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Note that in (4.1) the modulus is m" while in (4.2) it is only m™. Ag
remarked at the end of § 3, the hypothesis (3.13) implies in particular

U = 0 (modm'),

but the converse is apparently not true.
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On the average number of direct factors
of a finite abelian group
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E. ComEN (Knoxville, Tenn.)

1. Introduction. For positive integers n, let 7(n) denote the number
of divisors of »n, and let {(n) denote the number of decompositions of =
into two relatively prime factors. In this paper we prove analogues for
the finite abelian groups of the classical results of Dirichlet and Mertens
on the average order of z(n) and #(n). We recall Dirichlet’s formula [4],
with 2z > 2,

(L.1) D(z) = Y)v(n) = z(loge+2y—1)+0(Va),

n<z

y denoting Euler’s constant, and Mertens’s estimate [8],

(1.2)  D*(@) = D) i(n) = as(loga+2y—1)+2b2+ 0 (Valoga),

T

where a = 7(2), b =9'(2), n(s) =1/t(s), {(s) denoting the Riemann
zeta-function, s > 1. For proofs and discussions of (1.1) and (1.2) we
mention [1], §§ 13.2, 13.5, 13.9, [3], p. 282-283, 289, [7], p. 665-666.

The functions z(n) and #(n) can be generalized from the (multipli-
cative) semigroup J* of the integers n to the semigroup X of the finite
abelian groups with respect to the direct product. A general discussion
of functions defined in X appears in [2]. For groups @, H contained in X,
denote by (G, H) the group of maximal order in X which is simultaneously
a direct factor of @ and H. Denoting by E, the identity of X, we say that
@ and H are relatively prime if (G, H) = E,. A direct factor D of G will
be called unitary if DXE =@, (D, E) = E,.

For groups G in X, let v(Q) denote the number of direct factors of &
in X, or equivalently, the total number of decompositions, ¢ = DX E,
in X. Analogously, let ¢(G) denote the number of unitary factors of &
in X, that is, the total number of direct decompositions of & into two rela-
tively prime factors of X. In view of the isomorphism [2] of J* with the
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sub-semigroup J of the completely reducible groups of X, i.t follows that
the functions (@) and t(G) reduce to z(n) and ¢(n), respectively, when ¢

is restricted to J. . . .
The level function l(n) of a function f(G) over X is defined by

yn) = D f(@&),
o(@)=n

where the summation is over all @ in X of order ¢(&) = n; the summatory
function of f(@) is defined by

Byw) = N @) =Y bin).

o(Gy<w n<L
In this paper we obtain estimates analogous to (1.1) and (l.fZ) for the
summatory functions T'(x) and T*(2) of 7(G) and £(@&), respectw_ely. The
remainder of this section is devoted to an account of the results of the
paper and the methods of proof. . . .

It is recalled that Dirichlet’s proof of (1.1) is based on an ingenious
though natural transformation of D(s), while _Merter'ls’s ?roof of (}.2)
is derived from Dirichlet’s result by means of a simple 1c'1ent1ty expressing
¢(n) in terms of v(n). Using an analogous approach in §3, we :obtaJm
elementary estimates for T(x) and T*(#) (Theorems 3.1 ?Jnd 3.2). An
important tool in this approach is the Erdos-Szekeres estimate [.5] for
the number A(z) of abelian groups of order <z (see Lemma 2.())..

While the proofs of § 3 are quite short, the remainder terms obtagled
are relatively crude in comparison to those of (1.1) and (1.2). The two final
sections (§§ 4, 5) are devoted to a more penetrating treatment of I'(x)
and T*(x), the specific goal being to reduce significantly the error terms
of §2 without resorting to non-elementary mfthods. In accord with
this aim, the remainder terms for 7'(z) and 1" (x) are decreased from

0(c**) to O(Vzlogizm) in the case of T(x), (Theorem 5.1) and to
O0(Vzlogz) in the case of T*(z) (Theorem 4.1). The .p'rincipal .deviees
employed are generating functions defined by (real) Dirichlet series and
the classical estimate (1.1) for D(®). ‘ N

Oddly enough, the roles performed by 7(@) and ¢(G) in the Dirichlet-
Mertens procedure followed in § 3, are reversed in the more 1;‘horough
treatment of §§4 and 5. More precisely, T*(x) is investigated mdepen-
dently, while the evaluation of T'(x) is made to depend upon that obtaule:d
for T*(x) (cf. Remark 5.1). The reverse procedure is applicable, but is
less effective, yielding an error term of O(l@log“w) in the estima;t?e for
T*(x). Moreover, a self-contained treatment of 7(z) leads to an estlmz.hte
no better than the one obtained in §5; consequently, the alternative
procedure will not be developed in this paper.
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A second item merits a brief reference. In his study of D*(z), Mertens
found it convenient to replace ¢(n) by an equivalent function »(n), defined
to be the number of square-free divisors of #. For the sake of historical
analogy, & similar device is employed in § 3. Such an artifice is not, how-
ever, essential to the paper, and is in fact abandoned in the independent
discussion of § 4.

An unexpected by-product of the paper is a simple evaluation of the
abelian analogue of the Euler constant (Corollary 5.1, cf. (2.7)). This
result arises on comparing the estimate for T () obtained in § 3 with that
obtained in §5.

A number of the details of the Paper are absorbed in the prelimi-
nary lemmas of § 2. Some of these results were proved in [2]; others
are well known and a few are new. Finally, as in [2], we make consi-
stent use of the Basis Theorem for finite abelian groups ([10], IIT, § 4).

Remark 1.1. In this paper z wil usually be agsumed > 2. All

asymptotic results are valid for 1 <z < 2 with the O-term replaced by 0 (1). .

2. Lemmas. We first review some terminology and notation intro-
duced in [2]. A direct product, X ...X G to &k factors, will be denoted G*
and called a k-th power group. If & possesses no square direct; factor other
than Hy, that is, if its indecomposable factors are distinet, then G will
be termed separable (or square-free). The funection I(Q) is defined to be
1 for all @&; the level function of I(G) is denoted a(n) and its summatory
function A4 (z). We define () to be 1 or 0 according ag G is or is not
separable, and ¢’ (G) to be 1 or 0 according as @ is or is not a square. The
level function of y(@) is denoted ¢(n) and its summatory function Q(z).
The inversion function u(§) of X is defined, for separable groups @, to
be (—1)" if G possesses exactly r indecomposable direct factors; other-
wise u(G) is defined to be 0. The level function of #(@) is denoted »(n),
while the level functions of 7(@) and 1(@) are designated v;(n) and t,(n)
respectively.

If ¢ is a non-negative integer, then g.(n) will denote the number of
abelian groups in X of order » whose indecomposable factors @; are of
order pi*, p; prime, 7; odd and >t = 2+ 1, for all 5. For pasitive inte-
gers k, ag(n) is used to denote the number of groups in X whose inde-
compogable direct factors G; are of order pf, p, prime, r; >k for all 4.
It is noted that a(n) = a,(n) is the total number of abelian groups of
order 7.

If f(G) and ¢g(@) are two (complex-valued) functions defined in X,
then the direct convolution of (&) and ¢(@) is a function k(@) defined by

@1) 2> f(D)yg(E),

DxE=G
Acta Arithmetica VI 11
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where the summation is over all D, B in X such that D x B = G. Symboli-
cally, (2.1) will be written s =f-g. Let B denote the binary system
of functions defined in X with products determined by (2.1) and sums
by ordinary function addition.
TEvyMA 2.1 ([2], Theorem 2.1). The system R is o commutative ring
with identity element, £(G) =1 or 0 according as G =B, or G # E,.
LemMA 2.2 ([2], Lemma 3.1). If k& =1, then

Zn []c(m, s> 1/k,

n=1
where the series and product are absolutely convergent for ¢ > 1 k.
Lemwma 2.3 ([2], Lemma 3.2). For s > 1,

0= [Jeo 359~ [T

The second relation in (2.3) arises from the relation,
LemMmA 2.4 ([2], Theorem 2.5).
u(@

2 5@

GeX n=1

ag(n)

Zy(s)

(2.2)

(2.3) 7 Z(s

)

(2.4)

which is itself a consequence of
Levmma 2.5 ([2], Theorem 2.2).

(2.5) u(D) = e(@).

DxE;G
The latter result states that x(G) and I(@) are multiplicative inverses
in the ring R.

LEMMA 2.6 =1, then

([2], Lemma 3.3, also cf. [5], [6]). If z =

(2.6) A(@) = ax+0(VE), a=2Zy(1).

Lemmas 2.2 and 2.6 are due to Erdos and Szekeres.
LeMMA 2.7 ([2], (2.12)). The function »(n) is bounded.
LeMMA 2.8 ([2], Theorem 5.2). There ewists a constant y*

P

e(H<z

such that

a(n)

(2.7 = alogm+y*+0(1/—1_a;), z>1.

icm
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The constant y*, which is the analogue in X of the Euler-Mascheroni
constant is evaluated in § 5. Corresponding to (2.2) we have ([2], Lemma
6.2),

LeMmA 2.9. For ¢ and © as defined above,

no= 38t

n=1

2.(n)

(2.8) n L@+ 1)s), 8> 1/,

the series and product being (absolutely) convergent for all s > 1/t
In case ¢ = 0 we have
LeMMA 2.10 ([2], Lemma 6.1, (6.3)).

—am, Feo= L

n=1

(2.9)

gm) = [ [ elei+a),
j=0
for all s > 1.

Define u,(&) to be u(H) if ¢ = H* is a square and 0 otherwise.
LeMMA 2.11 ([2], Lemma 4.2, k = 2).

(2.10) D wa(D) =@,
DxE=G
(2.11) D m(D)y(B) = 2(@).

DxE=Q

Remark 2.1. The level function of u,(@) is the funetion »,(n) defined
to be »(m) if n = m? is a square, 0 otherwise.

Recalling the notation of § 1 for level functions, we prove now

LemvA 2.12. If the relation (2.1) holds for functions (@), g(@), h(G),

D),

de=n

then

(2.12) (e) = ly(n).

Proof. We sum both sides of (2.1) over all GeX of order n. The
result obtained from the left member is clearly I(n). On the right one

obtains
f(D)g(EB) = f(DYg(B) = (D EB),

from which (2.12) follows.
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LEMMA 2.13.
O(d)l_s) 'Lf s <1,
a(n) .
=3 0(logx %, s=1
(2.13) Z 5 (logz)  if ,
e 0(1) if s>1.

Proof. Since a(n) > 0, one obtains by (2.6) and partial summation,

S A
I R R

< n n<e (n+ 1)8 ([$]+ 1)3
1 1 s
-0 A o k) = o 3 H) 0w
nez n<®

and (2.13) easily follows. _

The following additional estimate results on comparing sums to
integrals.

Levma 2.14. If s > 1, then

logn logx
(2.14) 2 e =0(ms_1)-

n>r

In the next two lemmas, the term, summatory function, has the
gignificance of ordinary number theory.

LEMMA 2.15 (cf. [9], Satz 2). Let f(n), g(n) denote arithmetical functions
and G(z) the summatory function of g(w); then

= - R Rn) = 3 f(d)gle).
H(w)—éh(%) nzg'cf(%)G(w/n), where  h(n) a{:nf( )g

LemmA 2.16 (cf. [3], p.317-318). In the notation of the preceding
lemma, with F () representing the summatory function of f(n),

H@) = Y fmGam+ Y gm)P@m—FVa)GVo).
n<yz n<VE

Finally, we obtain a representation for the level function of (&)
in terms of a(n).

LemMMa 2.17.

(2.15) nm) = Y a(dale).
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Proof. By definition

(2.16) (@) = 1= Y 1(D)I®),

DxE=G DxE=G
and (2.16) results by Lemma 2.12.

3. Initial estimates for T'(z) and T*(x). Corresponding to Dirichlet’s
formula (1.1), we now prove

THEOREM 3.1. If a and y* are defined as in §2, then for z > 1,

-

(3.1) T(x) = ax(aloge+2y*— a)+ O (2.

Proof. We apply Lemma 2.16 to (2.15), with f(n) = g(n) = a(n),
h(n) = 7,(n), to obtain

(3.2) T(x) =2 ) a(n)A(zjn)—A4*(Vz) = 2R, —R,.
ngyVz

Application of (2.6) yields

a(n) - a(n)
B Do Lol 32
n<yz n<yz
which becomes, on the basis of Lemma 2.8 and Lemma 2.13 (s = 1/2),
with x replaced by ]/m,

(3.3) R, = idzlogz -+ ay*w- O (o).
Also, by (2.6),

(3.4) R, = (a4 0(a")* = c*o+ 0(2*).

The Theorem results on combining (3.2), (3.3), and (3.4).

We denote by r(G) the number of separable direct factors of @ and
let 7,(n) and R*(x) denote the level and summatory functions, respectiv-
ely, of r(@).

LeMMA 3.1. For all G in X, (@) = t(G).

Proof. Corresponding to each separable direct factor D % B, of &,
there is determined & unique unitary factor D’ of @, such that D is the
product of the distinet indecomposable factors of D'. Sinee E, is both
separable and unitary, there is & one-to-one correspondence between the
unitary and separable factors in X of @. This proves the Lemma.

LeMMA 3.2.

(3.5) 1@ = D wmD(B), nn)= Y n@mnle).

DxB=@ de=n
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Proof. By definition
r@ = Y r(D)= D (DB
DxE DxE

in the abbreviated notation of § 2, this may be written, by (2.10) and
(2.16), r = y-I = (u- I)- I = pg (I-1) = pg'7, using the fact that the
convolution is associative (Lemma 2.1). This proves the first formula
of (3.5). The second follows from the first by Lemma 2.12.

THEOREM 3.2.
(3.6) T*(z) = ad® (aloga+ 2y* — o)+ 20" fra+ 0 (2*),
where of = Y (2), 5= Y'(2), Y (s) = 1/Z(s)

Proof. By (3.5), Lemma 3.1, and Lemma 2.15,

= N Tn) = D »(m)T(@/n’).
n<e

n<Van

(3.7) T* () = R* (2

Application of (3.1) to (3.7) yields, with ¢ = 2y*—a, since »(n) is bounded
(Lemma 2.7),

Y »(n) -~ v(n)logn 1

ngvz n<ve n<vVe

which will be denoted, for convenience,
(3.8) T*(#) = az(aloga+ c)S,—2a* 28, + O(«*).

As for §,, we have, by Lemma 2.7,

go that by (2.4),
(3.9) 8, = a*+0(1Vx).
Again by Lemma 2.7,

n)logn Oy #{n)logn logn
szzzv( L _=Z__—-nz —+0(Z - —),

n<va f=l n>Va

and hence by (2.4) and (2.14),
(3.10) : = —p +0(

e

Thus the Theorem is a consequence of (3.8), (3.9), and (3.10).
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Historical remark. The formula (3.2) is the analogue in X of
Dirichlet’s transformation ([3], Chap. 10, (11)), while (3.5) is the abelian
analogue of the Mertens identity ([3], p. 289).

4. Refined estimate for T%(z). We give a new proof of Lemma 3.2
in terms of ¢(&).

LevMva 4.1,
(4.) O = Y w(D)T(B), H(n) = 3 rn(d)7 ().
DxE=G dé=n

Proof. By (2.5), the definition of £(@), and the Basis Theorem,

@ = 3 1= D emm)= > 3 um
:g DXE=6¢ DxE=G HxH~(D,E)
= pHEHY= > w@E@ Y 1
Dx%;a Hx%‘:g Hz><-91=9 D, XELGI
= D pE&),
Bx G =G

which yields the first relation of (4.1). The second follows by Lemma 2.12.
Levmwma 4.2, If s > 1, then

3 Z2
(4.2) f(s) = 2 W (s Hf‘ ((2i—1)s) £ (24s).

n
n=1

Proof. Using * to denote convolution of ordinary arithmetical func-
tions, it follows by (2.15) and (4.1) that i;(n) = v(n)x1,(n) = vy(n)*
*(a(n)m(n)). Thus (4.2) follows by Dirichlet multiplication, on the basis
of (2.3) and (2.4).

The funection f(s) in (4.2) is called the generating function of t(@).

Remark 4.1. The following relation, which will not be used, may
be deduced from (4.2), by virtue of (2.3) and (2.9):

(43) hin) = Y q(@a(s)
ds=n

This relation also follows direetly from Lemma 3.1, by Lemma 2.12, and
could be used, in place of (4.1) as an alternative basis of discussion for
this section.

Next we define

(44) ta(n) = ' as(@) g (9),
ds=n

ta(n) = D ay(d)g:(9),
dé=n
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using the notation of §2. Application of Lemmas 2.2 and 2.9 to (4.4)
gives

LeMMmA 4.3.
(4.5) H(s)= Z t:i’sﬁ - 25(2@'3)52((2-2'—‘—1)8), s> -flg,
n=1 i=1
o meo=)) B _ [] £(@i-Dse), s>,

the series and products being (absolutely) convergent for the indicated values
of s.

We note that (4.5) can be written

_ Z3(s) 1
(4.7 H(s) = 7@ T
LeMMA 4.4,
(4.8) by(n) = T(d)t,(0),
dé=n
(4.9) ta(n) = D' t(0).
d26=n

Proof. By Lemmas 4.2 and 4.3, f(s) = {*(s)H(s) and H(s) =
= [(2s)H,(s) for s > 1. By Dirichlet products, these two analytical
relations yield the arithmetical formulas (4.8) and (4.9), respectively.

LeMMa 4.5.

(4.10) B(a) = Y'ty(n) = 0(Vao).
n<x

Proof. By definition, ¢5(n) is positive; hence, by (4.9),

z'? — 15(0)
2 un = o) = S| 5] - o(va 3450
ngEr dzdgaz i< o<

but the O-sum is bounded, because the series in (4.6) converges for s > 1/3.

We are now in a position to prove our principal result concerning:
H@).
THEOREM 4.1.

(4.11) T*(z) = e,z (loga+ 2y — 1)+ e,w+ 0 (Ve logm),
where ¢, = H(1), ¢, = H'(1), and H(s) is defined by (4.7).
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Proof. By (4.8) and Lemma 2.15, one obtains

(4.12) T*(@) = D 'ty(n) D(@/n).

nLE

Application of (1.1) yields, since &y(n) =0,

s t,(n)logn — ty(n)
T*(m)=(1ogm+2y—1)m2—;i)—w22—7-g~ +0(l/3:2 o ),

NLL n<T n<x

which for brevity is written

(4.13) T*(@) = (loga+ 2y —1)aP,— &P, + O(VzPy).
The case s = 1 in (4.5) gives
ty(n) | 1a(n)
(4.14) P, = %‘T — H)+ g .

By (4.10), since t,(n) > 0, it follows, on partial summation, that

. B(a) B(n) B(z)
Zt—;ﬂ=2n(1;(i)1)_[m}j—1 ZO(DZZ?ZL)JFO( mm)

n>x n>x
1 1 1
~ oY) +olz) = olz)
hence (4.14) leads to
(4.15) P, = e+ 0(1 V).

As for P,, one obtains, by (4.5) with ¢ =1,

ty(n)l
TEUI Ny oL L C I

"
n<z n>r

Again by (4.10) and partial summation, since B(z) = 0,
t,(n)logn logn—mnlog(141/n) ) _B (log([m]—k 1))
Z w ZB(")( n(n+1) @1

n>x n>r

0 (2 B(n)logn) ) (B(m)mlogm)

3
"
n>n

- o2 o (5

n>x
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so that by (2.14) and (4.16),

(4.17)

P, = ~ca+0(10gw)

Vo

By partial summation and (4.10),
(14+1/m)P—
yB + / 12
(n+1)
1‘L<.’E 7l<.l‘

- (ZBﬁ,z))+0(V;))zo(Z%)JrO(l),

n<a nw

B(w)r

o= ) el L1

so that

(4.18) P; = O(logx).

The theorem results on collecting (4.13), (4.15), (4.17), and (4.18).

5. Refined estimate for T(x). The function y'() defined in §2
evidently has the level function b(n), where b(n) = a{m) in case n is
a square (n = m*) and is otherwise 0. We use this fact to prove

Lemma 5.1.

(8.1) n(n) = Y b(d)h(9)
dd=n

Proof. Using the short-hand notation for direct convolution, it
follows, by (2.11) and (4.1), that ¢ = g,-v and p, -y’ = & Since & is the

identity of R (see Lemma 2.1), we have then '+t = ' (uy 1) = (3 ug) ' v
= 1; that is, ’
(5.1a) @ = D y(D)E).

DxE<G

Application of Lemma 2.12 proves the Lemma.
We now prove our main result concerning t(G).
THEOREM 5.1.

(5.2) T(2) = o’ w(logz+ 2y —1)+ o+ 0 (Valogiz),

where o = L(1), ' = L'(1), and L(s) = Zi(s).

Proof. Application of Lemma 2.15 to (5.1) gives
(3) T(@) = D b(n)T*(@n) = D) a(n)T*(w/nd).
ngx n<va

icm

Direct factors of abelian growps 171

Applying Theorem 4.1, with ¢’ = ¢,(2y —1)+¢,, one finds, since a(n) = 0
(cf. Remark 1.1),

(3.4)  T(@) = (clogz+¢)2Q,—26,2Q,+ O (VEQy) + 0(4(Va)),
where . .
' (n)logn a(n @
Q.= Z a(?) y @) = Z ¢ PR Qs = Z " lOgF'
ey ' nevi nayzE
We have, by (2.3),
., . a(n)
Q. =2Z(2)+ Z" )
n>yz
but by I'Jartial summation and (2.6), _
a(n) (A+1/ny—1) A(Vz)
2 Z‘;A (n41)y (Vz]+1)?
n>vVz >V
) o 402) - of 73] o) o)
ZO(Z n’ )+0( - )_0 ZVZ”Q)-H) Ve Vo
n>VT n>vVT
therefore,
(5.5) Q.= +O(LV2), a=2Z(2).

Similarly, for @,, one obfains
a(n)logn
Q= 2@+ ) =

a>¥VT

moreover, by (2.6) and partial summation,
(2n4-1)logn—n’log (1+ )
2 (n) logn 2 An) -

n*(n+1)
11>](.‘L‘ n>v:r

_ AWVa)log(Val+1)
([Val+ 1)

A (n)logn A(v@)logw)
oSy o2

n>vz
(log:v)_
Vo I’

logn
= ——|+0
0 ( Z n? ) -

n>Vz
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therefore, by (2.14),

(5.6) Q= —Put 0(1°gf”), b =22
Va

Ag for @4, we have by Lemma 2.13,

(5.7) Q, =0 (loga: 2 “(n")) = 0(log*w).

EESE

Combining (5.4), (5.5), (5.6), and (5.7) we have, since A(Vo)=0=),

(5.8)  T(@) = are(loga+2y—1)+ (ay6,+ 26:6)2+ 0 (Valog').

Tt remains to simplify the coefficients of (5.8). We have a;¢, = Z3(1)
— o'. Note that H(s) = L(s)/Z(2s), s > ¥, so that H'(s) = (Z(2s) L (s)—
—L(s)Z'(2)) Z7*(2s). Since Z'(2s) = 2Z'(f) with ¢ = 2s, it follows that
o = H'(1) = (0,8 —2a'fy)/a}. Therefore a,65+2p:¢, =p', and (5.8)
becomes (5.2), which proves the Theorem.

As a curious consequence of Theorem 5.1, we obtain the following
evaluation of the constant y*.

COROLLARY 5.1.

(5.9) 7= p+ay,

where o = Z,(1), f = Z»(1).
Proof. Comparing the two estimates (3.1) and (5.2) of T'(z), we have,
since @' = a?, B’ = 2ap,

am(y*—ay— ) = 0(z**),

which implies that the coefficient of # on the left is 0. Since a > 0, (5.9)
results.

Remark 5.1. Theorem 5.1 could have been proved independently
in the manner of Theorem 4.1. In this connection, the generating function
of 7(@), by (2.15) and Lemma 2.3, is £*(s)*(25)*(3s)... (s > 1). In com-
parison, t(G) has the generating funetion ¢*(s)¢(2s)£*(3s)¢(8s)... (Lemma
4.2), s > 1. The choice of (&) to play the leading réle in the main discus-
sion of the paper (§§ 4, 5) is justified by the simpler nature of its generat-
ing function. The reverse is true in the integral case, where #(n) has the
generating function {*(s){~'(2s) as compared with the simpler function
£*(s) generating v(n).
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