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FASC. 2

ON SOME LOSS FUNCTIONS
BY

5. TRYBUEA (WROCLAW) »

In this paper we shall deal with some questions concerning the Wald

theory of decision functions. For some known distributions depending on

@ parameter we shall find a loss function such that the minimax estimate

of that parameter is unbiased. We shall see that the least favourable
prior distribution of the estimated parameter is the uniform one.

1. Definitions. Let F(z|w) be a distribution function defined on
a Euclidean space X which depends on a parameter we®. In the sequel
we shall assume that o is a vector. Each estimate of o is a measurable
function f(») with values belonging to Q. Let L[f(x), &) be the loss to
the statistician if he applies the estimate f(#) when 2 is the observed
value of X, and w, is the value of the parameter . If we establish the
function f(x) and the value of o, then we can find the expected value
of the loss L, i.e. ’

" dat
(1.1) R(f,0) = [ Lf(z), ©]dF (3]w) = B{L{f(X), o]lo};
X

here X is a random variable with distribution function F(z|w).

The function R(f, w) will be called the risk.
The estimate f* is called minimax if

(1.2) supR(f’, ) = infsup R(f, ).
! w

weld

Let the prior distribution of the parameter w be given by a dis-
tribution function G(w). The expected risk r(f, @) is

at
(1.3) r(f, @) = fR(f, 0)dG(0) = Eg[R(f, v)].
2
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According to Wald the estimate fg(®) minimizing for a given @ the
funetion 7 (f, @) will be ealled the Bayes estimate for G. The distribution ¢°
for which
(1.4) inf »(f, G°) = supinf r(f, &)

7 & !

holds, is defined to be the least favourable distribution.
In the sequel the loss function will in general be of the form

s) Dt e = D Bl

Py
'L=l K

where f = (fi, ..., fx) and o = (@, -.., ,). The distributions of X which
will be dealt with are the multinomial and multivariate hypergeometric.

2. The multinomial distribution. It is known (see [1]) that if the
random variable X is binomial and the loss funection L is given by

Tf(a), 9] = =

then the minimax estimate f° is given by the formula f°(z) = ®/n. The
following question arises: which loss funection should be chosen in the
multinomial case in order to obtain a similar result? Let us set

!
n: my m,,,

(2.1) P(X, =My, ey Xy =My) = -mp

We shall prove
THEOREM 1. If the random variable X is distributed according to (2.1),
the loss function L is given by

(22) Lif(@) 1—2[ﬁ —rid

and we restrict ourselves to estimates f = f1 y ooy Ju) with Y fi =1, then
T=1

the estimate f° = (f}, ..., f2) defined by fi(x) = m/n is the unique minima
estimate of parameter p = (py, ..., Pr)- Fwthemnore the wuniform distribu-
tion is the least favourable one.

Proof. It is known that

wi = B(X;]p) = np;,
o = BUX;—w)lp]l = mpi(1—p) (G =1,2,...,k).
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We shall show first that for the loss funetion (2.2) and f=f° the
risk B is constant, namely

k Ve k 2 k '
, i o f—1
R(f',p =Ja[§ B ]= view 1 Maopy = 22
’ ) £ Yy P L nzpi n (1 pz) ' ’

Tl i=1 i=1

Furthermore we shall show that the estimate f° is a Bayes estimate
for the uniform distribution G° of the parameter p = (p,, ..., ). We
have

G (p) = cdp,...dpy,
k

RN .
.
"(f, @) = ¢ ff ! TP
Mqle.
P1+.. Iﬂk—l My A+ M= (!
p120,...,0520

E 2
Y Mgy e yMyg) —Di |
”_,pknkZ[f( 13 ’ k) p—]—dpp.-dpk
i=1

1

n! .
=0 “l ! o
2.3 - myl. . my! o
( - ) Myt M= Dy+...+op=1
0120,...,05>0

k
" (M, veny My
_pkk[Zﬁml_’??'ﬁ;_’”)__l] apy...dpy
=1 v

. &
n!
=¢ E _ E $(Myy oovy M) x
myl...my! < Filma, ..., )
Myt M= =1
M My 1 pa Mg =1, My 2,
x ff PUY Pl T L piedp, . dp - C,

v +...+Pp=1
0120,...,0>0

where C is finite and does not depend on the value of fi(my, ..., my).
It is known that

[ p...pidp,...apy
M+, Pp=1
P1>0,..., 050

is finite if and only if o, > —1,..., 0, > —1. Thus the expected risk
will be finite only if

(2.4) filmyy oooymg) =0 for my=0 (i=1,2,...,k).
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There exists an estimate (e. g. f°) for which the expression (2.3)
is finite. This implies that the values f;(m., ..., m;) which minimize (2.3)
must satisfy condition (2.4). Assuming this condition to be satisfied we
obtain

n!
(2.5) R(f,6°) =¢ — E Fr(myy ooy M) %
myl..omy! “

My + . M=
Mgk 0

M gy My — 1 1y

X jj P pERPTTIPIE L Ry - O
Dy F o D=1
D1=20,...,01=0
In order fo determine the values f;(my,...,ny) for which (2.5)
attains its minimum it is necessary to find for each system (m,, ey Ty)
the values @; which minimize the quadratic form

2 E
(2.6) = Z mif...fp;"‘..‘p;':"jl_lp:;"'i_l it ok dpy ... dpy,
m;éo
where x; satisfy the condition > m=1. Let the nurﬁbers Mgy oeny My
. X im0
be arbitrary. Without loss of getnera,lity we can assume that m, 0.
Putting in formula (2.6)

Ty = 1— 2 @;

Ty 0
itk
and observing that the form (2.6) is positively determined, we shall find

its minimum since the partial derivatives vanish there:

o9 ) .
(2.7) i 55;—"‘—-0 (ﬁ:mi¢0,’l,;ék).

Thus we have

(n+k—2)! (n+k—2)!
T h = T
(m,—1) ![]lm,-! (my— 1) [T ms!
~
or
(2.8) Mg — M@y, = 0.

This formqk_m has been proved for those ¢ for which m; 7 0. But it follows
from condition (2.4) that (2.8) holds also for the remaining values of <.

icm®
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Summing equalities (2.8), where ¢4 =1, 2,..., %k, we obtain

Mmy—nz, =0,

My,
&y = ——.
w

Substituting this result in (2.8) we obtain
(2.9) = — (i=1,2,..,k).

The estimate f° minimizes »(f, @°) and thus it is by definition the
Bayes estimate for G°.

We shall now use the following lemma given in paper [3]:

LeMMA. The Bayes estimate fg for which the risk does not depend on
parameter w is the minimax estimate. If, furthermore, the estimate fg is the
unique Bayes estimate for G, then it is the unigque minimax estimate.

From this lemma, and from the above results, it follows that the
estimate f° is the minimax one. Its uniqueness follows from the fact that
the numbers z; = m;/n which minimize (2.3) were uniquely determinated.

Since for f = f° the risk R(f,p) is constant, it follows that the ex-
pected risk 7(f° @) does not depend on @. This implies

minr(f, G) < 'r(fy Go) = T(foy Go) = mim‘(f, GO)'
! 7

The uniform distribution G° is thus the least favourable.

3. The multivariate hypergeometric distribution. In an urn there
are N balls, M, of them denoted by 1, M, of them denoted by 2, ...,
and M, of them denoted by k. If we take out of the urn % balls then
the probability that there are among them m, denoted by 1,..., my

k

denoted by k (3 m; = n) is given by
i=1

(3.1) P(Xy=my, ..., X, =my) = —2__\TH

This distribution depends on the parameter M = (M., ..., M), which
is often unknown in practice and must be estimated from a sample. We
shall prove for this distribution a theorem analogous to theorem 1.
THEOREM 2. If the random wvariable X = (X,, ..., Xy) 18 distribuied
accordingly to (3.1) and we restrict ourselves to estimates f = (fy, ..., fi)
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of the parameter M, which sat@sf Y the condition Zﬁ N, then the estimate

= (fy s 1), where fi(x) = Nagjn is the minimax estimate for the loss
Sfunetion L of the form
&
(3.2) L(f, M) = YK [fi(w), M),
=1
where
(u—v)
K(u,v) = " for >0,
K(u,0) = oo for u>0,
N(N—n)
K(0,0) = ———-.
0, 0) n(N—1)

For the loss function (3.2) the estimate f° is the unigque minimaz esti-
mate, and the wuniform distribution is the least favourable one.

Proof. It is known that
3.3 ; = B(X, —
(3.3) i = B(X| M) = ¥ M

(N —n)

64) ol = BIUTi— 1) = g0

My(N—I;)  (i=1,2,..., k).

Applying formulas (3.3) and (3.4) we obtain

i=1

(3.5) R(]“’,M):ZkE[K(%Xi,Mi)]M] 21«7[( o Mi)|M]+
Myz0

N(N—n) N* o N (N —n) N(©N—

+ N H—m) N % _ ( n)

Z n(N—1) ot .; o, 2 n(N—1)  n(N—1) (k=1).
My=0 M0 M=o

Thus for f = f° the risk R(f, M) is constant.

Let us denote by Po(M) the prior distribution of the parameter M,
which iy determined ag follows:

(8.6)° P[(M, ..., M) =const=¢ (M, >0,..., M} >0; S’M N).

1,=1
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The expected risk »(f, P°) then takes the form

(3.7 r{f,P"
f- -4 ¢
—. Y " e Z}f[fz Moy ey mz), M1,

Ly L
Myt Mp=N -+ Amp=n
! k 1<M 1 m’,i\M A K

which can also be written as follows:
(3.8) r(f, P’) =

_0_ 711+77L1‘ Ngx4-my
(N) 2 2 ( my ) ) ( M ) %

My F M= Bt A= N =
1>0 L0

k
X ZK[fi(mu ceoy M)y Wit y]

i=1

It is easily seen that (3.8) is finite if
(38.9)  filmy,...,mp) =0 for my=0 (i=1,2,...,%).

From formula (3.5) it follows that 7 (f, P?) is finite at least for one f
(namely for f = f°). Thus if some estimate f minimizes (3.8) then it must
satisfy (3.9). Let us observe furthermore that, for each system (my, ..., M),
r(f, P°) attains its minimum if

(3.10) ¢ = 2 (n1+m1) s ""+mk)ZK[f1 Moy eny M)y Ny 104]

my
ny+...+np=N—-n
n1=0,...,n5=0 ‘
attains its minimum. Let us fix a system (my, ..., m;). By pubting
filmy, ..., my) = 0 if m; = 0 we can rewrite (3.10) in the form

(3.11) )
ny4-maq ni+mr) [filmy,y ooy mu) —m —ms T Lo
v () () 2 -
ny+ . ap=N-n 7
ny20,...,np20 My

Without loss of generality we can assume that m; # 0. Proceeding
as in the multinomial case, that is by putting
. al
fi(mly very 'm'k) =z; (¢t < k)y flc('m'ly LERY} '”7‘Ic) = N— Z Xy
dang£E
i#2k
in (3.11), and taking derivatives with respect to z;, we fmd that it will
attam its minimum if
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7 (nl+m1) ('7k+"1»k) (ﬁ(ml, vy M) frlmy, ..., mk)) 0
L mn U om - ] - , T =
n A np=N=n ! E My + My g+ My,
ny =0, ngz=0
But
1 (m + m]) (m- + m;.-)
. - . nmy ve my
_ _nn,—l My
— 1 & Nyt i 1 M 4-Np
o my . my—1 my

Ny AR N—
nl>0 71k>0

_ (N+k—2)!
- (N —mn)lm!. .. ;! Z

ot Rgy
ny>0,...
i
——
7y -+ B +mi—1 2,
ff pYTL, Lp T ‘..pk’»“’"‘kdpl...dpk
M+ D=1
DA et
o
T
(N—mn)tmy!...my! BB e Bk
Pr+...t+DPp=1
Pr0,..., >0
(N —n)!
k23 7,
M —— 1., p’*) dp,...dp,

Led 0, ! !
Byt e N = ’)1....71
n1>0 =0

— (1\7+k 2 111 i—1 Mg
TV —a)lmy! .. mg! J f it Pt dpy. . dp
7}1-\- App=1
7:1>D, D=0
_ [N4r—2) 1
'n—f-k——z)——

Thus we have

(3~12) 'm*kfi (mly coey M) — 'm’iflc(mu . ~"9 my) = 0

for those ¢ for which m; 3 0. Sinee for m; = 0, fi =0, formula (3.12)
can, therefore, be extended over all i — 1,2, vy ko Summmg formula,e

(3.12) where i=1,2,..

, %, and observing” that =N, Ym;=mn
we ghfain Zfi 2 ' ’

" m; .
Jilmy, ... =N? (t=1,2,..., k.

» M)

icm
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Thus the estimate f¢is the the Bayes estimate for the distribution Pe.
Considerations analogous to those in the multinomial case lead us to

‘the conclusion that this is the unique minimax estimate and that P°

is the least favourable distribution.
We have obtained our result for the loss function of the form

e

L(f, w) = [(fi— ws)? ;]

-,
]
-

Tf the loss function is

e

]
-

(3.13) L(f, w) = D Lilw)(fi— w)?,

k3

then the minimax estimates are mostly biased. Further information
about the loss function (3.13) can be found in references [1-6].
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