

VOL. VII

COLLOQUIUM MATHEMATICUM

1960

FASC. 2

ABOUT AN ESTIMATION PROBLEM OF ZAHORSKI

 $\mathbf{B}\mathbf{Y}$

P. ERDÖS (BUDAPEST)

 ${f Z}$. Zahorski [4] has asked for the best possible estimation from above of the integral

$$\int_{x}^{2\pi} |\cos n_1 x + \cos n_2 x + \ldots + \cos n_k x| dx,$$

where $0 < n_1 < n_2 < \ldots < n_k$ are integers. He observes that the estimation of $eV\overline{k}$ is trivial, but he conjectures that $c\log n_k$ is also valid. We shall refute this question twice.

I. We find a sequence n_i for which

$$\int\limits_0^{2\pi} \Big| \sum\limits_{i=1}^k \, \cos n_i x \, \Big| \, dx > c k^{rac{1}{2}-s}.$$

II. We find a sequence n_i for which

$$\int\limits_{0}^{2\pi}\Big|\sum_{i=1}^{k}\,\cos n_{i}x\,\Big|\,dx=\sqrt[4]{\pi}\,\sqrt[4]{n_{k}}+o(\sqrt[4]{n_{k}}),$$

which proves that $O(\sqrt{n_k})$ is the best estimation.

Since the proof of I is much more elementary than the proof of II, we also include it.

The problem remains whether for every sequence $n_1 < n_2 < \dots < n_k < \dots$ and for every $\varepsilon > 0$ we have for $k > k_0(\varepsilon)$

$$\int\limits_0^{2\pi} \Big| \sum_{i=1}^k \, \cos n_i \, x \, \Big| \, dx < (\sqrt{\pi} + \varepsilon) \, \sqrt{n_k} \, .$$

Proof of I. Let us put $n_i=i^2;\ 1\leqslant i\leqslant k.$ We are going to prove that

(1)
$$\int\limits_0^{2\pi} \Big| \sum_{i=1}^k \cos i^2 x \Big| \ dx > ck^{\frac{1}{2}-\epsilon} \ .$$

To check this observe that clearly

(2)
$$\int_{0}^{2\pi} \left(\sum_{i=1}^{k} \cos i^{2} x \right)^{2} dx = \pi k,$$

and it is not difficult to see that for every $\eta > 0$ and $k > k_0(\eta)$

(3)
$$\int_{0}^{2\pi} \left(\sum_{i=1}^{k} \cos i^{2} x \right)^{4} dx < k^{2+\eta}.$$

Namely, in order to prove (3), observe that

$$\int\limits_{0}^{2\pi} \Big(\sum_{i=1}^{k} \cos i^{2}x\Big)^{4} dx < c_{1} \sum_{\substack{i_{1}^{2} \pm i_{2}^{2} \pm i_{3}^{2} \pm i_{4}^{2} = 0\\1 \le i_{1} \cdot i_{2} \cdot i_{3} \cdot i_{4} \le k}} 1 < k^{2+\eta}.$$

Indeed, at least two terms in the sum $i_1^2 \pm i_2^2 \pm i_3^2 \pm i_4^2$ have the same sign. If these terms are i_1^2 and i_2^2 , we can write $2 \leqslant i_1^2 + i_2^2 = \pm i_1^2 \pm i_4^2 \leqslant 2k^2$. The inequalities $2 \leqslant \pm i_3^2 \pm i_4^2 \leqslant 2k^2$, $1 \leqslant i_3$, $i_4 < k$ have $O(k^2)$ solutions. We denote by $\lambda(x)$ the number of solutions of the equation $i_1^2 + i_2^2 = x$. It is well known that $\lambda(x) = o(x^i)$ (1). Hence the number of solutions of the equation $i_1^2 \pm i_2^2 \pm i_3^2 \pm i_4^2 = 0$ is

$$k^2 \max_{x=\pm i_3^2 \pm i_4^2} \lambda(x) = o(k^{2+\epsilon}).$$

From (3) we observe that the set in x for which

$$\Big|\sum_i \cos i^2 x \Big| > t k^{1/2}$$

has a measure less than k^{η}/t^4 . Thus, a simple computation shows that

where I is the set in which

$$\Big|\sum_{i=1}^k \cos i^2 x\Big| > k^{\frac{1}{2}+\eta},$$

and the sets I_{μ} are those in which

$$2^{u}k^{\frac{1}{2}+\eta} < \Big| \sum_{i=1}^{k} \cos i^{2}x \Big| \leqslant 2^{u+1}k^{\frac{1}{2}+\eta}.$$

Formulae (2) and (5) imply

(6)
$$\int_{L'} \left(\sum \cos i^2 x \right)^2 dx = \pi k + o(k),$$

where I' is the complement of I, i. e. for $x \in I'$ we have

$$\Big|\sum_{i=1}^k \cos i^2 x\Big| \leqslant k^{\frac{1}{2}+\eta}.$$

Thus

$$\int\limits_{0}^{2\pi} igg| \sum_{i=1}^{k} \cos i^{2}x igg| dx \geqslant \int\limits_{i'} igg| \sum_{k=1}^{k} \cos i^{2}x igg| dx \geqslant rac{1}{k^{rac{1}{2}+\eta}} \int\limits_{i'} igg(\sum_{i=1}^{k} \cos i^{2}x igg)^{2} dx = rac{\pi k + o(k)}{k^{rac{1}{2}+\eta}} > ck^{rac{1}{2}-\eta} \,,$$

which completes the proof of I.

The proof of II is based on a theorem of Salem and Zygmund [1]. Let us write

$$S_N = \sum_{1}^{N} \varphi_k(t) (a_k \cos kx + b_k \sin kx),$$

where $\{\varphi_n(t)\}\$ is the system of Rademacher functions,

$$c_k^2 = a_k^2 + b_k^2; \quad B_N^2 = \frac{1}{2} \sum_{k=1}^{N} c_k^2,$$

and let $\omega(p)$ be a function of p increasing to $+\infty$ with p, such that $p/\omega(p)$ increases and that $\sum 1/p \, \omega(p) < \infty$. Then, under the assumptions $B_N^2 \to \infty$, $c_N^2 = O\{B_N^2/\omega(B_N^2)\}$, the distribution function of S_N/B_N tends, for almost every t, to the Gaussian distribution with mean value zero and dispersion 1.

Let us set $a_k=1,\,b_k=0$ $(k=1,2,\ldots)$; then $c_N^2=1,\,B_N^2=\frac{1}{2}N$ where $N=1,\,2,\ldots$ Moreover, it is easy to verify that the function $\omega(p)=\sqrt{p}$ satisfies the conditions of the Salem-Zygmund theorem. Consequently, for almost all t, the distribution function of

$$\frac{S_N}{B_N} = \frac{\sqrt{2}}{\sqrt{N}} \sum_{k=1}^N \varphi_k(t) \cos kx$$

tends to the Gaussian distribution with mean value zero and dispersion 1. Furthermore, since the variance of S_N/B_N is equal to 1, we have for almost

⁽¹⁾ Indeed, $\lambda(x) \leqslant \tau(x)$, where $\tau(x)$ is the number of the divisors of x (see e. g. [2], p. 398), and $\tau(x) = o(x^t)$ (see e. g. [3], p. 26). (Remark of the Editors).

170

P. ERDÖS

all t the convergence of the absolute moments of S_N/B_N to the absolute moment of the normalized Gaussian distribution. In other words, we have the relation

$$\lim_{N\to\infty}\frac{1}{2\pi}\int\limits_{0}^{2\pi}\left|\frac{\sqrt{2}}{\sqrt{N}}\sum_{k=1}^{N}\varphi_{k}(t)\cos kx\right|dx=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{\infty}|x|\,e^{-x^{2}/2}\,dx=\sqrt[N]{\frac{2}{\pi}}$$

for almost all t. Hence, using the well-known equality

$$\lim_{N\to\infty}\frac{1}{\sqrt{N}}\int\limits_0^{2\pi}\Big|\sum_{k=1}^N\,\cos kx\Big|\,dx=0\,,$$

we obtain the relation

(7)
$$\lim_{N\to\infty} \frac{1}{\sqrt{N}} \int_0^{2\pi} \left| \sum_{k=1}^N (\varphi_k(t)+1) \cos kx \right| dx = 2 \sqrt{\pi}$$

for almost all t.

Let us fix an irrational number t_0 with this property. Let n_1, n_2, \ldots denote the successive indices k for which $\varphi_k(t_0) = 1$. Then

$$\sum_{k=1}^{n_N} (\varphi_k(t_0) + 1) \cos kx = 2 \sum_{k=1}^N \cos n_k x$$

and, according to (7),

$$\int\limits_{0}^{2\pi} \Big| \sum_{k=1}^{N} \cos n_k x \Big| \, dx = \sqrt{\pi} \, \sqrt{n_N} + o(\sqrt{n_N}),$$

which completes the proof of II.

REFERENCES

- [1] R. Salem and A. Zygmund, Some properties of trigonometrical series whose terms have random signs, Acta Mathematica 91 (1954), p. 245-301.
 - [2] W. Sierpiński, Teoria liczb, Warszawa-Wrocław 1950.
 - [3] I. Winogradow, Elementy teorii liczb, Warszawa 1954.
 - [4] Z. Zahorski, P 168, Colloquium Mathematicum 4 (1957), p. 241.

Reçu par la Rédaction le 3. 7. 1959

COLLOQUIUM MATHEMATICUM

VOL. VII

1960

FASC, 2

ON A PROBLEM OF MAZUR AND ULAM
ABOUT IRREDUCIBLE GENERATING SYSTEMS IN GROUPS

BY

V. DLAB (PRAGUE)

1. INTRODUCTION

In 1935 S.Mazur and S. Ulam have stated the following problem (1) (for the terminology see the end of this section):

Let a group possess an irreducible generating system. Does each of its subgroups also have this property?

The problem mentioned has been solved negatively in paper [1]; e.g. the abelian group

$$G(p^{\infty}) + \sum_{i=1}^{\infty} G_i(p),$$

where $G(p^{\infty})$ is the Prüfer group of the type p^{∞} and $G_i(p)$ cyclic groups of the prime order p, possesses an irreducible generating system but none of its non-reduced subgroup with a finite reduced component has this property (it is easy to see that the subgroups in question are all those having no irreducible generating system; see also [2]). It is the purpose of this note to give some more general constructions of groups G with

PROPERTY P. The group G possesses an irreducible generating system, but there exists a subgroup $H \subset G$ every generating system of which is reducible.

Throughout this article we consider predominantly non-abelian groups written multiplicatively; \times and (in the abelian case) + denote the direct product. \sum denotes the weak direct sum of abelian groups. G^n for a fixed natural n is the subset (of the group G) of all elements g^n with $g \in G$. The power of a set \mathfrak{M} will be denoted by $m(\mathfrak{M})$ and the order of an element $g \in G$ by O(g).

For any non-void subset \mathfrak{M} of G, $\{\mathfrak{M}\}$ denotes the subgroup of G generated by the elements of \mathfrak{M} ; thus $\{\mathfrak{G}\} = G$ means that \mathfrak{G} is a genera-

⁽¹⁾ The Scottish Book, Problem 63, p. 27. I am indebted to Jan Mycielski for calling my attention to this problem.