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Now let k run over all even integers and put ¢ = %/2. Then (13) yields
| MY, —1, and since M} D M3 D M5O ..., it follows that

| Mipl =1

for every k. This means that for I = as®? (k = 2,4, 6,...) and for almost
every a a required sequence {q,,v} does exist.

Application. In [2] it was proved that for almost every o the
inequalities |ga—p| <1/, |g| <e¢t. (p,q integers) "cannot be solved
simultaneously for every ¢ > 1 with an odd ¢, however large constant ¢
is chosen. For this proof it is essential that for almost every a the
sequence {g,} should contain a subsequence (g, } consisting of even
numbers and such that lim(g, ,,/g,) = co. Replacing this proposition

n

by Theorem 2 we can obtain without further modification of arguments
the following generalization of the result in [2]:

For almost every a, every ¢ > 0 and every integer 1 the imequalities
lga—p| < 1[t and |q| < ct are not simultaneously solvable for arbitrary
t > 1 if it is required that g should not be divisible by 1.

It may be observed that the theorem of Duffin and Schaeffer and
the estimation of the number of primes in arithmetical progressions
enable us to prove that for almost every a the sequence {g,} contains
primes belonging to any progression b+ na (n =1, 2, ...) with (a, ) = 1.
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On a generalization of Wilson’s theorem
by

B. Gymres (Debrecen, Hungary)

1. In the present paper we denote by printed Latin capitals guad-
ratic matrices of order n, and by written Latin capitals quadratic matrices
of order »nr. In particular, ¥ and O will denote the unit matrix and the
zero matrix of order n, respectively, whereas ¢ will be the unit matrix
of order nr. (4,,..., 4,) stands for a hypermatrix of order nr, built
from matrices of order n, in which all elements outside the matrices in
the main diagonal are zero matrices, and the hth element of the main
diagonal is 4;. We shall call this matrix a diagonal-matrix, whereas the
(evidently regular) matrix

1 1 .1 7
WA .
1) 1 A A
jart ;L;_l -t
1 r

built from the pairwise different numbers
(2) Ay Agy ey Ay

will be called the Vandermonde-matrix generated by the elements (2).
The direct produet of the matrix F with the matrix (1) is also regular,
since by the well-known theorem on determinants of Kronecker the
determinant of the direct product is the nth power of the determinant
of the matrix (2).

A quadratic matrix whose elements are rational integers will be
called regular with respect to the module p (p a prime), if its determinant
is not divisible by p. By Cramer’s rule for linear systems of congruences
any matrix regular modp has an inverse in the sense that there exists
2 matrix, such that the product of multiplying by it the original martix
will be congruent modyp with the unit matrix. If the elements (2) are
rational integers incongruent modp, then it follows from the product
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representation of the Vandermonde-determinant that the matrix (1),
and thus—again by the above mentioned theorem of Kronecker—
also the direct product of the matrix B and the matrix (1), is regular
modyp.

2. The theorem whose consequences we are going to investigate in
the present paper is the following:

THEOREM 1. If the coefficients of the polymomial
(3) f(z) =a’0+“12+---+“r713r_1+zr
are rational integers, and if the roots
(4) Ny Nay evey Mr

of the equation f(z) = 0 oll have multiplicity 1 and the congruence f(z) =0
(mod p), where p is a prime, has modp exactly as many inCongruous solu-
tions

(5) Oy Oy eeey Oy

as its degree, then if we form with the mairices

(6) Ay, Ay, . 4.,

having arbitrary rational integers as elements, the matriz polynomial
M M(2) = Ayt Azt A, &7,

we obtain the congruence

(8) YWY = WNW™ (mod p),

where

(9) W= M ()5 ey M},

(10) N ={M(0y)y..., M),

Y resp. W 1is the direct product of the matriz B with the Vandermonde-matrix
generated by the elements (4) vesp. (B), V-1 is the ordinary inverse of -V,
ond W1 = (Det W)*? adj. W (modp) the inverse modp of W

It is easy to see that there exists a polynomial (3) satisfying the
conditions of Theorem 1. Indeed, let

(11) f() =2"—a

be a polynomial of degree r, with the rational integer a satisfyiﬁg the
conditions
(12)

rip—1, &P =1 (modp),
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then—as is well known from elementary number theory—the binomial
congruence f(z) = 0 (modp) has r incongruent solutions, and on the
other hand the roots of the equation f(2) = 0 are all of multiplicity 1.
Before proving Theorem 1, we shall consider some of its conse-
quences.
If we go over to determinants on both sides of (8), then taking into
account (9) and (10) we get the following ‘

THEOREM 2. Under the conditions of Theorem 1 the congruence

(13)  Det M(a,)...Det M(a,) = Det M(y,)...Det M (»,) (modp)

holds.

If polynomial (3) is equal to polynomial (11) satisfying condition (12),
and if n =1, i. e. (7) is a polynomial with rational integer coefficients
and M (z) = #z, then by virtue of (13) we get

(14) —1)'a (modp).

a2 = (

If we do not rely upon congruence (13), then we can assert even
more than (14).

Indeed, let p be an odd prime number, a a natural number, m one
of the numbers p* and 2p° and g(m) = ¢. If a is a rational integer and
rle, a" =1 (modm), then—as is known—the congruence

7 —a = 0 (modm)

has 7 incongruent solutions. If these are denoted by ay, ..., a,, then from
the congruence

F—a = (z—a)...(2— @) (modm)

we get by the substitution z = 0 congruence (14), where » must be now
taken in the above-mentioned more general sense.

If r — ¢ = p(m), then the congruence a" =1 (modm) is fulfilled
automatically and so by (14)

Ayen gy = (—1)7™ 7 (modm),

where ay,..., a,m are the elements of the reduced remainder system
of m. Of course, this latter congruence is true for any natural m.
Now let again » =1 and let polynomial (3) again be equal to
polynomial (11) satisfying condition (12). If we still have r = p—1, then
(13) says that :
(15) M) M(2)... M(p—1) = M(w,) M(w,) ...

where w,, ..., o,_, are the (p—1)-th roots of unity. This is the theorem
the proving of which was proposed by the author as a probem in the
Schweitzer mathematical contest of 1951. ([2], problem 10.)

M (wpy) (modp),
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If we put » = p—1 in (14) or M(z) =2 in (15), we receive in both
cases Wilson’s congruence. Thus theorem (2) can be considered as
a generalization—through congruence (14) or (15)—of Wilson’s theorem,
whereas Theorem 1 as expressed by (8) is a matrix generalization of the
congruence of Wilson.

3. Now as regards the proof of Theorem 1, it follows almost trivially
from the theorem we shall give below.

Let us suppose that the coefficients of the polynomial (3) belong
to a field & and that the number of distinet zeros in K of this polynomial
is equal to its degree. Let the zeros be the quantities under (2). Since
the matrix (1) is, by the assumptions made for the generating numbers (2),
regular in the field ®, the direct product U of the matrix B with (1) is
also regular, and so there exists in & an inverse 9~ of Y. For the matrix
polynomial (7) we also make the assumption that its coefficients are
matrices consisting of elements belonging to K. After these preparations,
the above-mentioned theorem can be formulated in the following way:

In order that the matrix of of order #r and with elemets from the
field & be carried over by the transformation 9 into the diagonal matrix
M= (M%), ..., M(A4)), i. e. in order that the relation

(16) of = YUYW U

may hold, it is necessary and sufficient that the matrix be interchangeable
with the matrix

0 E 0 0 0 0
0 0 B 0 0 0
O =
0 o0 0 0 .. 0 B
| — 0B —a, B —a, B —a,E ... —a, ,F —Qy_ 1

If, on the other hand,

Ay = {Apy .oy A3
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then the totality of the matrices of order nr and with elements from K
which are interchangeable with 9 is given by

(17) o = ly+s,9+e,9%+. .. +2l,_, 97

provided the matrices (6) determining (17) run, independently of each
other, through the totality of quadratic matrices of order n with elements
from K. : .

For the case of ® being the complex field, this theorem was formu-
lated and proved by J. Wellstein ([3], p. 7). His proof, however, can be
transferred word for word also to this more general case.

Now if R is the series of remainders belonging to the prime p and
if the polynomial (3) satisfies the conditions of Theorem 1, and if, more-
over, in the field of complex numbers we use the ordinary equality sign
and in the field formed by the remainders belonging to p we use the sign
of congruence to denote equality, then by the theorem of Wellstein
quoted above we have for the matrices (17) in accordance with' (16) the

-congruence

(18) of = VWV = WAW™ (modyp),

where the meaning of the symbols after the equality sign has been
explained in connection with Theorem 1. (18), however, is identical with
the expression (8).

Going over to determinants, we get from (18) the form

Det 97 (a) ... Det Wi (a,) = Det o (modp)

of the congruence expressed in Theorem 2. If we impose here the same
restrictions which were used in passing from (13) to (15), we obtain
a congruence known already to G. Rados. This congruence has been
formulated and proved by Rados in connection with the proof of the
so0 called Konig-Rados theorem in number theory ([1], p. 300).

4. Tf in (6) we have r = p—1 and » = 1, then the matrices (17)
are—as is well known—cyclic matrices. Now, in order that the congru-
ence

A4, 0 (modp)

Ag+A 2.+ A, 2" = 0 (modp),

may have p—k%—1 incongruent solutions, it is necessary and sufficient
by the theorem of Konig-Rados mentioned under 3 that the rank modp
of the cyclic matrix @ formed of the elements (6) be equal to k. On the
other hand, by a special case of a theorem of Rédei-Turan ([5], p. 224)
the validity of. the congruences

(19) Ppy = oo = Ppyy =0 (modp), P 0 (modp)
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is also a necessary and sufficient condition, provided

-1

(—1yP;et 7,

L~}

(20) Det(C—2¢) =

.
|
=

where thus ?; is the sum of the jth principal minors of the matrix €.
A confrontation of these two criteria gives—as they remark Il c.—
the following

THEOREM 3. In order that the rank modp of the cyclic matriz C be
equal to &, the validity of the congruences (19) is necessary and sufficient.

Rédei and Turan postulated 1. ¢. a direct proof of this theorem. In
what follows we give such a proof of this theorem, based on our previous
result, with the aid of the following theorem:

If DB is o quadratic matrix of order m defined over the field & and the
equation

(21) Det(B—=2E) =0

has z = A as a root of multiplicity m — k contained in K, with respect to which
the elementary divisors in K of the matriz 13 are linear, then the rank of
the mairiv

(22) B—AE

s equal to k. The converse also holds: If 2 is a root contained in K of (21),
for which the rank of (22) is k and the elementary divisors with respect to A
contpined in K of B are linear, then A is a root of multiplicity m—k
of (21).

This theorem is well known for the case where ® is the field of
complex numbers ([4], p. 189). However, it can be proved also in this
general case in exactly the same manner as for complex numbers. In this
regpect it suffices to point out that the concept of rank, as well as the
multiplicity of the zeros of a polynomial, can be defined also in an
arbitrary field.

Let m = p—1 and let *B be equal to the cyclic matrix €. If the re-
mainder system of the prime p is taken to be the field K, then by (18)
the matrix € has in this field & p —1 eigenvalues, and also by (18) the
elementary divisors in & belonging to these eigenvalues are linear. If
we still take into account that A = 0 (modp) is a zero of multiplicity
p—k—1 modp of (20) if and only if (19) holds, then the proof of
Theorem 3 becomes an immediate consequence of the theorem. just
quoted.
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