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ACTA ARITHMETICA
VI (1960)

On congruence classes of denominators of convergents
. oy

S. HARTMAN (Wroclaw) and P. Szisz (Budapest)

Denote by p,/q, the convergents of the continued fraction repre-
senting & given real a. Let a > 0 and b be integers. It will be shown that
for almost every o ome has g, = b (moda) for arbitrarily many . Then,
obviously, for almost every o, numbers from an arbitrary arithmetical
progression occur among the g,’s. Actually we are going to prove a stron-
ger theorem: )

TrrOREM 1. Given a decreasing sequence {eg} with 3’ ¢, = oo and the
s
sequence {ci} being defined by

.

, ¢ for k=10 (moda),

1 6 =
@ ¥ 0 otherwise,
the inequality
() lak—p| < e

is fulfilled for almost every a by infinitely many & with switable P and
(k,p) = 1.

The preceding statement follows from Theorem 1 by putting ¢,
= 1/2k and observing that if {ak—p| < 1/2k and (k,p) = 1 then plk
is a convergent of a, this being a well-known result.

The proof is based on the following theorem of Duffin and Schaef-
fer [1]:

If for non-negative numbers ¢ (k =1, 2,...) with Y¢ = oo there

k

s a constant K such that
n (k) n
DECEEE SN
k=1 k=1

Sor infinitely many n, ¢ being the Buler Sfunetion, then (2) has for almost
every a arbitrarily many solutions with (k,p) = 1.
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The numbers ¢, being defined by (1) it suffices to show

n

ere' (k) S '
(3) Z — K2

k=1 k=1

! i % = b (moda) or not. Since the
where ¢'(k) = g(k) or 0 a,eeordmg. as ) .
sequence {c¢;} is monotonous, (3) will follow by partial summation from

the inequality
1 ¢ (k) ‘
Kn
4 > 3
(4) k; %

hich we are now going to prove. v .
" Assume first (@, b) = 1 and let x be characters moda. It is known that

x(k) pla) it k=0 (moda),
© ORE ‘ 0  if kstb(moda).

We have also »
(k) (@)
o ; d’

where x denotes the Mobius function. Therefore

O ¢ C (k) (k)
B _ 3o LSS e

k=t mbmsde)
5oy k) N a@ 1N ) x(k).
- Ja).,;z}? jai(b) IZ i 7() 2 d %Z 2(6)

1kgn
[n/d]

1O sl 2(1d)
_qﬂ(a)g d 2 = (b)

l=1

If (d, a) > 1 then since (a,b) =1, one has Id == b (mod.a) and in virtue

of (b) .
m/d)

1=1

: ©
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If (d,a) = 1 then this double sum equals the number of I's for which
ld = b (moda) and I < [n/d]. This number being njad-+O0(1), one has

n?'(k) 1 w(@ [ n
g ko p) d (H+0(1))

@ ((l) 1<dsn
1

n uld) |
= (@ 2 = + 0 (logn)

1 -1
I—— oq ,
I3 o

Pla

where the last equality can be deduced from

w(d) 1 ( 1 )“‘ (1)
= oy 1~—2' =+ 0f{—]}.
= Tt 11— "

Thus, (4) is proved for the case (a, b) = 1. In the case (a,0) =d>1
the estimation (4), and consequently (3), remain valid; this ean be
deduced by applying it to the numbers o’ = a/d, b’ = bjd and observing
that ¢(ld) > ¢())@(d). Thus, Theorem 1 is completely proved.

Let us observe that omitting the econdition (k,p) =1 in this
Theorem we obtain a special case of a stronger result proved by de
Vries ([3], p. 46, Stelling 13).

Putting ¢, = 1/2klogk we deduce at once from Theorem 1 the
following

THEOREM 2. For almost every « and every positive integer 1 the se-
quence {g,} contains a subsequence {g,,} which consists of multiples of 1
and is such that

lim Pmtt _
LI
For this result, in spite of its being a consequence of the preceding
one, we will now supply a direct and more elementary proof. This seems
justified, since Theorem 2 may have some independent significance and
can be applied to a problem treated formerly by one of ms [2].
Evidently it will be sufficient to prove that a number I being pre-
seribed, the desired subsequence exists for almost every a. We proceed
by induection with respect to the number m of distinet prime factors
of L. For m = 0, 1. e. I = 1, the statement is trivial. Assume that it is true
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for a given m; then fix arbitrarily a positive integer a having m distinet
prime factors and choose a prime s not entering into a. One has to prove
that for k. =1,2,... and I = as® a sequence {g,,} with required prop-
erties can be found for almost every a.

Let us suppose that 0 < a < 1. Writing a,+ e, we mean addition
mod 1. Denote by E; the set of those « for which our statement is satisfied
for | = a by the numbers a—}—r/s'“ (r=1,2, ...,sk—l). The inductive
hypothesis obviously implies

(6)

Thus, for an aeH; and arbitrarily fixed r 1<sr< s*) we can find
a sequence {P,/@,} of convergents of a-r/s* for which

|| = 1.

(7) a/Qu;
r P, Cn
8 at = — | < -y
( ) sk Qn 3" ’
1
(9) ) ¢, >0, On<2_sg_k_-
From (8) we obtain
(10) o— Pnsk“TQ'IL (/"nsgk
. Q:,,,Sk :szk N

Since ¢,s?* < §, the fraction on the left of (10) equals a convergent
P4,/8, of a; moreover, on account of (9) one has

lim —q-vnﬁ =

L
From (7) and (P,,Q,) =1 follows (a,P,) =1, and since (a,s) =1,
we have

alg,,-
Let the integer A (0 <4 < k) be defined by conditions
r=¢su, (u,s)=1.

LeMmA 1. For every n at least one of the following fwo cases oceurs

(a’) sk—‘l /QV,,,, ’
(b) 7 1Qn
Let
(11) Q=71 (n=0;(s,1)=1)
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Then
Doy Pus'—1Qn  Pus—dlut
0, Qs ts*
If 0 <k—pu <4, then
Dy Pu— gre—kyy

@, is" :

Since in this case x >0, we have (P,,s)=1; hence s"/g, -and this
implies (a). If ¥—pu > 4, then ’
Doy Pyt
4, w7
Since (u,s) =1, we have §**/g,” and (a) holds again. It s>k or.
k—u = 4, then (b) holds by (11).
Now let MF (6 =0,1,...,k—1) denote the set of those a’s for

which the sequence {g,} contains infinitely many terms g, divisible by
as*™* and fulfilling the condition ¢, ,,/g, — oo. Put

- NP = B\ MF.

T LeMMA 2. If aeN¥, then ad-r[stc MF for every r =1,2,...,5—1.
In fact, for such #’s we have 1 <{i—1. For a fixed » and a fixed
sequence {P,/Q,} satisfying (7)-(9) the case (a) can occur at most finitely
often; otherwise we should have s*~/g, for infinitely many », and hence
ae M¥, against the assumption. Thus, by Lemma 1, it is the case (b) which
oceurs for infinitely many n. This case implies s*~*/Q,, and therefore
a-+rjske M¥. The sets '

r

(12) {a: a—s—ke.Nf}
are disjoint for r = 0,1,...,5°—1. In fact, otherwise there would exist
two integers r, and 7, (0 <r, < r, < s—1) and two numbers f,, B¢ N¥
such that g, r,/s; = By+ 1y/s". However, the equality f; — B, = (1;—75)/s*
implies together with Lemma 2 that 8, and §, cannot both belong to N¥,
The sets (12) are evidently L-measurable and congruent to N¥. Since
they are disjoint, their Lebesgue measure fulfils the inequality

1

N < -

s
Hence, by (1), we have
(13)

3 1 .
M >1—— (6=0,1,..., k1)
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Now let k run over all even integers and put ¢ = %/2. Then (13) yields
| MY, —1, and since M} D M3 D M5O ..., it follows that

| Mipl =1

for every k. This means that for I = as®? (k = 2,4, 6,...) and for almost
every a a required sequence {q,,v} does exist.

Application. In [2] it was proved that for almost every o the
inequalities |ga—p| <1/, |g| <e¢t. (p,q integers) "cannot be solved
simultaneously for every ¢ > 1 with an odd ¢, however large constant ¢
is chosen. For this proof it is essential that for almost every a the
sequence {g,} should contain a subsequence (g, } consisting of even
numbers and such that lim(g, ,,/g,) = co. Replacing this proposition

n

by Theorem 2 we can obtain without further modification of arguments
the following generalization of the result in [2]:

For almost every a, every ¢ > 0 and every integer 1 the imequalities
lga—p| < 1[t and |q| < ct are not simultaneously solvable for arbitrary
t > 1 if it is required that g should not be divisible by 1.

It may be observed that the theorem of Duffin and Schaeffer and
the estimation of the number of primes in arithmetical progressions
enable us to prove that for almost every a the sequence {g,} contains
primes belonging to any progression b+ na (n =1, 2, ...) with (a, ) = 1.
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On a generalization of Wilson’s theorem
by

B. Gymres (Debrecen, Hungary)

1. In the present paper we denote by printed Latin capitals guad-
ratic matrices of order n, and by written Latin capitals quadratic matrices
of order »nr. In particular, ¥ and O will denote the unit matrix and the
zero matrix of order n, respectively, whereas ¢ will be the unit matrix
of order nr. (4,,..., 4,) stands for a hypermatrix of order nr, built
from matrices of order n, in which all elements outside the matrices in
the main diagonal are zero matrices, and the hth element of the main
diagonal is 4;. We shall call this matrix a diagonal-matrix, whereas the
(evidently regular) matrix

1 1 .1 7
WA .
1) 1 A A
jart ;L;_l -t
1 r

built from the pairwise different numbers
(2) Ay Agy ey Ay

will be called the Vandermonde-matrix generated by the elements (2).
The direct produet of the matrix F with the matrix (1) is also regular,
since by the well-known theorem on determinants of Kronecker the
determinant of the direct product is the nth power of the determinant
of the matrix (2).

A quadratic matrix whose elements are rational integers will be
called regular with respect to the module p (p a prime), if its determinant
is not divisible by p. By Cramer’s rule for linear systems of congruences
any matrix regular modp has an inverse in the sense that there exists
2 matrix, such that the product of multiplying by it the original martix
will be congruent modyp with the unit matrix. If the elements (2) are
rational integers incongruent modp, then it follows from the product
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