

ANNALES POLONICI MATHEMATICI VIII (1960)

Sur une propriété périodique des fonctions \tilde{B} presque-périodiques

par A. S. KOVANKO (Lvov)

Dans une note récente [3] j'ai démontré une propriété des fonctions B_w presque-périodiques [1, 4], cette propriété pouvant être considérée comme une nouvelle définition de ces fonctions. Nos idées se rattachent à celles de R. Doss [2].

Nous étudierons dans cette note des propriétés analogues pour les fonctions " \tilde{B} presque-périodiques" [4]. La démonstration se rattachera directement aux résultats de la note [3].

I. § 1. Notations, définitions et théorèmes préliminaires. Soient f(x) et $\varphi(x)$ deux fonctions complexes d'une variable réelle x sur $(-\infty < x < +\infty)$ $(f, \varphi \in L_w[w \geqslant 1])$.

Définissons la distance $D_{B_w}^E(f,\varphi)$ entre f et φ par la formule suivante:

$$D_{B_{w}}^{E}\left(f,\varphi\right)=\varlimsup_{T\rightarrow\infty}\left\{\frac{1}{2T}\int\limits_{-T}^{T}\left|f(x)-\varphi(x)\right|^{w}C_{E}(x)dx\right\}^{1/w},$$

où $C_E(x)$ désigne la fonction caractéristique de l'ensemble E. Si $E=(-\infty,\infty)$, nous rejetons l'indice E en écrivant: $D^E_{B_w}(f,\varphi)=D_{B_w}(f,\varphi)$. Posons encore

$$\sigma_{na}[f(x)] = \frac{1}{n} \sum_{k=0}^{n-1} f(x+ka),$$

et introduisons la fonction coupée $[f(x)]_N$ par les conditions suivantes:

$$[f(x)]_N = egin{cases} f(x), & ext{si} & |f(x)| < N, \ rac{f(x)}{|f(x)|}, & ext{si} & |f(x)| \geqslant N. \end{cases}$$

§ 2. Définition 1 [4]. $f(x) \in \tilde{B}$ p. p. $(\tilde{B}$ -presque-périodique), si,

quel que soit ε (0 < ε < 1), on peut trouver un polynôme trigonométrique

$$P_n(x) = \sum_{k=1}^n a_k e^{i\lambda_k x}$$

tel que $|f(x)-P_n(x)|<\varepsilon$ pour toutes les valeurs de x, sauf peut-être pour un ensemble $E_{n\epsilon}$ tel que

$$\delta_B E_{n\epsilon} < \epsilon, \quad ext{où} \quad \delta_B E = D_{B_1}^E(1,0) = arprojlim_{T o \infty} rac{|E(-T,+T)|}{2T}.$$

Définition 2 [1,3,4]. $f(x) \in B_w$ p. p. $(B_w$ -presque-périodique) si, quel que soit $\varepsilon > 0$, il existe un polynôme trigonométrique

$$P_n(x) = \sum_{k=1}^n a_k e^{i\lambda_k x}$$

tel que $D_{Bw}(f(x), P_n(x)) < \varepsilon$.

Définition 3 [4]. $f(x) \in B_w$ u. s. $(B_w$ -uniformément sommable) si, quel que soit $\varepsilon > 0$, il existe un nombre $\eta = \eta(\varepsilon) > 0$ tel que $D^E_{Bw}(f(x), 0) < \varepsilon$ si $\delta_B E < \eta$.

Définition 4 [4]. $f(x) \in \tilde{B}$ a. b. $(\tilde{B}$ asymptotiquement bornée) si, quel que soit ε (0 $< \varepsilon < 1$), on peut trouver un nombre $N_0 > 0$ tel que l'ensemble E_N des valeurs de x, où $[f]_N \neq f$, possède la propriété: $\delta_B E_N < \varepsilon$, si $N > N_0$.

Définition 5 [3, 4]. Une suite $\{f_n(x)\}$ $(n=1,2,3,\ldots)$ est dite convergente $,\tilde{B}-en$ mesure" vers f(x) sur $(-\infty < x < +\infty)$, si, quel que soit ε $(0<\varepsilon<1)$, il existe un nombre $n_0=n_0(\varepsilon)>0$ tel que $|f(x)-f_n(x)|<\varepsilon$ pour toutes les valeurs de x, sauf peut-être pour un ensemble $E_{n\varepsilon}$ tel que $\delta_B E_{n\varepsilon}<\varepsilon$ si $n>n_0$.

Remarque. Dans toutes nos définitions il s'agit, bien entendu, de fonctions mésurables définies sur $(-\infty < x < +\infty)$.

§ 3. Propriété 1. (I) Si $f \in \tilde{B}_w$ $p. p., on a <math>f \in B$ p. p.

Propriété 2. (I) Si f est bornée et $f \in \tilde{B}$ $p. p., on a <math>f \in B_w$ p. p. pour tout $w \geqslant 1$.

Propriété 3. (I) Si $f \in \tilde{B}$ $p. p., on a <math>[f]_N \in B_w$ p. p., quel que soit <math>N > 0 et $w \geqslant 1$.

PROPRIÉTÉ 4. (I) Si $f \in \tilde{B}$ p. p., on a $f \in \tilde{B}$ a. b.

Propriété 5. (I) Si $f \in \tilde{B}$ p. p. il existe, quel que soit ε (0 $< \varepsilon < 1$) un ensemble relativement dense de presque-périodes $\tau = \tau(\varepsilon)$ et un nombre $\eta > 0$ tels que $|f(x+t)-f(x)| < \varepsilon$ pour $|t-\tau| < \eta$ et pour toutes les valeurs de x, sauf peut-être pour un ensemble E_t tel que $\delta_B E_t < \varepsilon$.

§ 4. Enonçons maintenant une nouvelle définition des fonctions B_m p. p.

Définition (A_w) [3]. $f \in A_w$, si f(x) possède les propriétés suivantes:

1. (A_w) $f(x) \in B_w$ u. s.

2. (A_w) Quel que soit $\varepsilon > 0$ il existe un nombre $\eta > 0$ et un ensemble relativement dense de nombres $\{\tau\}$ tels que $|f(x+t)-f(x)| < \varepsilon$ pour $|t-\tau| < \eta$ et pour toutes les valeurs de x, sauf peut-être pour un ensemble E_t tel que $\delta_R E_t < \varepsilon$.

3. (A_w) Quel que soit a > 0, il existe une fonction périodique $f^{(a)}(x)$ de période a, presque partout finie et telle que $\{\sigma_{na}[f(x)]\}, n = 1, 2, ...,$ converge " \tilde{B} en mesure" vers $f^{(a)}(x)$.

Nous avons démontré dans [3] le théorème suivant:

THÉORÈME I. La classe A_w est identique à celle des fonctions B_w p. p.

(Par conséquent la définition A_w peut être considérée comme une nouvelle définition des fonctions B_w -presque-périodiques).

II. Introduisons une classe de fonctions mesurables définies sur $(-\infty < x < +\infty)$ comme il suit:

Définition (\tilde{A}) : $f(z) \in \tilde{A}$, si f(x) possède les propriétés suivantes:

1. $(\tilde{A}) f(x) \epsilon \tilde{B}$ a. b.

2. (\tilde{A}) Quel que soit ε ($0 < \varepsilon < 1$), il existe un nombre $\eta = \eta(\varepsilon) > 0$ et un ensemble relativement dense de nombres $\{\tau\}$ tels que |f(x+t) - f(x)| $< \varepsilon$ pour $|t - \tau| < \eta$ et pour toutes les valeurs de x, sauf peut-être pour un ensemble E_t tel que $\delta_B E_t < \varepsilon$.

3. (\tilde{A}) Quels que soient a > 0 et N > 0, il existe une fonction mesurable périodique $f^{(a)}(x)$ de période a telle que $\sigma_{na}\{[f(x)]_N\}$ (n = 1, 2, 3, ...) converge ,, \tilde{B} en mesure" vers $f^{(a)}(x)$.

Théorème II (fondamental). La classe des fonctions \tilde{A} est identique à celle des fonctions \tilde{B} p.p.

Démonstration. 1. Démontrons en premier lieu que $\tilde{A} \subset \tilde{B}$ p. p. Soit $f(x) \in \tilde{A}$; alors, à cause de la propriété 1 (\tilde{A}) , nous avons $f(x) \in \tilde{B}$ a. b., c'est-à-dire, quel que soit ε $(0 < \varepsilon < 1)$ nous pouvons prendre N > 0 assez grand pour que l'inégalité suivante soit remplie:

$$|f(x) - [f(x)]_N| < \frac{\varepsilon}{2}$$

Annales Polonici Mathematici VIII

pour toutes les valeurs de x, sauf peut-être pour un ensemble E_N tel que $\delta_R E_N < \varepsilon/2$.

 $[f(x)]_N$, étant bornée, possède la propriété 1 (A_w) .

Fonctions B presque-périodiques

275

A. S. Kovanko

De même $[f(x)]_N$ possède la propriété 2 (A_w) , ce qui découle de la propriété 2 (\tilde{A}), à cause de l'inégalité évidente:

$$|[f(x+t)]_N - [f(x)]_N| \le |f(x+t) - f(x)|,$$

qui a lieu pour toutes les valeurs de x et de t.

La propriété 3 (\tilde{A}) pour f(x) est identique à la propriété 3 (A_n) pour $\lceil f(x) \rceil_N$.

Ainsi, à cause du théorème I, il s'ensuit que $[f(x)]_N \in B_w$ p. p. puisque elle est de la classe (A_m) . Mais, à cause de la propriété 1 (I), nous avons alors $[f(x)]_N \in \tilde{B}$ p. p. Par suite, quel que soit ε (0 < ε < 1). il existe un polynôme trigonométrique:

$$P_n(x) = \sum_{k=1}^n a_k e^{i\lambda_k x}$$

tel que

$$|[f(x)]_N - P_n(x)| < \varepsilon/2$$

pour toutes les valeurs de x, sauf peut-être pour un ensemble E_{Nn} tel que $\delta_B E_{Nn} < \varepsilon/2$.

De (1) et (2) nous tirons

$$|f(x)-P_n(x)|\leqslant |f(x)-[f(x)]_N|+|[f(x)]_N-P_n(x)|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$

c'est-à-dire $|f(x)-P_n(x)|<\varepsilon$, pour toutes les valeurs de x, sauf peutêtre pour l'ensemble E_N+E_{Nn} tel que $\delta_B(E_N+E_{Nn})<arepsilon$. Mais cela veut dire que $f(x) \in \tilde{B}$ p. p., et ainsi nous avons démontré que $\tilde{A} \subset \tilde{B}$ p. p.

2. Démontrons ensuite que \tilde{B} p. p. $\subset \tilde{A}$.

Soit $f(x) \in \tilde{B}$ p. p., à cause de la propriété 4 (I), nous pouvons alors conclure que $f \in \tilde{B}$, a. b., c'est-à-dire que f(x) jouit de la propriété

La propriété 5 (I) d'une fonction \tilde{B} p. p. est identique à la propriété 2 (\tilde{A}) . De la propriété 3 (I) il s'ensuit que $[f(x)]_N \in B_w$ p. p. Alors, à cause du théorème I, on a $\lceil f(x) \rceil_N \epsilon A_w$, donc la propriété 3 (A_w) est satisfaite pour $[f(x)]_N$; mais c'est précisément la propriété 3 (\tilde{A}) pour f(x). Par suite f(x) jouit de toutes les trois propriétés de la classe \tilde{A} . Donc $f(x) \in \tilde{A}$, c'est-à-dire \tilde{B} p. p. $\subset \tilde{A}$.

Ainsi, nous avons démontré d'une part que $\tilde{A} \subset \tilde{B}$ p. p. et, de l'autre, que \tilde{B} p. p. $\subset \tilde{A}$. Par suite $\tilde{A} \equiv \tilde{B}$ p. p. et notre théorème est complètement démontré.

Travaux cités

- [1] A. Besicovitch and H. Bohr, Almost-periodicity and general trigonometric series, Acta Math. 57 (1931), p. 203-292.
- [2] R. Doss, On generalised almost-periodic functions, Annals of Math. 59 (1954). p. 477-489.
- [3] А. С. Кованко, Об одном свойстве и новом определении обобщенных почти периодических функций А. С. Безиковича Укр. мат. ж. 8. 3 (1956), р. 273-288.
- [4] A. Kovanko, Sur les classes de fonctions presque-périodiques généralisées, Annali di Mat. 8 (1930), p. 1-24.

Reçu par la Rédaction le 18. 6. 1959