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Parabolic differential inequalities and Chaplighin’s
method
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The purpose of the present paper is to discuss the extension of
Chaplighin’s method (see [1], [3]) to non-linear parabolic equations.
Some results conecerning such extension have been presented in [11].
An important factor in our investigations is the theorem of Nagumo-
Westphal (see for instance [6]). The first section of the paper concerns
differential inequalities of parabolic type. Next we discuss Chaplighin’s
scheme applied to parabolic equations. The last seetion  deals with the
limitation of the difference between the exact solution and the appro-
ximate one.

1.1. Let R be the rectangle a <z <b, 0 <t < T. The function
u(m, 1) is said to be regular in- R if it is continuous in B and if it possesses
the derivative du/d¢ and a continuous derivative d2u/da® for a < < b,
0 <t <T. Let us denote by I" the plane set eomposed of points («, 0)
with ¢ < s <b and (a,1), (b, t) with 0 <t < 7. By FR we denote the
boundary of R: by R® the interior of R. We now present the Nagumo-
Westphal lemma:(!)

LEMMA 1. Let the functions w(x, 1), o(z, 1) be regular in B and let the
inequalities

ou _ 0w
'()Vfb B "670_‘2— '1'"f('v: t,u(w, 1), Uy (@ t)):
v 0*v
“;)‘t“ > 07/_2 +f(”y t, v(x, 1), va(@, t))
be satisfied in KP4 (FR—TI). Suppose that u(w,?) < v(®,1) for (@, t)el.
Then the inequality w(z,t) < v(z,1) holds for (m,1)eR.

() An extonsive review of papers dealing with parabolie difforential inequa-
lities will be found in [6].
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1.2. Tet the functions u(s,t), g(z,t,2), ¢(x,?) be continuous in R,
Q = E |(@,1)eR, —oco <2< oo} and I'respectively. Define the func-

(=,1,2)

tion 7(x,t) by means of the formula

g€, v, u(§, v))dédr

b

oy 1) = _Lf 1 exp(—(a;ﬂg)z/i(t_r))

’ 2]/; Vit

and let ¢(x,1) be the solution in R® of the equation
ds)ot = 9%z[0x"

such that g(w,t) =g@(s,t)—r(@,t) for (#,1)el. We put v(z,?) =q(@,1) |
4 r(a, t). Denote by T(u:g,p) the transformation w -» v:

0 a

v="T(u:g,q).

It is known that 7'(u: g, ¢) is completely continuois with respect to w
in the Banach space € of all continuous funetions(?). The norm in C is
defined. as usual.

Suppose that (2,1, 2) is Holder continuous with respect to # and 2.
Let f(x,t, 2) be continuous in @. Then each solution v(x, t) of the equa-
tion z = I'(2: f, ¢) i8 a regular solution of the equation

(1) dvfat = 02v[dx2+f(2, 1, v)
and
(2) v(z,t) = @z, 1) for (x,t)el.

Ag in [2], [7], [8], [9] we introduce the following condition:

(H) The funetions u,(w,t), vo(x,t) are regular in R and satisfy the
inequalities

(3) Dutg [0t < D ug[Oz+1(2, 1, ) in R+ (FR-TV,
(4) O, [0t > 0%vyf0x2+f(2,t,v) in  RVG-(FR-I,
(3) Uo(@, 1) < p(w, 1) < vy(w,?) for (v,t)el".

Following Prodi [8] (see also [2]) we formulate

TueoreM 1. Let the assumption () be satisfied. Supposc that the
functions (=, 1), f(w,t,2) are continuous in I' and Q respeotively and let
f(@,t,2) be Holder continuous with regard to x and . Then there ewists
at least one regular solution of the bowndary value problem (1), (2).

}.3.."1‘]16 solution (z, t) of (1), (2) is called a wmawimum (minimum)
solution if for every solution v(w,?) of (1), (2) the inequality v(w,?) <

(%) See [5], lemma 3.
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< u(z,t) (v(z,t) > u(2,?) holds in R. The cxistence of a maximum
golution has-been proved in [9] for generalized elliptic equations. For
some generalized parabolic equations an analogous result has been ob-
tained-in [7]. In both papers appears the assumption that f is monoto-
ni¢ with regard to z. We ghall prove that the boundary problem (1), (2)
has the maximum solution when the condition (H) is satisfied. We do
not assume that f is monotonie. ’

TaEOREM 2. Let the assumptions of theorem 1 be satisfied. Then the
boundary value problem (1), (2) has the mavimum solution.

Proof. As in [2], p. 805 we define the function f*(z, ¢, 2) as follows:

flo, b uglz, 1) i 2 <z, 1),
Ml t,2) =1 f@,t,2) it ue(w,t) ngg\i’n(w: ),
fla,ty vo@, 1)) it 2> ve(w, 1)

The function f* is bounded. Let sup|f*] < M and suplep| < K. The
assumption (H) holds for f* if w, = —Mt—K and v, = Mi-+K. The
funetion f* is Holder continuous. We can now apply theorem I to the
equation

6) 0z[0t = 3%z[0x+* (2, t, 2) +1/n
and thus conclude that (6) has a solution z,(v,t) such that
(M w(@,0) =g(@, )+1n  for (z,t)l

for n sufficiently large. It follows from lemma 1 that
(8) Zpal®, 1) <zp(x,t) in R,

It is easy to verify that z, = T'(%,: /*-+1/n, p+1/n). Using the results
of [5] we infer that z, is compact in C. By (8) we therefore find that
2, = w.in R. Obviously « = T'(u: f*, ¢) and consequently w(z,?) satisties
the equation

) oufot = 9%ufdxr+f*(w, t,n) in R+ (FR-T)
and w(z,t) = ¢(w,t) on I. On the other hand,
Pl tywglm, ) = fla, b, wela, 1), (2, 1, 0@, ) = f{o, £, vo(@, 1)).
Hence by ‘(H) we have
Do 0 < D2aug[Ba+* () 1, wg), 0o [0t > B30y (022 (2, T, Vo).
Applying lemma 1 and (9) we find that
(10) ug(x, 1) < u(m,t) <wvy(w,t) in R,
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Using the definition of f* and (10) we conclude that « is a solution of
g

), (2).
Let v (¢, t) be an arbitrary solution of (1), (2). From lemma 1 it follows
that

mg(@, 1) < v(w, 1) < vy(2,1)
and consequently

(11) dvjat = 820 /8w -+ f*(w, T, v).

It follows from (7), (9), (11) and lemma 1 that v(2,1) < zu(2,?) in R.
Therefore v{w, 1) < u{v, t) in R. - We conclude that « is the maximum
solution.

One easily proves the following theorem:

THEOREM 3. Let the assumptions of theorem 1 be satisfied. Then the
boundary wvalue problem (1), (2) possesses the minimum solution.

‘We shall prove the following theorem:

THEOREM 4. Suppose that the assumptions of theorem 2 hold. Let the
reqular function z(xz,1) satisfy the imequalities

(12) ozfot < 0%z[0xt+-f(w,t,2) n R4 (FR-T),

(13) 2z, t) <ep(x,t) on T.

Then z(x,t) < ulx,t) on R, where wu(x,t) i8 the mavimum solution of
(1), (2)-

Proof. Using (12), (13) and lemma 1 one concludes that

(@, t)eR.

In order to prove our theorem.we shall prove that 2(w, t) < 2,(z,t) in R,
for » sufficiently large: =, is thé sequence constructed in the proot of
theorem 2. Suppose that there is s, such that the set

E[m ) eR, 2y (7, 1) < 2(x, 1))

is non-empty Note that 2w, 1) <o, t) < e, t-H/no = 2y (@, 1) for
(@, t)el. Let Z; be the plo]ectlon of Z on the t-ax and let ¢ = infZ,.
Obviously 0 < £ and 2(®,1) <2y (@,1) for e <o <b and 0 <1< &
Moreover there is Ze(a,b) such that 2(%, ) = 2, (%, £). We conclude
therefore that

ol (L
ot &9 ot léy 0t |go ” \ oo lEy

Furthermore
o(T, &) < u(Z, &) < 2py (T

2(w,1) <wvo(w,?)  for

1 6) = 2(B, §) < 0,(, &)

icm
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and consequently '

f(a_: 533(515)) :7‘*(5: 5,@(55,5)) f (Z Eyzn{. (® E)
L T e T o e T e
ot (x,s)—' 0t /@, 5)*7_1“- otlzn \ox?

Thig contradicts (12).
We have just proved that z(m,t) < z,(z,t) in R for = sufficiently
large. We conclude therefore that z(z,1) < u(w,1t) = limz,(z, {), q. . d.
A—>00 :

An analogous theorem for & minimum solution iy the following one:

THEOREM [. Let the assumptions of theoirem 3 be satisfied. Suppose
that the regular function z(x,t) satisfies the inequalities
dz[0t = 0%z)0x*+f(m,t,2) in R4+ (FR-T),
2w, t) >z, 1) for (w,t)el.

Then z(m, 1) = v(xz, 1) wn R, where v(, t) is the mintmum solution of (1), (2).

Remark 1. The theorems given above may be extended to the
case of general parabolic equations and inequalities. The operator 9 /dz*

is replaced by
2 (o, ) = +Z by(e,

One must assume that the coefficients are sufficiently regular as to
guarantee the use of the potential theory. If f depends on the first spatial
derivative of the solution, then the assumptions coneerning f must be
stable in the sense that they hold for f-4- ¢ for ¢ > 0 and sufficiently small.
Such stable assumptions are given in [2], [8]. There is no difficulty in
extending -our method to the case of other boundary value ploblems
guech as those of Neumann type, ete.

2.1, This section deals with the method of Chaplighin applied to
the first boundary value problem for the equation )
(14) Oz[0t = 0*z[0x*+f(w, t,2).
In [11] .ai)pearecl the assumption f, > 0. We do not need such an
assumption. Let us introduce the following condition:

(0,) Suppose that the condition (H) holds. It is assumed that to every
regular funetion z(z,t) such that
(15) Befot < 022[0at+f(w,t,2) in RO+ (FR—T),

(16) o (2, 1) < 2(w, 1) < o2, 1)
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there corresponds a function |o(#,t:£,7:z), Holder continuous in s,
& and 7, such that the following conditions hold:

(@) w(z,t: £, E2) =0 for each &,

B) wl@,t:& n:0) <flz,t, 8~F(w, b,y if
and (x,t)eR,

(y) fthere is a K > 0 sueh that |w(z,t: &, 5: 2)]
Ke(r,t) << &Koz, ?) and (v,1) R,

(8) ale, t:2010 (@, 1), 2a(@, ) i) = 0 I R I wo(, t) < onle, 1) <
on R and z,(z,t) is unifermly convergent on R.
We shall prove the following theorem:

THEOREM 6. Assume that the condition (C,) holds. Suppose that

s, 1) << &Ko, 1)
< K whenever uy(x, 1)

vo(®, 1)

(a7
(18)

Pu(e,t) = p(z,1)  and  @u(, 1) <guplz,?) on I,

uo(@, 1) < @l@, 1) < v4a,1) on I

Then there exists a sequence {uﬂ} of regular functions which satisfy the
following conditions:

(19) un(2,t) is a regular solution of the equation 0z[0t = 0%z /0w~‘+
+w(@, 2, gy (@, 0) 1200+ F (%, 1, U l(w 1),

(20) Up (@, 1) = @u(@,1) on T,

(21) Upy (B, 1) < up(z,t) 0 R,

(22) (@, 1) < Up(w, 1) < vy(w,t) in R,

(23) 0un [0t < 02w [0+ f(w, 8, w,) 0 RO (RR—TI),

(24)  uy(x, ) comverges wuniformly in R to the minimuwm solution of the
boundary problem (1), (2).

Proof. The finction wy(x,?) satisfies (15) and (16). We conclude
there.fore that there exists an w(w, 1:£, n:u,) satisfying («), (B) and ().
Consider the equation
(25) 2[00 = 0*2[00°+ @ (w, 1:2, wy (@, 1))+ (0, ¥, wo(w, 1))
and the boundary data
(26) o, 1) =g(o,1) on I
Using («) we get

27 du, [0t < 02U [0+ w (2, t:ug, wy(2, 1) 1ug)+ (2, B, uy).

icm°
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It follows from the inequality u,(w,1?) < vo(x,?) and from (4) and (B)
that
(28) By [0t > 820, B2+ (), 11y, (@, B)2g) + F (2, 1, ue(w, 1)}
Using (18), (27), (28) and theorem 1 we conclude that there exists a solu-
tion #,(»,1) of the boundary problem (25), (26). Moreover, u,(2, ) <
< uy(x, ) < vo(w,?) in R. By (B) we ‘uhorefore get

Ouy (01 < 0%u, [0+ f(2,t, w,) in  ROH(FR-T).
We havo just proved that (19)-(23) hold for »n = 1.

Let these conditions be satisfied for » == k. By (C,) and (22) and (23)
there is a funetion w(z, t:&, n:u;) satisfying (a), (B) and (y) for z = uy.
We congider the boundary problem (19), (20) for » = k1. It is easy
to verify that (H) holds for that problem if u, is replaced by u, v, being
unchanged. By theorem 1 we find that there exifts a solution uz,, of
(20) for n = k-1, Moreover, u,(w,t) < ug(w,?) < Uy (2,1) <
< vy(w, t) in R. Using (B) we conclude therefore that

a’ttk+1/at < 0’uk+,/6w”+f(w, t, ulc-}-l)'

It is thus seen that g, satisfies (19)-(23) for n = k+1. It remains to
prove (24). Using (22) and (y) we oconelude that the segquence
0 (@, 13211 (1), Un (@, 1) Un) 1 (@, 1) U (@, 2)) = Baya(@, ?) is equibound-
ed in R. Obviously u, = T(tnihn, @a) Applymg argaments similar to
that used in [5] one easily proves that u, is compaect in C. This fact
together with (21) implies that w,(w, 1) is uniformly convergent u,(z, t) =
= u(w ) in R. We have h, = f('v t,u(x,t) and consequently by (17)
u="T(u: f,q: = hmT(un ny Pn)- Thxs implies that w(z,?) is a solution

of (1), (2). Let z(m t) be an arbitrary solution of the boundary value
ploblem (1), (2). It follows from (17), (23) and from lemma 1 that u,(@,?)
< #(»,t) in R. Hence u(w,?) is the minimum solutlon of (1), {2), which
was to be proved.

We introduce the following condition:

(0,) Suppose that the condition (H) holds. We assume that to
every regular function z(w,?) satisfying the inéqualities

dz[0t > 3%2[0x*+f(z,t,2) in R4 (FR-T),

vo(m, t) > wo (@, t)

Annales Polonici Mathematiei VIII

z(x, t)
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there eorresponds a Holder continuous function @ (x,1:&, :2) sueh that

the following conditions hold:

(o) @(z,t, £, &:2) = 0 for each &

(®) Fl@, tyn)—fle, 1, 5) < @@, t: £, n:2) for w(a,?) <np <&, ),

(v) there is a K > 0 such that |w(z,?:&, :2)] <K whenever w,(z, 1)
< < E<ala, 1) < o2, 1) and (z,1)eR,

(%) a@le, 122, (2, 1), Zuss (2, 1):2,) = 0 if 2, is uniformly eonvergent in R,

Applying a reasoning similar to that applied in the proof of theorem 6
one easily proves the following theorem:

THEOREM 7. Suppose that the condition (Oy) holds. We assume that
(@, 1) are comtinuous and v,(w,1) = @@, 1), vua(@,?) < yu(2,1) on I
Then there exists a sequence {v,.} of regular functions and the follonwing con-
ditions hold: v, (x, 1) is a regular solution of the equation

Du0t = 0%2)00%+ & (B, 1100y (@, 1), 2:0,y) +F @y 1y Ony (2, 1)
Moreover, wuy(2,1) < vg(w, 1) < vy, (2, 1)

and v,(2,t) = y.{z,1) on I.

< v(2,t) in R and
v, [0t > 020, [0x+f(®, 1, v,).
The sequence v, (z,t) converges um'/ormly in B to the magimum solution

of (1), (2).
2,2. We say that the boundary value problem

dz[0t = 0°z[0x*+-g(@,t,2) in R4 (FR-TI,
¢(®,t) =a(x,?t) on I

has the property (S) if it possesses a unique solution w(wz,t) and the
following conditien holds: for every regular funetion r(w,?) the inequal-
ities

orfot < 0%r[0x®+-g(z,t,7) in R4 (FR-I),
ri@,t) <ole,t) on I
imply that »(z, t) <w(z,?) in R.

Suppose for example that |g(e, 1, z)—g(w, 1;2)| < M|z—7| and let g
be Holder continuous. Define g,(w,1,2) = g(w,t,2)+¢ for &> 0. Then
9. (@, t,2)—g,(%,1,2)] < M|z—2| and consequently there oxists (see for
lnst&nce 11} a umquc solution z,(x,t) of the equation

0z[ot = 92z [0x2+ g,(L, t, )

such that z,(®,?) = o(z,)4+¢ (¢ > 0), on I. It follows from lemma 1
that 2, (¢, t) <#,(#, 1) in R whenever ¢ < &. From theorem 2.2 of [10]

icm
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one conecludes that z,(x,1) = 2,(x, ) in R. Suppose that the 1eguh.1
e~»0+

function z(w, t) satisfies the mcquf\,htms

0z(0t < 020w +-g(x,t,2) in RO+ (FR—I)
and 2(z,1) < o(z,t) on I. Using lemma 1 we find that z z(z, 2, (2, 1)
in R for ¢ > 0 and consequently z(z, t) < %¢(w, t) in R. Hence the property
(8) holds. In particular if ¢ = a(z, t)z+ (2, t) then property (S) holds
whenever a(x,t) is Holder eontinuous.

If we replace in (C,) (resp. (C,)) the sign < in (18) and (B) (vesp. (B’))
by < we get a new condition, which we denote by (C}) (resp. (C}) ). All
the remaining conditions of (C,) (resp.-(C,)) are not changed. One easily
proves the following theorem:

THEOREM 8. Suppose that (OY) holds. Let the problem (1), (2) have
the property (S). We assume that for every regular function. "w(x,1) the
problem

02[0t = 3*2)00*+w (v, 1:2, w(w, 1):0) + f (2, ¢, w(z, 1)),
2(@,t) = o{w,t) on I
where ug(w, 1) < o(@, 1) < ve(w,t) on I has the property (S). Under our
assumptions there ewists a sequence u,(x,1) of regular functions converging
uniformly in R to the solution of (1), (2) and the follv)wmg condition hold:
Un (%, 1) 98 the solution of the equation

02[0t = 0°2[00"+-w (@, 1:2, Un_y(, 1) :Up_s) T+ Flg, 1, Uuy (2, 1)),

Moreover w,(z,1) < uy(@,1) < Up (2, 1) < vy(2, 1) in B and

Ouy [0t < 02y, [0 +F (2, T, ).

A gimilar theorem may be formulated when ((3) holds. . :

For the sake of simplicity we assume in what fellows that the equa-
tions eonsidered have the property (S). Now we 1ntroduce the following
condition :

(C) Let the assumption (H) be sa.tlsfled It is supposed that to every
couple 2, z of regular functions such that u“(a, 1) < z(2,t) <zE2,1)
< v, t) there correspond two Holder continuous functions w(x,1:£,
n:2,%), &(w,1:&, 9:2,%) and the following relations hold:

() wle, 1:£, &:2,%) = 6o, 1:&, E2,8) = 0 for each £

(B") w(w,1:&,9:2,%) < flw,t, §)—f(w,t,n) andi f(z,t,n)—f(z,t,8)
< o(w,t:£,9:2,2) whenever 2(w,1) <y < & <Z(=,1),

(y") the funetions o, ® are bounded,

(8") hmw(m t: fny Ru_1 o1, Bay) —l‘m")(m 1By, Bt By Bana) = 0
T:J;D;formly in R if limz, = hmz,, = z uniformly in R.

e300 N—»00
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One éa.sily proves the following theorem: ‘ .

TraorEM 9. Let the condition (C) be satisfied. It i3 supposed that
Ug(7, 1) < pul2, 1) < Pupa (@, 1) < (@, 1) < puna(@, 1) < yulw, 1) % "7_0(“', 1)
for (¢, t)el” and Bmy, = limg, = ¢ uniformly on I'. Then there exist two

N300 N~->00

S6qUENCEs Uy, U, of regular functions and the following relations hold:

(20) O, [0t << Puyf0n+fl2, 1, ), 00,01 = 020, [0x2 - f(x, t, vy),
(30) '“’O(m7 t) < ’ll:ﬂ(.’l/‘, t) < “n—f-l(wy t) < vﬂ,«}-l(w’ t) < '”ﬁ(m7 t)

< volw,t)  for (@, 1) R,
(31) 014y, [0 = 2wy B0+ @ (@, 12Uy, Uyl PR L (PR PRTNSYE

00, [0t = 020, [0+ D (B, b2 V1) Vpiln—1, V1) T F (@) Ty V)
and uy(@, 1) = ?’Jh(my 1)y vul,?) = Yu (2, 1) for (=, el
(32) oty = , =t uniformly in R where w is the solution. of (1), (2).
We shall present some examples. )
Exampre 1. Suppose that

a(@, )(E—n) < (2,1, —f(w,1,7)

for £ > n. We can put o = a(®,t)(§—4) in theorem 6.
BXAMPLE 2. Assume that f, exists (see [11]) and
m == inf fl0,t,2).
(x,l)eR
ug (@, ) <@ <M (2, 8)
We can put o = (m—¢)(§—n) in theorem 6. If Ifol < M then we put

@ = —M{§—y) in theorem 6 and & = M ({— ) in theorem 7. One can
-algo take in theorem 8

w(@,1; &, niw) = inf oy by 2) ().
- (@ 1) B
wiz, ) <e< V(1)

ExAMrLE 3. This example deals with the original method of Chap-
lighin (gee [1] and [3]). It is supposed that f,(x, ¢, 2) is Holder continuous
and inereases in 2. Then f(x, t, 2) is convex with respect to 2. '.l.‘heka,ssump-
tions of theorem 9 are satisfied if

oz, t:§,9:2,7) = f(2,t, 2)(§—n)
and

s . w5 _f(wzt:ﬁ(w!t))“f(myiyg)
a)(m’t-fy'ﬂ-f’z)"‘ o g(w,t)—é‘

(n—2(z, )+

—I-f(wyt,ﬁ(“ht)}'“‘f(w’t;f)-

icm
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If & =z(x,1), then the coefficient at (y—2z(», 1)) is replaced by
fs("”s t, z(w, t))

3.1. In this section we derive some estimates for the difference w— u,
where w is the solution of (1), (2) and w, are solutions of suitable equa-

tions considered in § 2. To begin with we formulate a lemma of J. Szar-
ski [10]:

Lemma 2. Suppose that the fumction o(t,y) =0 8 continuous for
1e(0, T+¢) (¢ > 0) and y > 0. Let t(t,n) be the right-hand mapimum so-
lution. of the equation y' = o(t,y) such that v(0,n) = 5. Ii is supposed
that for each n =0 z(t,n) cvists in (0, T--e). We are given two regular
solutions wu(w, 1), v(x,t) of équations

oufot = 2ujox+g(xz, t, u)
and
ov[ot = 0%v/0x*+h{w, 1, v)
respectively. Assume that
(e, by uie, ) — Rz, b, v, )| <oty lulz, ) —o(@,8)]) in B
Let n = max|u(z, t)—v(z, ). Then
xr

(@, ) —v(@, )] < T, ) for (a,1t)eR.

Now let the derivative f, be Holder continuous and increasing in 2.
Suppose that (H) holds and
(33) Uy (T, 1) < (@, 1) < vy(w,t) on I

Using theorem 8 we obtain a sequence u, such that

(34) QU [0t = 02, [05*+ (@, 8, Uy (2, 1)) (U (&0, 1) — Uy (2, 8) +
+i(@yty Uny(m,1)).

Moreover,

(35) g (@, 1) < Up (@, 1) < Uy (@, 8) < u(w, t) < vy(m, 1),

where wu(x, 1) is the solution of (1), (2). The sequence u, convetges wni-
formly in R to u.

3.2. We ghall prove a theorem concerning the limitation of difference
Uy, — .

THEOREM 10. Suppose that f,(x, t, z) 18 Hilder continuous and increas-
ing in 2. Let (H) be satisfied and suppose that (33) holds. Let u be the
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solution of (L), (2). Suppose that the function - (t,y) is continuous for
¥ =0 and increases in y. We assume that :

(36) AR R ESAURNIIES

whenever 1, (#, 1) < 2,2 < ol 1). Let 7y(t) > makb{vo(m ) 1)
A : PR

ol(t, |z—z\)
o, 1)} and
define .
(87) Taga (1) = £p 1 €0+ feK(""’) (8, 7, (8)) T (8) ds,
b

where
K = sup falw, By )|
(z,8)eR

g (7,) S 25vo (2, 1Y)
Suppose that '
(38) [t (0, ) —w (0, )] S &y om0 T
Our assumptions implz/ that
(39) [u(z, 1) "‘“n(m 1| < w(t), (w,t)eR,

Proof. Obvidusly (39) holds for n = 0. Suppose that (39) holds
for # = k. Remark that

) .
o= 0,1,2,...

dufot = 02ufdar+f(m, t, u(w, 1)

and
Q. 0%u,
"6;1 = au2+‘+j,(m by U (@, V) (Unga (@, ) — tn (@, D)+ (0, 8, un (@, 1))

It follows from the mean value theorem that
(40)  flw, t, ulw, ) —f(2, t, u,(z, )
= fo(®, 1, wa(m, 1))+ Oy (w{w, 1)
where 0 < ¥, < 1. On the other hand
Toly 8y vy (@, 0)) 4 B (0 (o, 1) — ug (2, 1)) (e (2, ) —
— ol by (@ 0)) (1 (2, 1) — w (2, 1)
= [fel, ¢y (0, 1)) F By (0, 1) — 20 (@, 8) — fo (2, 4, g {m, )] (1 (e, 2) -
=ty (2, 8)) - Fo, by wn (5, 1)) (0 (@, 1) — %y (@, 7).

Note that 0 < u(w,t)—u,(2,1) < 7,(1) and 0 <9, <1. The function
o(t, y) increases in y. Hence ‘

[zl ty wn (2, 1)+ O (u (2, ) —u, (@, f)-«fg(w by un(m, )] (u (2, 1) —
(t B (0 (, €) — 2y, (2, 1) )rn(t @(ty T (1) 14 (2).

— Uy (7, t)) ('“ (@, ) = (@, t)j)

1y, (8, 1)) —

— (2, )] <
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Obviously

[fol2, 2y wn (@, t))(u(w 1) =ty r (@, 1)),
Using the above relations and applying lemma 2 we get
(z,0)eR,

< Klu(z, t)"”m}»l(‘”; .

lu(‘”: t)-‘un+l(m7 0 < (¢, 5114-1)7

where t(t, £,,,) is the solution of the equation -
¥= Ky+w(t7 Tn(.t))tn(.t)
such that v(0, &,,;) = &,4;. We conclude therefore that
|H(.E t - Un+1(60 t){ En HeKl_‘}’_feK(( a9 (8 Tn 3))Tn(a)d8 = Tn+1(.t)

“

and our theorem is proved.

Remark 2. Theorem 10 gives some generalization of results of
Lusin [3] obtained for ordinary differential equations. In [3] w(t, y)
= Hy where H = sup|8®f/0x?|. Following Lusin one immediately proves
that if 92f/0x® > 0 and if

7(t) < 1/2HTeET = ¢
and &, = 0, then
Un (@, 1)| < 20/27".

Remark 3. Suppose that ¢, = 0 and ¢¢9 < ¥ for 0

Congider the ordinary differential equation

(40) ) ¥ =DNo(,yy. .
The unigue solution of (40) passing through the point (0, 0) is the solution
identically equal to zero. Suppose that z,(t) < p,(t) in <0, T> and define
PR
= [Nols, pu(s) pals)ds
0

|u(z,t) —

<s <t < T.

Pug1 ()

(1) is a sequence of successive approximations for (40). It is ecasy to
show that ,(1) < w.(f). In general y, converges to zero more strongly
than " /n!.

Remark 4. The methods developed in § 2
to equations of the following form:

and § 3 may bo extended

n n
du 3 0%y ou
4 DA \ el 1) o
( 1-) ()t i‘;c—jl k('p 7:) d a k:+ 7(‘”; ) amj +
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Our derivations given before may serve as a model to derive analogous
rosults for (41). Such generalizations must be based on lemmas analogous
to lemma 1 and lemma 2. Generalizations of lemma 1 and 2 are respec-
tively proved in [4] and [10]. Following Zeragia [11] we can introduce
the following assumption: the form
1
_OF §i6p =0

3507 (f = f(@y 8y Dyy o ovy Pugr))-

A new difficulty arises in that caso. This is the problem of equi-boundoed-
ness of first spatial derivatives of approximate solutions. The approx-
imate equations are of the following form:

n ® n
0u,.yy \7 02,1, 0,y
— . 1) — b !
o= Y aules gttt Yo, )50
k=1 Fe=1 7
ou, ou,
+ fu(my t, “ﬂ‘é?ﬂ“ly "~y‘5{‘”’:) (“—H"‘uw)"“

n
Ju, ou,\ (0w, Ou,
E X By Uy e sy e e v |
t o (m, il P ’Bm,.) ( a; Bm) |

fe=1

ou, ou, .
-+ f(ﬁ, t, u,,,‘a—:v—, ey ‘—am—) (f == f($, 1, Uy Gy oeny g")).
1 n

A suitable regularity assumptions for g, b; must be introduced.
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