

Since evidently for N; < N < Ny,

Cr (.N) Cr (N7+1) j‘“

(2.20) & (N )
7+1

Yis1 _ 1 it follows from (2.19) that with probability 1

and clearly lim

J—>+c0 i
T ,—A
(2.21) lim £,(N) =~ (r=0,1,..).
N>+oo H

Thus Theorem 2 is proved. The Corollary is an evident consequence
of the agsertion of Theorem 2 for » = 0, since the sequence of those num-
bers n which have at least one representation in the form = = v+ m
is the complementary set of the sequence S,.

Clearly if p, = a[Vn and g, = b[Vn With a > 0, b > 0 then

(ﬂb)”“””o(m)

Zpk%z = ame wa
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and finally

n—1 n—
D =0, 2 n'h);
k=1 =1

thus the conditions of Theorem 2 are fulfilled with A = abr and 6 = §.

§3. A square and a random integer. In this section we consider
the sums %2 u; where {4} is a random sequence generated by the se-
quence of probabilities {g,}. For the sake of simplicity we restrict our-
selves to the special case g, = o/l/;; (¢ > 0), though our result could be
proved also under more general suppositions.

TEEOREM 3. If P(n, = 1) = ¢, = o/l/n with ¢ > 0 and f(n) denotes
the number of representations of n in the form n = k*+ w, then, if we denote
by 8, the sequénce of integers n for which f(n) = r, 8, has with probability 1
the density A"e*[r! where A = ex[2 (r=10,1,...).

Proof. The proof follows the same pattern as that of Theorem 2

Let &(n) be equal to 1 if f(n) = r and 0 otherwise. Then we have

[
(8.1)  M(ep(m)) ~2 e — wmll ,)(1— Vn—«y‘z)’

where the summation is extended over all r-tuples of different integers

jiy Jay ooy Jp With j < n. Now clearly if n = N24+h(h =1,2,..., 2N 41),
then
(3.2) Z f +o (i_)
Vn—j2 l/l x? 1/7—?, ’
1<2<n
therefore

ol
(3.3)  M(e(n) = P Vh Wn

”?xpw—w c

2 7}7+0(%))|’

7!

2 -r:c[or —~Tie/2 (1+0(E‘/—%)).

and thus

(3.4) = Z’ M (e () =

Now let us find for » < m the mean value of ¢.(n)s (m). Let Hy denote
the set of integers N—1,N—4,...,N—k?,..., N—[VN]. Then the
intersection of the sets H, and H,, which we denote by H,H,,, does not
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contain more than d(m—n) elements, where d(X) denotes the number
of divisors of . As a matter of fact, each leH, H,, is of the form [ = n—j*
= m—h?, i. e. corresponds to a repregentation of m—n in the form m—n
= hm—j2 = (h—§)(h+7). Now every decomposition of m—n into the
product of two of its divisors of the same parity m—n = d, d, corresponds
to exactly one number leH,Hy, namely to ! =n—j> =m—h? with
b= (dy+dg)/2, | = (d,—d5)[2, and thus our asserion is proved.

Now let A, denote the event that &=0 for all leHyy,. Then we have

¢
(35 Pl = | [ =) = (1-==)
LeHpm T (dy +d3) 2, dy dp=m—n Vm—h
We distinguish two cases. Let B denote the class of integers N for which

N is contained in an interval §— l/s, 82+l/s (s =2,8,...). If N is not

in E, we have by (3.5)

1
(3.6) P(Apm) = 1— 0( dm—n) ”))—1 0( l,u)
Vm

it m > my, in view of d(N) = O(N") for every &> 0 (see [13], p- 260).
EBvidently under the condition A4, the random variables s,.(n) and
¢.(m) are independent; thus if m is not in E, we have

M(e,.(m)lA,Lm) = (sr m))+0( 1/13)7

1
M (e (n)| Apm) = (ar(n))+0( 1,13)
and

1
JI (E, (m) & (n) ) =M (5r (m) Er(”)lAmm)+ 0 ( 1(13)

1
= M(s,(m))M(e,( ))’1"0( 1/13)

It follows that

N N
3.7 D [M {er(m) er () — I (e, (m) M (e ()]
n=1 m=1

=0(N2‘1“"‘)+0(N > 1).

mel,m<N
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Since

(3.8) > 1= 05",
meB,m<N

it follows that

N N
(3.9) D 3 [ (e (n) ep (m)) — M (s, (1)) M (e (m)] = O(N*).

N=1 Mm=1

Thus putting

N
1
(3.10) L) == 2 &0(n)
we have
(3.11) M(L(W) = m,—z +0(41_)
r! l/N
and
) 1
(3.12) D2(g,(N)) = O(N—m?)-

By the inequality of Chebyshev we obtain for any &> 0

(3.13) ?(lean_* S
r >e)l =0 RN
Thus the series
i A Zre—i.
(3.14) P( (V1) —
NZ:: A e

is eonvergent.
Since this holds for any e > 0, it follows by the Borel-Cantelli lemma
that with probability 1 :

2.'0_;'

(3.15) lim £, (N4) = (r=20,1,...).
Nes+-o0 r!
Since
14
lim (E) =1,
Nest00 N

it follows, as in the proof of Theorem 2, that with probability 1
3 . re
(3.16) Nl-l’lilwc,.(N) = (r=20,1,...),

which proves Theorem 3.

'
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§ 4. Sum of two terms of the same random sequence. In this sec-
tion we prove

THEOREM 4. Let vy, be o random sequence of positive inlegers gener-
ated by the sequence of probabilities pn such that p,, is decreasing and tends
to 0; further, let
(4.1) im > puPaie = A

N>+ kon )2

and for somé & with 0 < 6 <1
3

(4.2) N =007,
k=1

Let f(n) denote the number of representations of n in the form n = v+
with v, < vy, and denote by S, the sequence of those integers n for which
f(n) = r. Then 8, has with probability 1 the density et for r =0,1,...
Bspecially the set of those intégers m which have at least one representation
in the form n = vy-+ with k <1 has the density 1—e

The proof of Theorem 4 follows exactly the same pattern as that
of Theorem 2 and thus may be left to the reader. Clearly if p, = alVn
with @ > 0 then the conditions of Theorem 4 are fulfilled with 4 = wa?[2

and 8 = 3}, since

S [ o) = vl
k<nj2 R 0 1/.’1;‘(1—-10) ]/; 2 1/;1_ !
further

D = 0(Vn).

k<ni2

Tiet us mention that if we define f*(n) as the number of all represen-
tations of n in the form n = v+ without the restriction v, < v, then
clearly f*(n) = 2f(n) if # is odd and f(n) = 2f(n)+ &np it 1 is even.

Clearly the sequence of those even numbers 2k for which & = 1 has
the density 0, as a matter of fact, if Nny denotes the number of such

integers 2k < 2N, we have .
N
¥
NN = 37 k
N k=1

and thus

M(ny) = 0 ("71—1?)
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This implies

-

D M () < o0

therefore with probability 1

lim 5, =0

Newteo Ny ’
and thus also

lim #, = 0.

N—>00
.Thus it follows from Theorem 4 that if S} denotes the sequence of those
nrlte%ers n for which f*(n) = r, then &}, has with probability 1 tho density
Fe~*r! while §5,,; has the density 0 (r =0, 1,...).

§ 5. On random sequences for which f(n) - 4-oo. Let us choose
a sequence {p,} of probabilities so that putting

(3.1) Ay(n) = D> mipucs
k<n(2

and

(5.2) A0 = Y ool

k<n/2

we shall have

(5.3) lm (d,(n)—d4,(n)) = +oo.

N 0O

Let v, denote the random sequence of integers generated by the
sequence p,, in the sense of § 1. In that case the number of representations
of n in the form n = v, with k<1 is in the limit for n»—+ oo normally
distributed. This is expressed by the following

THEOREM 5. Let {p,} be o sequence of probabilities such that if A,(n)
and A,(n) are defined by (5.1) and (5.2) respectively, then we have (5..3).
Then, denoting by f(n) the number of representations of n in the form n = v+
with & <1, we have for —oo < 5 < +o00

( f(n)—4,(n)

(5.4) lim P e
VA, (n)—4,(n)

n—+00

<w) = &(a),

4_uhe¢-e @ (x) denotes the standard form of the normal distribution function,
i. 6.

@

- 1
P(z) = o fe"“zﬁdu.
2

(5.5)
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Proof. f(n) = O &kfn—i, Where the random variables & are inde-
k<nj2

pendent and P(& = 1) = P, Pl =0)=1—p; (k=1,2,...) It
follows that

M(f(n) = Ay(n) and

Since the conditions of the central limit theorem of probability theory
(e. g. Lindeberg’s conditions, see [81) are fulfilled, (5.4) follows imme-
diately.

The conditions of Theorem 5 are clearly fulfilled, o. g. if p, = w(n)Vn
where w(n) - +oo and wmVn <qg <l

A similar result holds for the number of representations of # in the
form n = k2 where {4} is a random sequence of integers generated
by a sequence of probabilities g, sueh that putting 4,(n) = 3 g, . and

kicn

D (f(n)) = A1(n)—Ay(n).

Ay(n) = Y&, we have A,(n) —A,(n) - 4oo; thus for instance if ¢,
K<n

— o(n)Vn with o(n) —~ +oa and o(n)Vn < ¢ <1 In this case if we

denote by 7{n) the number of representations of the number » in the form

n = k24w, (5.4) is valid.

§ 6. Sum of more than two terms of a random sequence. The
regults obtained in the preceding sections ecan be generalized to sums of
more than two terms. As an example we prove the following

THEOREM 6. Let v, be o random sequence of integeérs generated by the
sequence of probabilities p, = ¢ [nl"Y where s 3> 3 is @ positive integer and
¢ > 0. Let f{n) denote the number of representations of the nwmber n in the
form 1 == v 4 Vg T Vg with by < kg < ... < kg. Let 8, denote the se-
quence of those integers n for which f(n) =r. Then 8, has with probability 1

Proof. Let us put g.(n) =1 if f(n) =1 and = 0 otherwise. Now
we have

the density ATe™*[r! where A =

(6.1) ,,Er.{l Doy Py - - P
" kfﬁ;cﬁ-i'.'i—ifi7w
¢ dwy  diy dmss Atg_y
RETTU D Bt DI i = L= L e

T ogay<l (1=1,2,...,81)
Ty 4Tyt F25-1<1

and the integral on the right of (6.1) is equal to I'(1/s)’. Thus putting

(el (1]s))°

(6.2) A=
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we have
Mgt
(6.3) lim M (. (n)) = (r=0,1,...).

N>t 00 r!

The estimation of M (e,('n)e,(m)) can be obtained as before, and Theorem 6
iy proved in the same way as Theorems 2-4.

§ . Ditferences formed from a random sequence. Let {»;} be a ran-
dom sequence generated by the sequence of probabilities {p,}. Let g(n)
denote the number of representations of » in the form n = v, —»;. Clearly

(g(m) = 21’k2’n+k-
=

Two cases are possible: either M{g(n)) is infinite, which is of minor
interest, or it is finite for every n. The latter is the case if for instance

)) = 0. Hence it

is clear that here we cannot hope to obtain similar results to those
we obtained for the sums »,+»,. More reasonable results can be
obtained if we consider only representations n = »,—w for which
9 < (14-B)n where B is a positive constant not depending on n. If gg(n)
denotes the number of such representations of =, we have, putting
e = c[Vk (¢ > 0),

(7.1)

o0
kZI pi < +oo. In that case, however, we have lim M(g(n
== N—r+-00

(7.2)  lm M(gp(n) = ¢
T=>4-00

f dz

g Vo;(1+m)
It can be shown by the same method as that used in proving Theorem 2
that the following theorem holds:

THEOREM 7. Let the random sequence v, be generated by the sequence
of probabilities p,, = ¢ /l/n (e >0);let gg(n) denote the number of represen-
tations of m of the form n = vy—wv; where v, < (L+B)n (B> 0); then the
sequence of those integers m for which gg(n) = r has the density A"e™*[r!,

where ) = czlog(B+1+1/BZ+2B) Bspecially for B = (¢—1)

[2¢ we have
A= e .

§8. On random sequences for which f(n) is bounded. S. Sidon
([7], {12]) considercd such sequences {a;} of positive integers that the
sequence of coefficients of the series ( 3 2°)! is bounded. He called such se-

k=1
quences B;-sequences (I = 2, 3, ...). We shall call a sequence {ax} a By(K)

00
sequence if the coefficients of ( 3'2™) are all < K. The interesting ques-
k=1

icm°®
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tion is how dense a B;(K) sequence can be. It has been shown by Erdos
[3] that there exists a B,(1l) sequence {az} such that a; < ck®, while
Erdos and Turan [11] (for a detailed proof see [13]) have proved that.
for every B,(l) sequence one has ]gr)lsupa,,/k2 = +}oo.

We shall prove in this section that if {»,} is a random sequence gen-
erated by the sequence of probabilities p, = ¢/n'*** (¢ > 0,e> 0)
then with probability 1 », is a B, sequence.

Thus we shall prove the following

THEOREM 8. Let v, be a random sequence of positive integers gemer-
ated by the sequence of probabilities p, = ¢/n**** where ¢ > 0 and 0 < & < }.
Let f(n) denote the number of répresentations of n in the form n = w+n
with k < 1; then with probability 1 f(n) is bounded; moreover with probabi-
lity 1 f(n) < [1[2¢] except perhaps for a finile number of values of n.

Proof. Let &, have the same meaning as in § 1. Then f(n) = 25,,5,, &
and thus, taking into account that
1}2
dz 1
i 2¢ = ———————— = —¢I
e (kgﬂpkp"_k) * | mam e = 5 1O
we have
(€—1)e? e2(é—1)I(s)
o) @ = [ (o ) <o =
k<snj2
for n = n, where
I'(%—a
I(e) = Blh—s 4~ = 7y —5°

Here and in what follows B(e, 8) denotes the beta-function of Euler

T'(a)I'(8)
T(a+p)

We infer, choosing t = log(1+n*), that

(8.2) B(a,p) = fm“-l(l 2 ldr = for a>0,8>0.

P (0]
(8.3) P(f(n) > E+1) < -
Thus if K-+1 > 1/2¢ the series
(8.4) D'P(f(n) > E+1)
n=1

Acta Arithmetica VI. 7
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is convergent. It follows from the Lemma of Borel-Cantelli that with
probability 1 f(n) < K except for a finite number of values of n; we may
choose K = [1/2¢]. Thus Theorem 8 is proved.

Note that trom (1.6) we have », ~ (k/e)*" 2. Thus for any & > 0 there
exist sequences {a;) such that e = O (k**°%) and the number f(n) of repre-
sentations of » in the form n = a;+ a; is bounded. As a matter of fact,
if we choose py, = 1/(k2+) with & = 8/(4+24), almost all realizations of
the corresponding random sequence {».} may be taken for {ar}. Of course
(as is usual if a number-theoretical statement of existence is proved by
probabilistic methoeds) our methods do not give an effective construc-
tion.

By the same method one can prove the existence of B;-sequences
{a;} such that a; = O(K"’) for any 6> 0 (I =3,4,...).

§9. A theorem of the ,iterated logarithm” type.

TamorEM 9. If the random sequence {v} is gemerated by the sequence
of probabilities p, = c/l/ﬁ (¢ > 0) and f(n) denotes the number of solutions
of m =+ (k <), we have with probability 1 :

logl
limeup L0808 _

(0-1) o0 logn

Proof. First we prove that with probability 1
f(n)loglogn <1

9.2 limsu
(9.2) +wp logn

0 it 4R [<1+2 ) o8 ]
Clearly for any &> 0 if n >n, and R = & loglogn

( 3 e2VE(n—K)

P(f(n) 2 B) < X iy Proiy -+ PrgPrieg < e

R
and thus
“logn )__ ( 1 )
(9.3) P(f(n)>(1+2s) ogiogn) = Ol
It follows that the seri ZP(f( ) > (14 26) 2™ ) is conver
n _logn Lver-
ollow§ a e §eriels £ 1oglogn

gent for any & > 0, and thus by the Borel-Cantelli Lemma it follows that
(9.2) holds.
Now we prove that with probability . 1

f(n)loglogn 1

(9.4) Ton

limsup
N—>-+00

icm°®
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To prove (9.4) we need a lower estimate for P(]‘(n) > R); we have by

. logn
(2.7) for R = [(1—25) loglogn] +1 and % = ny(e)
1
(9.5) P(in) > B) > —=,
1
which implies that the series ZP(]‘(n) = (1—2¢) ﬂ-) is diver-
gent. loglogn
1
Now let A, denote the event f(n) = (1—2¢) osn ; the events
loglogn
.. A, (while not independent) are almost pairwise independent in the follow-
ing sense:
N N
2, D P(Aydn)
(9.6) lim 2=tm=t o,
N+t ( P(A.,,))z
n=1

As we have shown in a previous paper [16], this is sufficient for the val-
idity of the Borel-Cantelli lemma and thus (9.6) and (9.5) imply (9.4).
That (9.6) holds can be shown by the same method as that applied in
the proof of Theorem 2 in estimating M (s, (n) e, (m))— M (s.(n)) M (&, (m)).

§ 10. The law of large numbers for f(n). In this section we prove
THEEOREM 10. If the random sequence {v,} is generated by the sequence

of probabilities p, = ¢ /l/a—z_ (¢ > 0) and f(n) denotes the number of solutions
of n = v+ with k <1 then with probability 1

1 N
lim —Z;f(n):l,

N
Nostoo —

(10.1)

where A = ¢ /2.
Proof. Putting

N
1
ty = 2 f(n)

N
21/ﬁ=2;/7b+0(1),
k=1

and in view of

we evidently have

M2y =e2f1]/l;” dw+0(7—11;)-
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1 |
J1z0 '1:”:)““_
va © dm—B)(z’z T2’

where B(a, 8) is Euler's beta function (see (8.3)), it follows that

Since

1
(10.2) M(ty) ~—+o( )
~ VN
On the other hand, we obtain by some easy calculations
10¢®
10.3 D?
(10.3) ) = 57+ 0 (57):

Thus by the inequality of Chebyshev

P(ty—il > ¢) = 0(1_15\7)'

It follows that the series

DIP(lis— Al > ¢)

;=1
is convergent for every ¢ > 0; by the Lemma of Borel-Cantelli this implies
that with probability 1

(10.4) lim {ys = 4.

Nes+00
On the other hand, we have for 4 < B <342

M( f(n)) ~ (B—A)A
N=A+1
and i
B L]
(10.5) oy f(n)) = 0((31/"2{1)2),
H N=d41

Thus we have
d 1
P Max f(n)| > eN?) =0 (—)
(N3<M<(N+1)3 N3Z+:1 ‘ ) Nz
and therefore for any & > 0

ZP( Max |

N=1 N<M<N+1)»® N3

(10.6) f(n)] > 8 < oo

icm
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(10.4) and (10.6) imply that with probability 1

lim {y = 4.

(10.7)
Nos+-00

Thus our Theorem is proved.
To obtain the limiting disribution of {2]"(% )—AN)/N** the higher

moments have to be caleculated. We do not mvestlga.te this question
here.

§ 11. Stochastic analogons of Romanoff’s theorem. N. P. Romanoif
proves [5] that if p denotes primes and ¢ > 1 an mteger, then the set of
integers # which can be represented in the form n = ¢ Fip(k=1,2,...)
has positive density. Erdos [14] has shown that it Qo) is a polynomlal
then the sequence of numbers n which can be written in the form
n = Q(a*)+p also has positive density. In this section we shall consider
stochastic analogons of these theorems. First we replace the sequence of
primes by a random sequence {z;} generated by the sequence ‘of proba-
bilities ¢, = bflog(n-+1) (b > 0), in which case by (1.6) we have with
probability 1 p ~ bllogl, i. é. for b = 1 the sequence y; has the same order
of magnitude as the I-th prime number.

‘We prove the following

TaroREM 11. Let the random sequence {u} be generated by the sequence
of probabilities ¢, = bflog(n-+1). If f(n) denotes the number of. represenia-
tions of m in the form n = ax+ py, where @ <@y <... <@ <... i8 a given

sequence of integers such that Lim VEW &° exists, and 0 < a < + oo,

Bt
and 8, is the sequence of those numbers n for which f(n) =7 (r =0,1,...),
then S, has with probability 1 the density (ab) e™®/r!.

Proof. The proof of Theorem 11 is analogous to that of Theorem 2.
Puiting & (n) =1 or 0 according to whether f(n) = or f(n) == r, and
taking into account that if »’ is defined by a,, <n < @n 11 then by suppo-
gition n’[logn — a, we obtain

b

= e Ty +o(1).

=~ log(fzj—ak+1)

It follows that

N_)er 2 M (s, ('n

n=1

a.b" —ab
G S T

Taking into account that the number of quadruples (n, m, ay, a;) with
n<m< N and a, < a; <N such that n—a; = m—ay is ewdently of
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order Nlog?N, we obtain

N
o L . [log*N
D("ﬁz“(”’)_o( )

M==]

and the proof can be completed as that of Theorem 3.

Another possible stochastic analogon of Romanoff’s theorem could
be obtained by considering the sums 7 = »,-+p where v, is a random
sequence generated by the probabilities p, = ¢/n (¢ > 0) (which implies

ko
aceording to (1.7) lim ¥y = ¢'°) and p is a prime. In that case, denoting
k—+o0

by f(n) the number of representations of # in the form n = y,+p, we
have
1
H(fm) = ¥ ——,
p<n W/““p

where the summation is extended over all primes p < n; this sum is very
sensitive to the irregularities of the distribution of primes and thus this
problem requires careful separate consideration. If, however, we replace
the sequence of primes by a sequence {u} of similar growth but more
regular behaviour, then these difficulties disappear.

We consider the case where both sequences are random in the follow-
ing section.

§ 12. The sum of a dense and a rare sequence. In this section we
shall prove a general theorem, which is of the same type as Theorem 2
and which covers some cases in which condition (2.5) is not satisfied.
This theorem runs as follows.

THEOREM 12. Let {} and {} be indépendent random sequences of
integers, generatéd by the sequence of probabilities {p,} and {q,}, where the
sequence g, 18 decreasing. Let us put

(12.1) Pi)=Yp and Qi) = g

k=1 Iom=l
and suppose that P(n) — +oo, Q(n) — 400 for m — oo and that for
any p > 0 we have
. Q(np)
(12.2) lim =
nstoo @ (1)

Further, let us put

n—1
(12.3) To= D Didni

k=1
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and .

(12.4) R(n) = gwk.
Suppose that .

(12.5) WETWE% =i>0.

Let f(n) denote the number of solutions of n = v+ m; then the sequence S,
of numbers m for which f(n) = r has with probability 1 the density et fr!
(r=20,1,2,...).

Remark. Clearly it follows from (12.2) that condition (2.5) is not
fulfilled. Thus Theorem 12 can be applied in cases where Theorem 2 is
not applicable.

Proof of Theorem 12. For the proof we shall need some results
of a Tauberian kind.

LEMMA 1. Let dy be a sequence of positive numbers, a > 0. Pui

(12.6) Dy) = D d
k<y
and
(12.7) (@) = D) dya*.
k=1

If the series (12.7) is comvergent for || <1 and for every p >0 we have

a(a®) 1
(12.8) Jim o =
then we have
. (@)
(12:9) S Daoga™
and thus R
(12.10) VEI:O% =p%

Conversely if (12.10) holds then (12.7) is convergent for ol <1 and. (12.9)
and thus (12.8) s valid. In other words, (12.8) and (12.10) are equivalent.

Remark. The first assertion of Lemma 1 is due to J. Karamata
[17], the second to N.G. de Bruijn and P. Erdos [18].
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Lemma 2. Let {pi} ond {gi} be two sequences of positive numbers,
and put

n—1
T 22 pkbn——k'

(12.11)
k=1
Put
(12.12) P(n) = Zp,“ Q(n) = 2 g, R(n)= Z‘I‘k.
= = : k=1

Suppose that for every p > 0 we have
R
Qy) _ . and  lim @y _

1213 1i
s e o BY)
where 0 < a < p. Then we have
- . P(n)Q(n) I'(1+y)

2.14 1 - .
(12:14) oo B (n) Tt It y—a)

Remark. Lemma 2 is due to N. G. de Bruijn and P. Erdos [18].
Now we are in a position to prove Theorem 12. Let us put

(12.18) p(z) = Zpkw", g(x) = qum’“ and  7r{z) = Zrkmk.
=1 = =t

Applying Lemma 1 (with a = 1) we obtain with respect to (12.2) and (12.5)

a® 1
(12.16) im 49 1 a tim -
z1-0 (%) » w1~ 7(%) V4
Since by (12.3) we clearly have
(12.17)

it follows that

r@) 1

p(@)g(@) = r(®),

p”®)
2—1-0 P(@)

(12.18)

Applying again Lemma 1 (with a = 0) we obtain

P(pn)

12.19
(12.18) o D)

=1 for any p > 0.

Thus we can apply Lemma. 2 with ¥ =1 and a = 0 and obtain

(12.20) 1 2020

A—>+o00 n

=

icm
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¢

Denoting by E(N) the number of values of % for which v, < N we have,
by (1.5), with probability 1

B(N)

12.21 lim ——— =
i o P

Let {a;} be a fixed realization of the sequence {»,} for which (12.21) holds.

Put
(12.22) = Dt
ap<n
and
N
(12.23) T(N) = Dt
n=1
Then we evidently have
(12.24) T(N) = 2 QN —ay).
ap<N

On the other hand, if ¢, =1, if n = ay and 6, =0 if @y <n< @1y
we have
a-1

(12.25) =D duree.

Let us put o

(12.26) e(z) = 2” o 7"

and =

(12.27) (@) = i‘t,,w".
k=1

By virtue of (12.21) and (12.19) we may apply Lemma 1 with o =0
for the sequence ¢,; we obtain

(12.28) o) _
S z1-0 €(®)

Since by (12.27) we have

(12.29) t(w) = q(@)e(2),

it follows from (12.28) and the first relation of (12.16) that

a?)

1
12.30 —
(12.30) S @) P
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Applying again (in the opposite direction) Lemma 1 with a = 1 for the
sequence t,, we find that for » >0

(12.31) fim L8N _
N>+t -T(N)
Applying again Lemma 2, by (12.31) we have
P .
(12.32) lim M =1,

—>+00 T(n)
and thus with respect to (12.21) we obtain

_ PmQum)

and finally with respect to (12.20)
. T(n
(12.34) tim 28 .

n—;:koo n

Now, since g, is decreasing, we clearly have

(12.35) QEn)—Qn) = > a4 < gy
n<k<2n

and thus

o R . Q(2n)—Q(n)

12.36 liminf > lim ————— = 1.

(12:36) e Q) © e Q)

On the other hand, we have by (12.25)

(12.37) tn > ¢uB(n)

and thus by (12.20), (12.21) and (12.36)

(12.38) liminf ¢, > 4.

T—r--00

Thus the sequence f,, which according to (12.34) is (C, 1)-summable
to the limit 4, is such that its inferior limit is not less than i. This clearly
implies
(12.39) liminf ¢, = 4.
N 4+ 00
© Now we need the following (well-known)
LemMa 3. If o sequence t, is (C, 1)-summable to the limit A and liminf ¢,

N—r4+00
= A, then for any bounded function g(x) which is continuous for ¥ = i the

sequence ¢(t,) is (C,1)-summable to the limit g(A).
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Proof. The proof of Lemma 3 is very simple; as a matter of fact,
our suppositions imply that for any ¢ > 0 the sequence of those values
of » for which %, > A4-e has the density 0, whence — in view of the sup-
positions concerning g(#) — the assertion of Lemma 3 immediately
follows.

We can apply Lemma 3 to our sequence ?, in view of (12.34) and
(12.39) and for the continuous and bounded functions g¢.(#) = 2"e™%[r!
(r=20,1,...), and find that

1 N\ the et
(12.40) lim —Z = (r=0,1,..).

Let us now define the random variables &.(n) as follows: g, (n) = 1 if
n has exactly » representations of the form n = a;+ y;; otherwise we pub
g(n) = 0. It follows that

(1241) Mle) = 3 toalnay -tz ][] (O—tra)
Y <ip<..<ip - k¢"lzki;" .
11,125 00nslp

Thus we find by (12.40) that

N
1 et
12.42 lim — M = r=0,1,...).
(242 e Y Hle() = S =01,
Let us now consider the random variable
1 N
2.4 =-— ).
(12.43) L) = n_ge,(n)
It follows by (12.42) that
lre—l
(12.44) lim M (5 (V) = —; (r=0,1,...).
Nos+oo r:

Let us now consider the variance of [.(N).
‘We evidently have

N N
(12.45) D(E,(N) = 7% (ZZ[M(S,(n) e,(m))*lil(s,.(n))M(s,(m))]).

n=1 m=1

Clearly e,(n), &(m) are independent if #—m cannot be represented
in the form n—m = a —ay, because in that case n—ay, and m-—ay,
cannot be equal and thus a pair of representations n = ay -+ and
m = @, With the same y; is impossible. For a fixed pair (k,, k,) the
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humber of pairs (%,m) for which » SN, m <N and n—m = a,— e,
cannot exceed ¥, and the number of pairs (k,, k,) with a, < N, a, < N
does not exceed CP2(N) where ¢ > 0. In view of :

IM(E»-('”') 6‘,(%))—M(e,(n))ﬁ[(e,(m))‘ <1
it follows that

(12.46) PZJ(VN) )

D (L, () = 0(
Clearly for any ¢ > 0 we have by (12.19)

P(2n)
P(n)

This implies that for any 4 > 0
(12.48) P(N) = O(N?).
Thus we obtain from (12.46) and (12.48)

1
i

(12.47)

<14¢  for n = nyle).

(12.49) D (M) = o( ) for any ¢ > 0.

qu, exactly as in proving Theorem 2, we conclude that with proba-
bility 1 we have

r —1
lim g,(N) = 25

N—s+400 7!

(12.50)

Tpus the sequence 8, of those integers which have exactly r repre-
iﬁnta.tlons of the form # = ax+p; where {a;} is a fixed realization of
1;]1: I;]Z];ds;):;rl T;?—lfﬁ? {%4}, for which (12.21) holds, has with probability 1

Since almost every realization {a;) of the random sequ
;a,tisﬁes (1t21.21), it follows that the sequel}lce 8, of those integgrsezc:vh{i’;k}i

ave exactly r representations of th = i
bility 1 the densigy Ferrl. o the Tomm % =ty Bas widh probar

To show that this last — intuitively elear — step is really admissible
let us consider the following realization of the probabilistic set-up. Let{,
the probability space be the unit square of the (x, y) plane, and let the
probability measure P be the ordinary Lebesgue plane mea,sure. A ran-
dom variable is then nothing else than a measurable function L(@,y)
of the two variables # and ¥ (0 <2 <1,0 <y <1). Let us constr:llct
the random variables &, so that they depend only on @, i.e. Ey(w,y) =
én(¢) and the random variables 7, so that they depend only onn g; ie
i@, ¥) = 7,:(y); suppose that the &,(x) are independent (with re’sp;)ct;

icm°®
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to the Lebesgue measure in the interval 0 <& <(1) and, further, that
the 7,(y) are also independent (with respect to the Lebesgue measure
in the interval 0 <y < 1)); suppose that they have the prescribed distri-
butions, i. e. &,(z) = 1 on a set of measure p, and 0 elsewhere and, further,
7a(y) =1 on a set of measure g, and O elsewhere. Then for each point
(¢, y) of the square 0 <» <1, 0 <y <1 the sequences v and gy are
well-defined (numerical) sequences of positive integers and thus the se-
quence S, = 8,(#,y) is also uniquely defined for all points (#,y). Now
let E, denote the set of those points (v, ) for which the sequence S, has
the density A"¢~*/r! and let E, be the complementary set. According to
Theorem 11 the intersection of E, with the line # = &, (0 <, < 1) has
for almost all @, the (linear) measure 0; thus by Fubini’s theorem E, has
itself the plane measure 0, which was to be proved.

Thus Theorem 12 is proved.

Remark. If p, = a/n (a > 0)aud g, =>dflog{n+1) (b >0), then
all conditions of Theorem 12 are satisfied (with A = ab) and thus the
conclugion of Theorem 12 is valid. Note that in that case, according to

k,—
(1.7), we have with probability 1 lim Vv, = %, and denoting by II(N)
kst

the number of terms of the sequence y; not exceeding N we have by (1.5)
with probability 1 IT(N) ~bN [log N. Thus this special case of Theorem 12
furnighes another stochastic analogon of Romanoff’s theorem.

It would be possible to prove a more general theorem, which in-
cludes both Theorem 2 and Theorem. 12, but to obtain the most general
theorem one has to solve some difficulties of Tauberian type.
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ACTA ARITHMETICA
VI (1960)

A sum involving the function of Mébius
by

D. H. LeaMer and 8. SELBERG (Berkeley, Cal., and Trondheim, Norway)

Let u(n) be the Mobius function. The sum

= D um)mn

n<x
may itself be summed to give

G(z) = Dg(n)
n<T

In this note we show that G(r)—2 changes sign infinitely often.
Some numerical caleculations of the first 56 sign changes are described.
These show that these ‘“zeros” of G (#)—2 are remarkably close to being
in geometric progression with two exceptions. An heuristic explanation
of this phenomenon is given.

It is equally easy to show that for any real K, the function G(z)—
changes sign infinitely often. For this purpose we may treat G(z) as a con-
tinuous, piecewise linear, function defined for » <z < n+1 by

1) G(x) = G(n)+(w—n)g(n+1).

Let s = o4 it and suppose there is a u, such that ¢(u)— K is of fixed
sign for all u > u,. For ¢ > 1 we may write .

f"" us)HK f’ at_x K, +f G(MBHK
P i

G 1
&t 2 1)

w

It
~—g

where f(s) is regular for o >

FGu)—K
U
Uy

0. Using (1) we have, with ¢ > 1,

©+L Zg(%) ;

841 °

=1 [
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