170

P. ERDÖS

all t the convergence of the absolute moments of S_N/B_N to the absolute moment of the normalized Gaussian distribution. In other words, we have the relation

$$\lim_{N\to\infty}\frac{1}{2\pi}\int\limits_{0}^{2\pi}\left|\frac{\sqrt{2}}{\sqrt{N}}\sum_{k=1}^{N}\varphi_{k}(t)\cos kx\right|dx=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{\infty}|x|\,e^{-x^{2}/2}\,dx=\sqrt[N]{\frac{2}{\pi}}$$

for almost all t. Hence, using the well-known equality

$$\lim_{N\to\infty}\frac{1}{\sqrt{N}}\int\limits_0^{2\pi}\Big|\sum_{k=1}^N\,\cos kx\Big|\,dx=0\,,$$

we obtain the relation

(7)
$$\lim_{N\to\infty} \frac{1}{\sqrt{N}} \int_0^{2\pi} \left| \sum_{k=1}^N (\varphi_k(t)+1) \cos kx \right| dx = 2 \sqrt{\pi}$$

for almost all t.

Let us fix an irrational number t_0 with this property. Let n_1, n_2, \ldots denote the successive indices k for which $\varphi_k(t_0) = 1$. Then

$$\sum_{k=1}^{n_N} (\varphi_k(t_0) + 1) \cos kx = 2 \sum_{k=1}^{N} \cos n_k x$$

and, according to (7),

$$\int\limits_{0}^{2\pi} \Big| \sum_{k=1}^{N} \cos n_k x \Big| \, dx = \sqrt{\pi} \, \sqrt{n_N} + o(\sqrt{n_N}),$$

which completes the proof of II.

REFERENCES

- [1] R. Salem and A. Zygmund, Some properties of trigonometrical series whose terms have random signs, Acta Mathematica 91 (1954), p. 245-301.
 - [2] W. Sierpiński, Teoria liczb, Warszawa-Wrocław 1950.
 - [3] I. Winogradow, Elementy teorii liczb, Warszawa 1954.
 - [4] Z. Zahorski, P 168, Colloquium Mathematicum 4 (1957), p. 241.

Recu par la Rédaction le 3. 7. 1959

COLLOQUIUM MATHEMATICUM

VOL. VII

1960

FASC, 2

ON A PROBLEM OF MAZUR AND ULAM
ABOUT IRREDUCIBLE GENERATING SYSTEMS IN GROUPS

BY

V. DLAB (PRAGUE)

1. INTRODUCTION

In 1935 S.Mazur and S. Ulam have stated the following problem (1) (for the terminology see the end of this section):

Let a group possess an irreducible generating system. Does each of its subgroups also have this property?

The problem mentioned has been solved negatively in paper [1]; e.g. the abelian group

$$G(p^{\infty}) + \sum_{i=1}^{\infty} G_i(p),$$

where $G(p^{\infty})$ is the Prüfer group of the type p^{∞} and $G_i(p)$ cyclic groups of the prime order p, possesses an irreducible generating system but none of its non-reduced subgroup with a finite reduced component has this property (it is easy to see that the subgroups in question are all those having no irreducible generating system; see also [2]). It is the purpose of this note to give some more general constructions of groups G with

PROPERTY P. The group G possesses an irreducible generating system, but there exists a subgroup $H \subset G$ every generating system of which is reducible.

Throughout this article we consider predominantly non-abelian groups written multiplicatively; \times and (in the abelian case) + denote the direct product. \sum denotes the weak direct sum of abelian groups. G^n for a fixed natural n is the subset (of the group G) of all elements g^n with $g \in G$. The power of a set \mathfrak{M} will be denoted by $m(\mathfrak{M})$ and the order of an element $g \in G$ by O(g).

For any non-void subset \mathfrak{M} of G, $\{\mathfrak{M}\}$ denotes the subgroup of G generated by the elements of \mathfrak{M} ; thus $\{\mathfrak{G}\} = G$ means that \mathfrak{G} is a genera-

⁽¹⁾ The Scottish Book, Problem 63, p. 27. I am indebted to Jan Mycielski for calling my attention to this problem.

ting system of the group G. A generating system \mathfrak{G} of a group G is said to be *irreducible* if the set $\mathfrak{G} \setminus (g)$ is not a generating system of G for any element $g \in \mathfrak{G}$. In the contrary case it is called *reducible*. If $\mathfrak{G} \setminus (g)$ is a generating system of G for any element $g \in \mathfrak{G}$, then \mathfrak{G} is called a *strongly reducible* generating system of G.

Let H be a normal subgroup of a group G and $\mathfrak{M} \subset G$. We denote by $\overline{\mathfrak{M}}$ the natural image of \mathfrak{M} in G/H. Especially, if G is a generating system of G, then \overline{G} is obviously a generating system of G/H.

Let Π be a non-void set of primes; a group G is said to be a Π -group if the order of each element of the group G is finite and the primes of Π are its only prime divisors.

2. SOME TYPES OF GROUPS HAVING PROPERTY P

First of all we are going to prove the following simple lemmas:

LEMMA 1. Let H be a normal subgroup of a group G and $\mathfrak G$ a generating system of G such that

(1)
$$g_{\delta_1}g_{\delta_2}^{-1} \notin H$$
 for every pair $g_{\delta_1}, g_{\delta_2}$ of elements of \mathfrak{G} .

If $\overline{\mathfrak{G}}$ is an irreducible generating system of the quotient group G/H, then \mathfrak{G} is also irreducible.

Remark. Supposing only $g_{\delta_1}g_{\delta_2}^{-1}\notin H$ for every pair g_{δ_1} , g_{δ_2} with the exception of a finite number of them, one can prove the existence of an irreducible generating system \mathfrak{G}^* of the group G satisfying $\mathfrak{G}^*\subset\mathfrak{G}$.

Proof. It is easy to see that according to our assumptions the relation

$$g_0 \in \{\mathfrak{G} \setminus (g_0)\}\$$
 for a certain $g_0 \in \mathfrak{G}$

implies

$$\bar{g}_0 \in \{\overline{\mathfrak{G}} \setminus (\bar{g}_0)\} \text{ with } \bar{g}_0 \in \overline{\mathfrak{G}},$$

contradicting the hypothesis of S being irreducible.

LEMMA 2. Let $G=G_1\times G_2$ and $\mathfrak{G}=(g_s)_{sed}$ be a generating system of G. Let

$$g_{\delta} = g_{\delta}^{(1)} g_{\delta}^{(2)}$$
 with $g_{\delta}^{(i)} \epsilon G_i$ for $i = 1, 2$.

Then $\mathfrak{G}^{(i)} = (g_i^{(i)})_{s_{ed}}$ is a generating system of the group G_i (i = 1, 2).

Proof. The proposition of Lemma 2 is obvious; it is sufficient to make use of the commutativity of the elements of groups G_1 and G_2 .

Lemma 1 easily implies the following theorem, stating a general construction of groups with property P:

THEOREM 1. Let G be a group and H its normal subgroup with the following properties:

- (I) H has no irreducible generating system;
- (II) G possesses a generating system \mathfrak{G} satisfying (1) such that $\overline{\mathfrak{G}}$ is an irreducible generating system of the quotient group G/H.

Then G has property P.

Now, using the preceding assertion we can formulate more special results.

COROLLARY 1. Let $G = H \times A$ be the direct product of a group H satisfying (I) and a group A, and let the inequality

$$m(H) \leqslant m(A)$$

be fulfilled. Let no be such a number that

$$A^{n_0} = (e)$$

and

$$\{H^{n_0}\} = H.$$

Hence, especially, if $H^{n_0} = H$, (4) is fulfilled.

If, further, an infinite irreducible generating system $\mathfrak A$ of the group A exists, then G has property P.

Proof. Let \mathfrak{H} be a generating system of the group H; in view of (I) it is necessarily infinite. Moreover, according to (2),

$$m(\mathfrak{H}) \leqslant m(\mathfrak{U})$$

holds. Let φ be a one-to-one correspondence between the set $\mathfrak{H}=(h_{\delta})_{\delta e \Delta}$ and $\mathfrak{U}'=(a_{\delta})_{\delta e \Delta}$, $\mathfrak{U}'\subseteq \mathfrak{U}$, $a_{\delta}=\varphi(h_{\delta})$ for $\delta \in \Delta$. Let us define the set \mathfrak{G} as follows:

(6)
$$\mathfrak{G} = (g_{\delta})_{\delta_{\delta} A} \cup (\mathfrak{U} \setminus \mathfrak{U}'),$$

where

(7)
$$q_{\delta} = h_{\delta} a_{\delta} \quad (\delta \epsilon \Delta).$$

We are going to prove that \mathfrak{G} is a generating system of G. If $h \in H^{n_0}$, then there exists an element $h_0 \in H$ such that $h_0^{n_0} = h$. We have

$$h_0 = h_{\delta_1} h_{\delta_2} \dots h_{\delta_n}$$
 for suitable $h_{\delta_i} \in \mathfrak{H}$ $(i = 1, 2, \dots, n)$

Hence for the element

$$g_0 = g_{\delta_1} g_{\delta_2} \dots g_{\delta_n} = h_0 a_{\delta_1} a_{\delta_2} \dots a_{\delta_n}$$

we obtain by (3)

$$h = h_0^{n_0} = g_0^{n_0} \in \{\mathfrak{G}\}.$$

Thus $\{\mathfrak{G}\}\supseteq H^{n_0}$ and, by (4), $\{\mathfrak{G}\}\supseteq H$. According to (6) and (7) we imme-

diately deduce $\{\mathfrak{G}\}=G$. Since (1) and (II) is obviously valid for \mathfrak{G} we are ready to apply Theorem 1 and we obtain the desired result.

COROLLARY 2. Let Π denote a fixed non-void set of primes. Let $G=H\times A$ be the direct product of a group H satisfying (I) and the relation

(8)
$$H^p = H \text{ for every } p \in H$$

and of a Π -group A with (2). If, further, an infinite irreducible generating system $\mathfrak A$ of the group A exists, then G has property P.

Proof. Following a similar line as in the proof of Corollary 1, we easily deduce inequality (5), where $\mathfrak{H} = (h_{\delta})_{\delta_{\delta},l}$ is a generating system of the group H. Let φ be again a one-to-one correspondence between \mathfrak{H} and $\mathfrak{U}' = (a_{\delta})_{\delta_{\delta},l}$, $\mathfrak{U}' \subseteq \mathfrak{U}$. Let $O(a_{\delta}) = n_{\delta}$; by (8) we can choose an element $h_{\delta}^* \in H$ satisfying $h_{\delta}^{*n_{\delta}} = h_{\delta}$ (for every $\delta \in \mathcal{A}$). Let us define the set

$$\mathfrak{G} = (g_{\delta})_{\delta \in \Delta} \circ (\mathfrak{U} \setminus \mathfrak{U}'),$$

where $g_{\delta} = h_{\delta}^* a_{\delta}$ ($\delta \epsilon \Delta$). Clearly \mathfrak{G} is a generating system of the group G, which in view of Theorem 1 is irreducible.

Let us distinguish two special cases (remembering that a non-zero divisible abelian group has no irreducible generating system, see [1]).

COROLLARY 3. Let H be a Π_1 -group with property (I) and A a Π_2 -group possessing an infinite irreducible generating system; let $\Pi_1 \cap \Pi_2 = \emptyset$ and (2) be fulfilled. Then $G = H \times A$ is a group with property P.

COROLLARY 4. Let H be a non-zero divisible abelian group and A a torsion group having an infinite irreducible generating system and satisfying inequality (2). Then $G = H \times A$ has property P.

We shall conclude this section with the following

THEOREM 2. Let $G = H \times A$ be the direct product of a group H satisfying (I) and a group A having a finite generating system. Then any generating system of G is reducible.

Proof. Let $\mathfrak G$ be a generating system of the group G; let us denote by $\mathfrak S$ the set of components of the elements of $\mathfrak G$ in the subgroup H. According to property (I) and by Lemma 2 we easily deduce

$$m(\mathfrak{G}) \geqslant m(\mathfrak{H}) = m(H) \geqslant \aleph_0$$
.

Since A has a finite generating system, there exists a finite subset $\mathfrak{G}_0 \subset \mathfrak{G}$ satisfying $\{\mathfrak{G}_0\} \supseteq A$. By (I) there exists necessarily an element $g \in \mathfrak{G} \setminus \mathfrak{G}_0$ such that the relation

$$h \in \{\mathfrak{H} \setminus (h)\}$$

holds for its component h in H. Now we easily obtain the following relations:

$$g = ha \in \{\mathfrak{S} \setminus (h)\} \ a \subseteq \{\mathfrak{G} \setminus (g)\} \ \{\mathfrak{G}_0\} \subset \{\mathfrak{G} \setminus (g)\};$$

this completes the proof of Theorem 2.

3. SOME REMARKS

- 1. As we know, any generating system of a non-zero divisible abelian group is reducible; moreover, any generating system of it is strongly reducible (see [1]). Let $G = H \times A$; supposing that every generating system of the group H is strongly reducible and that there exists a generating system $\mathfrak A$ of the group A satisfying $m(\mathfrak A) < m(H)$ one can easily prove the reducibility of any generating system of the group G (the proof follows the same lines as that of Theorem 2). Thus, the preceding assertion shows that assumption (2) in Corollaries 1-4 cannot be dispensed with.
- 2. The following result proved in [3] is closely related to the above theorems: The abelian group

$$R^+ + \sum_{i=1}^{\infty} \{u_i\}$$

where R^+ is the additive group of all rational numbers and $\sum_{i=1}^{\infty} \{u_i\}$ the abelian free group of countable rank has an irreducible generating system, while the subgroup

$$R^+ + \sum_{i=1}^n \{u_i\}$$

for an arbitrary non-negative n has not this property (see also Theorem 2).

3. Let us show that the considered group H need not be a direct factor of the group G. Let us consider the additive abelian group of all rational numbers whose denominators are products of arbitrary powers of a fixed prime p_0 and of square-free numbers. Let H be the subgroup of G of all numbers whose denominators are powers of the prime p_0 . Let $p_0, p_1, \ldots, p_i, \ldots$ be all primes. The set

$$\mathfrak{G} = (g_i)_{i=1,2}$$

where $g_i=1/p_0^ip_i$ is obviously an irreducible generating system of the group G (the cosets g_iH form an irreducible generating system of G/H). On the other hand, it is easy to see that any generating system of the subgroup H is reducible (and, moreover, H is not a direct factor of G).

It is easy to prove that the subgroups having property (I) are just the subgroups consisting of rational numbers whose denominators are products of powers of p_0 (those powers being not bounded) and primes of a fixed finite set Π .

4. The subgroup H need not even be normal in G. Let $G = H \times A$ be a group with property P, where H satisfies (I). Let B be a group posses-

sing an irreducible generating system and having a non-normal subgroup C with a finite generating system (e.g. the symmetric group S_n of degree $n \ge 3$). It is evident that the subgroup $H_0 = H \times C$ is not normal in the group $G_0 = H \times A \times B$ and according to Theorem 2 has no irreducible generating system; the group G_0 has, of course, property P.

REFERENCES

- [1] V. Dlab, Заметка к теории полных абелевых групп, Czechoslovak Mathematical Journal 8 (1958), p. 54-61.
- [2] Некоторые соотношения между системами образующих абелевых групп, ibidem 9 (1959), p. 161-171.
 - [3] The Frattini subgroups of abelian groups, ibidem (to be published).

Reçu par la Rédaction le 2. 3. 1959

COLLOQUIUM MATHEMATICUM

VOL. VII

1960

FASC, 2

EMBEDDINGS IN GROUPS OF COUNTABLE PERMUTATIONS

BY

M. KNESER (MÜNCHEN) AND S. ŚWIERCZKOWSKI (WROCŁAW)

The aim of this note is to answer a question put forward by J. Mycielski. The question is whether, given an arbitrary group G.

(*) G is isomorphic to a group of permutations of a set X such that every permutation displaces not more than countably many elements of X.

We shall prove

THEOREM 1 (1). (*) is true for every abelian group G.

THEOREM 2. If F is a non-abelian free group with more than 2^{\aleph_0} free generators, F' is the commutator subgroup of F and F'' is the commutator subgroup of F', then the group G = F/F'' does not satisfy (*).

If G is an abelian group of order 2^{\aleph_0} , then Theorem 1 follows from a result of N. G. De Bruijn [1]: Every abelian group of order 2^n , where n is an arbitrary infinite cardinal, is isomorphic to a group of permutations of a set of n elements.

Our proof of Theorem 2 can easily be generalized to a proof of the following result: If $\mathfrak n$ is an arbitrary infinite cardinal and F is a non-abelian free group with more than $2^{\mathfrak n}$ free generators, then G=F/F'' is not isomorphic to a group of permutations of a set X such that every permutation displaces at most $\mathfrak n$ elements of X.

PROOF OF THEOREM 1. We start with three lemmas:

(i) If G is countable, then (*) is true.

To see this it is enough to regard each $g \, \epsilon \, G$ as the permutation $x \to g x$ on the set X = G.

(ii) If $\{G_{\tau}: \tau \in T\}$ is a collection of groups and each G_{τ} satisfies (*), then the direct sum $G = \sum_{\tau \in T} G_{\tau}$ also satisfies (*).

To prove this let us denote by X_{τ} disjoint sets such that (*) holds with G_{τ} , X_{τ} instead of G, X. Each $g \in G_{\tau}$ then acts as a permutation on

⁽¹⁾ We have been informed that A. Hulanicki found independently a proof of this theorem.