

COLLOQUIUM MATHEMATICUM

VOL. VII

1960

FASC. 2

EIN ERGODISCHES PARADOXON

VON

S. GŁADYSZ (WROCŁAW)

 $(X,\mathcal{E},m),\,m(X)=1,$ sei ein Maßraum und T eine meßbare und maßtreue Transformation von X. Weiter, $\varrho(x,y)$ sei eine "Entfernung" in X, für welche $\varrho(x,Tx)$ meßbar und

$$\int |\varrho(x,Tx)|dm < \infty$$

ist. Ist eine Menge $E \in \mathcal{E}$ und vorläufig auch $x \in X$ festgesetzt, so seien n_1, n_2, \ldots aufeinander folgende Indizes, für die $T^n(x) \in E$. Ist $\chi(x)$ die charakteristische Funktion von E, so gilt $\chi(T^{n_k}x) = 1$ und $\chi(T^nx) = 0$ für $n \neq n_k$.

Aus dem Birkhoffschen Ergodensatze folgt sofort die Existenz einer mittleren Länge $\varrho_1(x)$ der vom Punkt x zwischen aufeinander folgenden Eintritten in die Menge E zurückgelegten Wege $r_k(x)$, $k=1,2,\ldots$ Definitionsgemäß hat man

$$\varrho_1(x) = \lim_{k \to \infty} \frac{1}{k} \sum_{\kappa=1}^k r_{\kappa}(x),$$

wo $r_k(x) = \varrho(T^{n_{k-1}}x, T^{n_{k-1}+1}x) + \ldots + \varrho(T^{n_k-1}x, T^{n_k}x)$ und

(1)
$$k = \chi(Tx) + \chi(T^2x) + \ldots + \chi(T^{n_k}x).$$

Ist T metrisch transitiv und m(E) > 0, so ist fast überall (f. ü.)

$$\begin{split} \varrho_1(x) &= \lim_{k \to \infty} \frac{\displaystyle\sum_{\kappa=1}^{n_k} \varrho(T^{\kappa-1}x, T^{\kappa}x)}{\displaystyle\sum_{\kappa=1}^{n_k} \chi(T^{\kappa}x)} \\ &= \frac{\displaystyle\lim_{n_k \to \infty} \frac{1}{n_k} \displaystyle\sum_{\kappa=1}^{n_k} \varrho(T^{\kappa-1}x, T^{\kappa}x)}{\displaystyle\lim_{n_k \to \infty} \frac{1}{n_k} \displaystyle\sum_{\kappa=1}^{n_k} \chi(T^{\kappa}x)} = \frac{\int \varrho(x, Tx) \, dm}{m(E)} \end{split}$$

H. Steinhaus stellte die Frage, wie die Wege $r_{ks},\,k=1,\,2,\,\ldots$, beschaffen sind. Wie zu erwarten war, existiert für jedes s f. ü. die mittlere Länge

(2)
$$\varrho_s(x) = \lim_{k \to \infty} \frac{1}{k} \sum_{v=1}^k r_{\kappa s}(x)$$

dieser Wege (Satz 1), aber es stellt sich ziemlich unerwartet heraus, daß für s > 1 diese Grenzwerte wesentlich von x abhängen (Satz 2).

SATZ 1. Ist T metrisch transitiv und ist m(E) > 0, so existiert f. ü. der Grenzwert (2) und die Funktion ϱ_s kann im wesentlichen nur s verschiedene Werte annehmen.

Beweis. Es wird zuerst die Existenz von (2) gezeigt.

Ist $\chi(x)$ die charakteristische Funktion von E und, bei festem s,

$$q(x) = e^{\frac{2\pi}{8}i\chi(x)},$$

so hat das Produkt $q(Tx) \cdot q(T^2x) \dots q(T^kx)$ den Wert 1 nur dann, wenn

(3)
$$\chi(Tx) + \chi(T^2x) + \ldots + \chi(T^kx) \equiv 0 \pmod{s};$$

andernfalls hat es einen der Werte $e^{2\pi i n/s}$, $n=1,\ldots,s-1$. Also

$$\sum_{m=1}^{s} q^{m}(Tx) \dots q^{m}(T^{k}x) = \begin{cases} s, & \text{im Falle (3),} \\ 0, & \text{andernfalls} \end{cases}$$

und

$$\sum_{\kappa=1}^{k} r_{\kappa}(x) = \frac{1}{s} \cdot \sum_{m=1}^{s} \sum_{\kappa=1}^{n_{ks}} q^{m}(Tx) \dots q^{m}(T^{\kappa}x) \cdot \varrho(T^{\kappa-1}x, T^{\kappa}x).$$

Daher folgt aus (1) und aus (2):

$$\varrho_s(x) = \lim_{k \to \infty} \frac{\frac{1}{s} \sum_{m=1}^s \sum_{\kappa=1}^{n_{ks}} q^m(Tx) \dots q^m(T^{\kappa}x) \cdot \varrho\left(T^{\kappa-1}x, T^{\kappa}x\right)}{\frac{1}{s} \sum_{k=1}^{n_{ks}} \chi(T^{\kappa}x)}$$

$$=\sum_{m=1}^{s}\frac{\lim\limits_{k\to\infty}\frac{1}{n_{ks}}\sum\limits_{\kappa=1}^{n_{ks}}q^m(Tx)\dots q^m(T^\kappa x)\cdot\varrho(T^{\kappa-1}x,T^\kappa x)}{\lim\limits_{k\to\infty}\frac{1}{n_{ks}}\sum\limits_{\kappa=1}^{n_{ks}}\chi(T^\kappa x).}$$

Da T metrisch transitiv ist, so ist der Nenner f. ü. gleich m(E)>0; auch die Grenzwerte

$$(4) F_m(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n q^m(Tx) \dots q^m(T^k x) \cdot \varrho(T^{k-1}x, T^k x),$$

die im Zähler auftreten, existieren f. ü. und es gilt

(5)
$$\varrho_s(x) = \frac{\sum_{m=1}^s F_m(x)}{m(E)}.$$

Wir wollen den Wertevorrat von $\varrho_s(x)$ untersuchen.

Mit $k_0=0 < k_1 < \ldots < k_r=s$ werden alle natürlichen Zahlen $\leqslant s$ bezeichnet, für welche (weiter zu bestimmende) meßbare Funktionen $H_{\nu}(x)$ existieren mit

(6)
$$H_{\star}(x) \neq 0, \quad q^{k_{\star}}(Tx) \cdot H_{\star}(Tx) = H_{\star}(x) \quad \text{f. \"u.}$$

(0 und s sind gewiß solche Zahlen, denn in diesem Falle kann man $q^k(x) \equiv 1$ und $H(x) \equiv 1$ setzen).

Es ist leicht einzusehen, daß $k_{\varkappa}=\varkappa\cdot k_1$ ist. Jede der Zahlen $\lambda\cdot k_1$, $0\leqslant \lambda\leqslant s/k_1$, ist eine der Zahlen k_{\varkappa} , denn aus

$$H_1(x) \neq 0, \quad q^{k_1}(Tx) \cdot H_1(Tx) = H_1(x) \quad \text{ f. ü.}$$

folgt sofort $H^{\lambda}(x) \neq 0$ und

$$q^{\lambda k_1}(Tx) \cdot H_1^{\lambda}(Tx) = [q^{k_1}(Tx) \cdot H_1(Tx)]^{\lambda} = H_1^{\lambda}(x)$$
 f. ü.

Wäre ein k_{\varkappa} nicht von der Gestalt λk_1 , wobei $\lambda k_1 < k_{\varkappa} < (\lambda+1)k_1$, dann wäre $k_{\varkappa} - \lambda k_1$ auch eine der Zahlen k_{\varkappa} . Denn für die Funktion $H^*(x) = H_{\varkappa}(x)/H_1^{\lambda}(x)$ würde

$$H^*(x) \neq 0, \quad q^{\mathsf{x}-\lambda k_1}(Tx) \cdot H^*(Tx) = \frac{q^{k\mathsf{x}}(Tx) \cdot H_\mathsf{x}(Tx)}{q^{\lambda k_1}(Tx) \cdot H_1^{\lambda}(Tx)} = H^*(x)$$

f. ü. gelten, also für $k_{\varkappa} - \lambda k_1$ gäbe es eine Funktion, die (6) erfüllte. Das ist aber wegen $0 < k_{\varkappa} - \lambda k_1 < k_1$ unmöglich.

Ferner werden wir zeigen, daß man solche konstanten c_m und solche ganzen λ_m wählen kann, daß f. ü.

(7)
$$F_m(x) = c_m \cdot H_1^{\lambda_m}(x), \quad m = 1, \dots, s,$$

gilt.

Dies ist trivial, wenn $F_m = 0$ f. ü. Sei also $F_m \neq 0$ auf einer Menge von positivem Maße. Aus (4) folgt aber

(8)
$$F_m(x) = q^m(Tx) \cdot F_m(Tx) \quad \text{f. ü.,}$$

also $|F_m(x)| = |F_m(Tx)|$. Aus der metrischen Transitivität von T folgt $|F_m(x)| = \text{Const. f. \ddot{u}. und } F_m \neq 0 \text{ f. \ddot{u}. So muß } m, \text{ als eine der Zahlen}$ k_1, \ldots, k_r , die Gestalt $m = \lambda_m \cdot k_1$ haben. Aus (6) und (7) folgt

$$\frac{F_m(x)}{H_1^{1m}(x)} = \frac{q^m(Tx) \cdot F_m(Tx)}{q^{2m \cdot k_1}(Tx) \cdot H_1^{1m}(Tx)} = \frac{F_m(Tx)}{H_1^{1m}(Tx)},$$

also $F_m(x)/H_1^{\lambda_m}(x)=c_m=\text{Const. f. \ddot{u}}$. Man erhält daher aus (5) und (6)

$$\varrho_s(x) = rac{1}{m(E)} \sum_{\kappa=1}^{s/k_1} c_{\kappa} \cdot H_1^{\lambda_{\kappa}}(x)$$

und die Frage nach der Anzahl der Werte von ϱ_s wird auf eine analoge zurückgeführt, welche die Funktion H_1 betrifft. Da aus (6) und aus der Definition von q

$$H_1^s(x) = [q^{k_1}(Tx) \cdot H_1(Tx)]^s = H_1^s(Tx)$$
 f. ü.

folgt, so ist $H_1^s(x)$ f. ü. gleich einer Konstanten und $H_1(x)$ kann im wesentlichen nur s verschiedene Werte annehmen.

SATZ 2. Ist eine Menge F & & mit

$$(9) 0 < m(F) < \frac{1}{6},$$

vorhanden, so gibt es eine solche Menge $E \in \mathcal{E}, m(E) > 0, da\beta$ für $arrho(x,\ y)\equiv 1$ die Funktion $arrho_2$ im wesentlichen zwei verschiedene Werte annimmt.

Beweis. Es sei

(10)
$$Q(x) = \begin{cases} -1, & \text{wenn } x \in F, \\ 1 & \text{anderfalls.} \end{cases}$$

Die charakteristische Funktion $\chi(x)$ der Menge E ist durch die Gleichung

(11)
$$q(x) = e^{\pi i \chi(x)} = Q(x)/Q(Tx)$$

bestimmt. Es ist m(E) > 0, denn aus $q(x) \equiv 1$ f. ü. würde Q(Tx) = Q(x)f. ü. und, da T metrisch transitiv ist, $Q(x) = \text{Const. f. }\ddot{\text{u}}$. folgen. Das steht aber im Widerspruch mit (9) und (10).

Für s = 2 und $\rho \equiv 1$ folgt aus (4)

$$\begin{split} F_1(x) &= \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n q(x) \cdot q(Tx) \dots q(T^k x) \\ &= \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \frac{Q(x)}{Q(Tx)} \cdot \frac{Q(Tx)}{Q(T^2 x)} \cdots \frac{Q(T^k x)}{Q(T^{k+1} x)} \\ &= Q(x) \cdot \lim_{n \to \infty} \frac{1}{n} \sum_{n \to \infty}^n 1/Q(T^{k+1} x) = a \cdot Q(x), \end{split}$$

wo nach (10)

$$a = \int 1/Q(x) dm = \int Q(x) dm = 1 - 2m(F)$$

Da wegen (11) $F_2 \equiv 1$, so gilt

$$\varrho_2(x) = \frac{F_1(x) + F_2(x)}{2} = \frac{[1 - 2m(F)] \cdot Q(x) + 1}{m(E)}$$

und ϱ_2 nimmt wesentlich zwei verschiedene Werte 2[1-m(F)]/m(E)und 2m(F)/m(E) an.

MATHEMATISCHES INSTITUT DER POLNISCHEN AKADEMIE DER WISSENSCHAFTEN

Recu par la Rédaction le 16. 3. 1959