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fixed at the point (0, 0) would, concerning relations (7), be 4 null vector.
Let us now make some simple (affine) transformation of the coordi-

nates

(10) v =u,

where u, » are new variables. This transformation is allowable, since its

jacobian becomes

Y= ut+v

ou ou

” S ox oy =} 103=1#“.
v v | —1 1!
o oy

In the new coordinates the function ¢ will be expressed by a formula

u(u+v)?

—— w2 2 .
T 2w 2uot o2 wirt >0

= p(u,v) for

Obviously
@(h, 0) = h?[2h% = |2,
and so (since @(0,0) = 0 because for % = v = 0 we have @ = y = 0)

o, 0—9(0,0) 1

h 2

or else

12 (0"’) -1
12) 0 fu—vao 9’

thus, in the system of coordinates (u,v), the vector fixed at the point
(0,0) would have its first component different from zero, and thus it
could not be a null vector. In this way the property of the vector to be
a null vector would not be an invariant of the regular transformations
of coordinates, and we have come to a contradietion in assuming (9o [de,
do[0y) to represent a vector field all over the plane.
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On the notion of gradient
II. A certain extremal property of direction of the gradient vector

by 8..,GoEAB (Krakéw) and M. KUCHARZEWSKIL (Katowice)

If for a given scalar field ¢ (having at a point p under consideration
w total differential or being at that point of the class (Y i. e. having at
that point continuous partial derivatives of the first order (see [1])) we
form a gradient » whose components are the partial derivatives

(1) _ v =00/dm; (1=1,...,m),

then if the gradient » at the point p differs from zero, the direction of
vector v defines that of the maximum increase of the field ¢. By this
the following is implied: If we take at the point p a tixed arbitrary radius r
and its current point m, and if by s we denote the distance m from p
and by ¢(s) the value of the function o at the point m, then the right-
side derivative of the function ¢(s) for s = 0 will be the greatest (and
at the same time positive) for the radius » passing through the vector v.
Tt is a well known fact and its proof is simple.

The aim of this note is to give some other similar property of the
veetor .

About the function ¢ we assume that

1. it is continuous in the neighbourhood of the point p,

2. has at the point p a total differential,

3. the vector » with components
v, = (0of0m;), (t=1,...,m)

iy different from zero, i. e.
n
Z i'vit > Uv
4=l -
4. there exists an infinite sequence of hypersurfaces 8, with the
tollowing properties:
(I) 8, is a closed (#-—1)-dimensional surface containing p internally;
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(II) denoting by B, the maximum distance of the current point of sur-
face S, from p we have

@) limg, — 0;

(ITI) defining by a, the minimum distance of the current point of sur-
face S, from p we have

(3) limp,/a, = 1.

The function ¢ is by assumption continuous in the neighbourhood of
p. 8, 1% a compact seb. It is contained in the neighbourhood of p for suffi-
ciently great », and consequently o attains in §, its greatest value, which
will be denoted by u,. Let ¥, be any of the points on the surface S, such that
(4) o(Y,) = t,-

Let us denote further by r, the radius issuing from p and passing
through y,.

Wo assert that under the above assumptions the sequence r, is con-
vergent, and that the limit radius r, passes through the vector v.

The above assertion says that if we close the point p by a hyper-
surface ‘‘approximate’” to a hypersphere, and take any of the points of
this hypersurface at which the function ¢ attains its maximum over the
said hypersurface, then the direction of the vector from p to that point
will be “near’ to the direction of gradient .

Proof. Without loss of generality we may assume that p is the
origin of the system of coordinates and that
(5) a(p) = 0.
Introducing short notations .
—

A at
(6) . B = (Byy...y Tn), lmlz.l/sz%
f=]

and making use of the notion of scalar product

n
) oy = Dagy
in
we may express the fact of possessing by the function ¢ the Stolz-Fré-
chet differential at the point p by means of the relation
(8) lim LB =20

=0.
2450 ||
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In order to prove our assertion it is sufficient to show that the angle ¢,
between the radius #, and the vector » tends to zero or, which means
the same, that cosg, — 1, i.e.

Yoo
o0 [Yy] 2] o

)

Let n be an arbitrary positive number. Let us choose for the number 7
a number » such that the inequality » > », should imply the inequali-
ty

(10)

as well as
(11)

Bola, <147

ay/ﬁv > 1—"7/2

This can be done in virtue of (3). Since by hypothesis we have |v| > 0, we
can find for the number # a positive number ¢ such that

7ol
4(1+n)

Subsequently, we shall choose for the number ¢ another number & such
that the inequality || < ¢ should imply the inequality

e <

——1 <,

| o(z)—mv
| Je]

which with respect to (8) is attainable. :

Let us further choose a number », so that the inequality » > v, in-
volves the inequality 8, < 6, which can be done in virtue of (2).

Let vy = max (v, v,) and let us assume ye8S,, » = »,. Then we have

lyl < B, <9
and
B ) bt S
lyl
Hence
(12) yrv—slyl <oly) <y-otelyl for yel, (v=w).

Let us denote by 2, the point of intersection of S, with the vector », and
let us assume

at \
o = ma:x{|y,|, lzr” ‘
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Let us divide the hypersurface §, into two disjunctive sets 4, and B,
assigning to A, all those points y for which we have the inequality

¥ o < o, l0]— 260,

and to B, the remaining points of the hypersurface §,. We assert
that

YpeB,.

For the indirect proof let us assume for a moment that y,ed,. In this
case

Yoo < (l,,I’DI “2891"

Hence by virtue of defining the number u, and basing ourselves on ine-
quality (12) we might have

Hy = 0'(?/,) <Yrvtely,l < av[”l_zsgv_"slyvl'

Howerver, z,¢8,, and thus [2,| > o,, whence we have

Hy < [7] 0] — 280,z y,].
It follows from the dgfinition of the point 2, that
70 = 3] |v],
and consequently the last inequality may be re-written in the form

My < zﬂ'v_zegvl—;‘ Elyvl'
K we have

(13) 2] = |9l
then g, = |¢,|, and consequently

My < 20— 288, + 2y,
On the other gide, however, we have by (9):

20—zl < o(z)
and since

O-(zv) S G(yv) = /‘L!"
we have

(R e <y < 20— 2elr, + ey
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which leads to the conclusion

elg,| < elyi,

lzrl < ly1|’

contradictory to inequality (13).
If instead we have

izvl < ['.thy
then p, = |y,| and
oy = 0'(']/,) < zﬂ'l7_23|yvl+eiyv' = 3»"0“5!!”
< 31,'?.’-——8‘2',4 < O'(Z,) < 2]

and again we have a contradiction. The assumption that y,<d, leads
to a contradiction, and therefore we have

YreB,
or else

Ym0 = a, v —2ep,.
Dividing the above inequality on both sides by |y,|-|v] we obtain

.- 9 -
oo b e & 2%
AR I A B A R IR M M ]

We have, however, o, < p,, l¥,| = «,, and this implies

e /vl < Bla,
and furthermore

Y a4y 28 B,

cosq, = = .
. AR CI A

Now making use of inequalities (10) and (11) we may write

y 2 B, . 2¢ n 2147

Ly i) >l -

[ IS 2 ol () 2 |ol4(1+7)
::1—--2——%::1—-;7 for ¥ = 9.

The last inequality proves that the sequence cosp, — 1, which was to
be shown. Thus the theorem holds true.


GUEST
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The sequence of surfaces §, which, in the above theorem, shall sat-
isfy eonditions (I), (II), (IXI), cannot be replaced by a sequence of surfaces
satisfying conditions (I) and (II) and instead of (III) a weaker one viz.

(IIT") 0 <1< Ba,<L.

It is shown by the following counter-example.
Let us assume

o, y) =a+y (n=2).

The function o thug defined satisfies all the agsumptions of our theorem.
Let us take the sequence of ellipses with the equations

1p2g2pty? =1

as that of §,. Then the point y,, at which ~ as shown by a simple calcu-
lation — the function o attains its maximum, has the coordinates (4/»/5,

llvl/g), and so the radius r, tends to the limit position (moreover, the
radius 7, in this example does not depend on »)

.

v =1, y=12%v, 720,

and consequently it does not possess the direction of the gradient which
has the components (1, 1). l

The above theorem may serve as a generalization of the definition
of direction for the gradient in the case where the gradient in the classi-
cal sense does not exist.

Indeed, let us encircle the point p by an arbitrary sequence of hy-
perspheres 8, with the centre p and the radius tending to zero. In every
hypersphere we arbitrarily choose a point y, where the function o attains
its maximum (or its upper limit). If the sequence of the radii », has a de-
finite limit position r, (independently of the choice of sequence §, and
of the points y,) then the direction r, is called the gradient direction of func-
tion o at the point p.

An easy example of the function o defined as follows

. 0 for y<0,
ol@,y) =
|y for y>0
shows that at the points p(x, 0) the function o does not possess a gradient
but it has a definite gradient direction.
Obviously, the existence of the gradient dirvection does not imply
the value of the gradient (i. e. that which in the classical sense is the
ength of the gradient vector).

On the notion of gradient (II) 11

If there exists at a given peint p the gradient direction #,, then the
value of the generalized gradient (not mecessarily absolute) may be de-
fined as the limit

Msp mp !

where m is & current point of the radius 7, (if the classical gradient happens
to exist, the value ¢ is identical with |v]). It being thus, the sign of the
value of the generalized gradient indicates whether the function ¢ increas-
es or decreases in the direction of the gradient vector under conside-
ration.

As shown by the following example, the value g need not exist.
The example has been constructed for the simplest case n = 2.

Indeed, let us puf

o(z,y) = o(¥),

where the function ¢(y) is defined in the neighbourhood of zero and pos-
sesses the following properties: it is an increasing function, it has no
right-side derivative for y = 0.

Let us consider the point p(0, 0) and examine the existence of gra-
dient direction. Let us describe a cirele round the point p with the radius
& > 0. Let 6 be the amplitude of a current point along the circumference.
Then

o(gcos, e5in ) = @ (esing).
Since the function ¢ is by hypothesis an increasing one, we have
p(esing) < ge) for 0 <O < 2.

Thus the function ¢ attains its maximum for 6 = =/2 and this fact is inde
pendent of the magnitude ¢ of the radins of the circle. Thus the existence
of the gradient direction has been fully ensured, whereas the value ¢
does not exist, because

s(m)—o(p) _ ole)—e(0)

mp £

does not possess a limit for & — 040.
The example of funetion

determined in the neighbourhood of the point p(0, 0) shows that the
value g of the generalized gradient may be less than zero. Let us take
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12 8. Gotab and M. Kucharzewski
for the above function the point p(0, 0). Let us describe a circle round
this point with a radius e Then
o(scosh, esinf) = —eV1+}e cos®d
attains the maximum value for § = =, viz.
o(—e&,0) = -—rl/r--%.;

Hence the gradient direction exists, whereas

—1 < 0.

J = lim a(m)—a(p) — lim —eV1—}e—0 .
£

m—p "’L_P 0

Remark 1. The generalized gradient indicates the direction of
the maximum inerease (or of the minimum decrease) of the function.
Similarly the direction of the minimum inerease (or that of the maximum
decrease) could be introduced. If a gradient exists in the classical sense,
then these two directions arve in opposition. In general, it is not neces-
sarily thus, and consequently there is some reason to speak about fwo
gradient directions.

Remark 2. The above theorem holds true, as has been remarked
by T. Wazewski, if the assumption 1 “the funetion is continuous in the
neighbourhood of the point p”* is replaced by a weaker one: “the funetion
is defined in the neighbourhood of the point p. Then, evidently, the
function ¢ need not attain its maximum in §,, but it has an upper limit
in it, since the said funetion is bounded in the neighbourhood of the point
p, owing to its possessing a differential at the point p. Then again, u, would
denote the upper limit of o in S,, whilst by y, we should mean any of
the points of 8, with the following property:

There exists a sequence of points

GeS (A=1,2,..)
convergent to y,, i. e, limg, =y, such as
00

l]{lmo‘(ql,) =y
==»00
The further statement of the theorem remains unchanged. The above
change of the theorem would involve gome, almost formal, changes in
the argument.
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On the notion of gradient
III. Gradient as a limit value of a surface integral

by 8. GoxaB and A. Pri$ (Krakéw)

§ 1. Let a scalar field ¢ be given. If the function o has at a definite
point p a total differential, then at that point a gradient can be formed

(1) v = gradc
as a vector with components (see [1])
do .
(2) v,t:a% (i=1,2,...,n).

We know the integral theorem which, under certain assumptions both
about the field o and about the closed hypersurface S bounding a finite
and regular region D of space, expresses the integral of gradient over
the region D by a surface integral. This theorem, containing in its vector
form the so-called Green theorem, is stated thus:

(3) [erado = [N-o,
D s

where N denotes the unit normal vector to 8 with an outside orienta-

tion.
To the above theorem corresponds the ‘“differential” form, viz.

(4) grado(p) = lim ——;— N-o.
Sesp §
V denotes here the volume (n-dimensional measure) of the region D.
Now the said formula is not precigely stated(*). We are concerned
on one hand with assumptions with respect to the field ¢ and on the other
with those referring to 8, and finally with the limiting convergence

(*) It will suffice to see what W. Rubinowicz has written on this s.u'bjeot in hig
book [2], p. 67-70, in order to realize that the corresponding theorem is not stated
in a satisfactorily striot way.
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