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On extending of models V
Embedding theorems for relational models
by
J. Lo$, J. Stominski (Torud) and R. Suszko (Warszawa)

If {}ieris afamily of homomorphisms of an algebra I'= CA, Py y Frpd,
where Fy, ..., ¥y, are functions defined in the set 4, then the function %
assigning to any a4 a function » = h(a) such that z(f) = hi(a) for
every teT is a homomorphism of I' into the product-algebra of all
homomorphic images hy(I') (Birkhoff’s theorem [1]). We are interested
in the conditions under which an analogous theorem holds for any
relational model M =<4, Ry, ..., R,), where Ry,..., R, are -arbitrary
relations defined in the set 4. We formulate the conditions for the
produetability of families of homomorphisms and some general theorems
concerning the embedding of models into products of models. As an
application we prove a theorem about embedding models into decidable
models.

We assume here Mostowski’s notion of homomorphism [3] for
relations. It has already been applied by some authors, e. g. [2], [5].

§ 1. Auxiliary notions and netation. Any subset of a Cartesian
product A, X ... X Ay, is called an n-ary relation. For any n-ary relation R
and any set 4 we denote by R[4 the n-ary relation for which Rj4 (4, ..., 8,)
holds if and only if @y, ..., a, ¢ A and B(ay, ..., a,). A relation R is said
to be defined in a set A if R4 =R.

Every binary reflexive, symmetric and transitive relation ~ defined
in 2 set A is called an equivalence in A. The abstraction class of ~ in A4
determined by @ « 4, i. e. the set of all ¢ ¢ A such that ¢~a, is denoted
by af ~. Similarly the set of all abstraction classes of ~ in A is denoted
by A/~.

If % is any mapping of a set 4, then the equivalence ~ such that
ay~a, holds for a;,aye A if and only if h(a,) = h(a,), is called the
equivalence induced in A by h. If hya)= a/~ for any aed, then
kg af~) = a/~ for each acd.

If {Aser is a family of sets, then its Cartesian producttPTA, is the

€

set of all functions 2 such that a(t) ¢ 4 for any teT.
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§ 2. Homomorphims and congruences of relations. Let
be a function mapping the set 4 onto the set B. The mapping & is said
to be a homomorphism of an n-ary velation R defined in A onto an n-ary
relation € defined in B if the following condition holds for any by, ..., b, e B:

(2.1)  Q(byy .., by if and only if there are such elements ay, .., a4 ¢ A
that by =h(ay), ..., by = h{a,) and B(a;, ..., )

or equivalently

(2.2) Q= FE [(7'(b) X o 37 (b)) AR # 0] ().
Bpruedip?

The n-ary relations R, @ defined in A and B respectively arve called
isomorphic if there exists a homomorphism of B onto @ inducing an
equivalence which is an identity in A.

If the mapping h of 4 into B is a homomorphism of an #-ary
relation R defined in 4 onto the relation ¢[h{4) where @ is an n-ary
relation defined in B, then h is said to be a homomorphism of R into Q.

Any equivalence in a set 4 induced by some homomorphism of
a relation B defined in A is called a congruence of R in A. This definition,
although analogous to corresponding definition of congruences in algebras,
leads to the wunexpected conclusion that "

(2.3) every equivalence in a set A is a congruence of any velation R
defined in A.
This results from the following observation.
For any equivalence ~ in A and any relation R defined in 4, one
may define in 4/~ a relation R/~ such that

(2.4) Bl~= [(@yf ~X oo Xap/~) AR 0],

[CAL WP
Evidently, the mapping %, of 4 onto A/~ such that hye) = a/~ for
any a e A is a homomorphism of R onto R/~. It is easy to see that

(2.5) the relation R~ defined in A]~ dis isomorphic to any relation @
defined in some set B such that there exists & homomorphism of R
onto Q inducing the equivalence ~ in A.

§ 3. Products of relations and projections. Let {Rj}i.r be
a family of n-ary relations defined in the corresponding sets belonging
to the family {4;}cr. The n-ary relation P defined in the product

P 4, in such a way that
teT

(3-1) P(®y, -y 2a) if and only if Ryfay(t), ..., 2u(2)) for every t T,

(*} The symbol ~ denotes the set-theoretical meet-operation.
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is called the relational product of the family {Bi}ter. It is seen directly that
if some relation R, is empty, then the product P is also empty.
Consider a mapping p; of P 4, onto A4 such that
teT

(3.2) P = (1)
for any 2 E;ﬂr A;. This mapping is called the projection of the product

‘PTA, onto t-axis A;. The projection p; is a homomorphism of P onto
€

R; except the case P=0#R,. I e.

(3.3) the projection pg is a howoemorphism of P onto R, if and only if

cither By is the empty relation or every relation in {Ry)ieq 4s non-empty.
§ 4. Productability of homomorphisms and of congruences.

Let %, be, for any i e 7, a homomorphism of the relation R defined in 4
onto the relation R, defined in 4, and let ~ be the congruence induced

in A by . A mapping 2* of 4 into P A such that for each @e A:
tel

(4.1) h*(a) =z if and only if x(t) = hia) for every teT
or equivalently
(4.2) pi{i*(a)) = hy(a)

is called the product of the family {h}yer of homomorphisms. Let & be
the congruence in A induced by it. Of course, for any a,, a, € 4,

{4.3) a0y if and only if a,~a, for each teT.

If the product h* introduced above is a homomorphism of E into
the relational product P of the family {Ri};cr defined in P A, then
te

the family {:};er of homomorphisms and the family {~};c7 of congruences
are said to be productable. One may see that the family {~her of
congruences is productable if and only if the mapping h, of 4 into
tPTA, such that for each aeAd

(4.4) ho(a) = = if and only if 2(t) = aj~ for each teT

or equivalently

(4.3) p,(ho(a)) =t/

is a homomorphism of B into the relational product P of the family
{R/T},;T defined intf;v A/TJ.

We now want to formulate the necessary and sufficient conditions
for the productability of homomorphisms and congruences.
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From (2.1), (3.1), (8.2) and (4.2) we infer that the product ?L* is
a homomorphism of the relation E defined in A into the'relamonal
product P of the family {Rpter defined intlf! A, if and only if for any

Qyyoeey O € Az

(4.6) Ri(hlay), ...s hi{an)) holds for every teT if and only if there ewist
such elements oyy .y Cq € A that 6%y, -y ey tty and By, .oy Cn) .

The implication in (4.6) from the right to the left follows directly from
the assumption that k¢ is 2 homomorphism for any te T. Therefore the
following two theorems are true.

TamoreM 1. For the productability of the family {heyger of homo-
morphisms it is necessary and sufficient that the following condition holds
for any @y, .., aneA:

4.7) if Bihday), -y hi{an)) holds for every teT, then there exist such
elements 6y, ..., Cn € A that o % ay, vy oy and B0y ...y Cn).

TaEorEM 2. For the productability of the family {~ler of congruences
it is necessary and sufficient that the following condition holds for any
Gyy ey Gn €A
(4.8) if for every teT there ewist such elements dy, ..., d, e A thal

Ay ey Gnelin and R(dy, .., ) then there exist such elements
Cyorey Cn€d that ¢, %01, ., G0y and R(6yy ey Cn)-

The conditions (4.7) and (4.8) may be considerably simplified in
the case of homomorphisms and congruences of some special kind. Namely,
the family {ksep of homomorphisms and the family {~}ter of congruences
are said to be separating the set A if for any a;, g, ¢ 4

(4.9) if a = a, then there ewists such o tel that hyay) 7= by(as)

or equivalently

(410) if ay 7 a, then there exists such a teT that non 4,3 a,.

In this special case we observe that the equivalence & induced in 4
by the product h* of homomorphisms is the identity relation in A and,

therefore, we obtain the following two theorems, which are gpecialisation
of theorems 1 and 2.

TeEoREM 3. For the productability of the family {My}er of homo-
morphisms separating the set A it is necessary and sufficient that the following
condition holds for any @y, .., a0, € A:

(411)  4f Rihay), ..., h(an)) holds for every teT, then R(ay, ..., a)
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THEOREM 4. For the productability of the family {vker of congruences
separating the set A it is necessary and sufficient that the following condition
holds for any Gy, ...,0p¢A:

(4.12) if for every teT there ewist such elements dy,...,d, <A that
Gy Oy ooy Gng=0n and R(dy, ..., dy) then R(ay, ..., a,).

§ 5. Embedding theorems for relational meodels. The
previous counsiderations concerning homomorphisms and congruences of
relations may be generalized to the case of relational models.

Let M= (4, R, ..., B> be a relational model. I R,, ..., B, are
%p-ary, ..., kp-ary relations defined in the set 4, then the model I is
said to be of the type (ki ..., knd. Let M= (B, @, ..., @»> be another
model of the type <k, ..., ky>. Any function » mapping the set 4 into
(onto) the set B such that h is a homomorphism for ¢ =1, ..., m of the
relation RB; defined in 4 into (onto) the relation @; defined in B is called
a homomorphism of the model I into (onto) the model N, A homomorphism
of M onto N is called isomorphism if it induces in 4 an equivalence which
is identity relation. The models I and N are then called isomorphic.

Any equivalence in A induced by a homomorphism of I is called
a congruence of the model M. It follows from (2.3) that any equivalence ~
in A is a congruence of the model M = <4, By, ..., R,>. The mapping
ho 0f A onto Aj~ such that k(a) = a/ ~ for any a ¢ 4, is a homomorphism
of the model M onto the model (A/~, Ry/~, ..., Ry/~) denoted in the
following by 9t/ ~. The model I/~ is isomorphic to any model N such
that there exists a homaomorphism % of M onto I inducing the equivalence
~ in A.

Let {M;}ser be a family of relational models of the same type and

let My = <Ay, B, ..., BI™) for any t ¢ T. The product P M; of the family
{eT

{MYer of models is the relational model {P A, Py, ..., Pny where for
tel

i=1,..., m the relation P; is the relational product of the family {R{*}cz.
Let h; be, for any ¢ ¢ T, a homomorphism of the model 9 onto the
model Y. The family {%};ep of homomorphisms is said to be productable
if the product of this family, i. e. the function »* defined in (4.1) or (4.2)
is a homomorphism of the model M into the product tPTﬂR,.
€

The model 9N is said to be embedded in the model N by h if b is an
isomorphism of 9t into N.

‘We now want to formulate some theorems concerning the embedding
of models into products of models. These theorems are analogous to the
well-known product-theorem of Birkhoff concerning the embedding of
abstract algebras [1]. We apply below the notation introduced above.
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THEOREM 5. If he is, for any teT, @ homomorphism of SIR onto M,
and if the family {hidter is productable and separates the set A in M, then
the model M is embedded into the product tPT M, by the product h* of

€

family {Rrer- .
Proof. Ii follows from the productability of {h}ey that A* is
a homomorphism of M into P M. On the other hand #* is an isomorphism
teT

as {Mlr separates the set 4.

TrEOREM 6. If by is, for any teT, @ homomorphism of M onto M,
and if the family {h)er separates the set A in M and fulfils condition (4.11)
for any relation in the model M, then the model M is embedded in the product
P IR, by the product h* of the fomily {hther.

Proof. We observe that according to theorem 3 the product h* is
a homomorphism of any relation in 9. Therefore it is a homomorphism
of the whole model M and the family {h}er is productablé. Now apply
theorem 3.

TamoREM 7. If the family {~v)}icr of congruences of the model M
separates the set A in M and fulfils condition (4£.12) for any relation in
the model M, then the model M is embedded in the product t5 M

Proof. Assume that hfa)= o/~ and Py= W/ and then apply
theorems 4 and 6.

§ 6. Embedding in decidable models. Any relational model
in the general semse is a system M= (4, Ry, ..., Bgy Decp of type
Cdyy ey gy -edecp- A 15 @ set, §is an ordinal called the order of n, =M
and ay, ..., Qg ... (£<<f) are any ordinal numbers such that Ry, ..y Bey oot
(£ < B) are relations defined in A a;-ary, ..., ap-ary, ... (§<f) regpectively.
The least upper bound « of all ordinal numbers a; (& < f) is called the
rank of M. If B is any subset of the set A then the model (B, Ry|B, ...,
Re|B, ...)s<p 18 said to be a submodel of the given model IN. If the set A
in the model 9 is finite, then the model M is called findte.

We have previously considered only the finitary models, 1. e. the
models of finite order and finite rank. However, these considerations
may be generalized to the general case and theorems 1-7 are valid for
any relational models of any order and any rank.

Now we want to prove some embedding theorems holding for models
having only finitary relations.

THEOREM 8. For any model M hoving only finitary relations there
ewists a family {}er of congruences of M such that

1° the model M is embedded in the product tPTSTR/ + and

€

2° any model M+, for teT, is finite.
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Proof. Let the model M= (4, R, R,,...> be of type (&, Koy .o
and let .t = {@y, ... ,.an>. The element ¢, belonging to the Cartesian power A",
determines & partition of the set A into at most n+1 classes,

(81)5 ey (), A—(0g, 0y ).

Therefore the element ¢ determines in a well-known way an equivalence ~-
in the set 4, which is a congruence of the model M. The model W/~ is

finite since the set A/ contains at most n--1 elements. Consider now
the set

T= | 4%
’i=1,2,...

and the corresponding family {+-}r of congruences of M. This family
separates the set 4, since nonasb if a,bed, o £b and t= &y ..
On the other hand, for any Oyy oy @ i t=<a,..,0;> then the
abstraction classes a;/ 4, ..., ay/ 7 are unit classes. Tt font;ws that the
family {3-}er fulfils condition (4.12) for any relation in the model 9.

Therefore, following theorem 7, the model I is embedded in the produet

P 9t/ ~ and theorem 8 is proved.
tel

AI*?‘ronc} the proof given above we see that if the order of the model S
is finite, i. e. if M =<4, R,, ..., R,> where m is a natural number, then
the power of the model M/~ i. e. the power of the set A/ 3, does not

exceed the natural number k = 14+ max(k,, k,, ..., k,). Therefore we have
proved the following

THEOREM 9. For any findtary model I there exists a family {+her
of congruences of IN such that .
1° the model MM is embedded in the product P A + and
tel

2° there ewists o nmatural number k such that the power of any model
M/~ 1s less than k for any teT.

We pass to decidable models. Consider the class U of all finitary
models of a given type and an elementary logical language 8 corresponding
to the class W, The construction of S for A is well-known. A model 9t
is called decidable if the set: S(IM) of all sentences in § valid in Dt is decidable.
We present '

TueoreM 10. Any finitary relational model M is embedded in some
decidable model.

Proof. We apply theorem 9 and we consider such a family {w}er
of congruences of M that the model I is embedded in PR/~ and the

led

(*) The symbol 1 means the set-theoretical union operation.
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power of é,ny model It/ 4 is less than some natural number k. There
exists of course only a finite number of non-isomorphic models of power
less tham k. Therefore the set I may be decomposed in a finite union
T=T,u..vT, such that for any i=1,..,7r and all ¢,%eL; the
models It/ o~ and SUI/T; are isomorphic. It follows that the model IN
1
r
is embedded in the model P P 9%/ isomorphic to the modeltli’ M
i=1 1T} . €1
The model P M/~ is a product of mutually isomorphic models, and
teTy

therefore it is isomorphic to some Cartesian power of some model It/ e
a

where ¥ ¢ T;. This model is finite and, subsequently, it is decidable,
and — according to Mostowski's theorem [4] — its Cartesian power ig
decidable. Since S. Feferman has proved that the product of a finite
yumber of decidable models is decidable, we infer that the model
P P/~ is decidable, g. e. d.

i=1 teT;

§ 7. C. C. Chang’s product theorem. We present here a simple
proof of the following theorem of C. C. Chang [2]. Let {Pi}ier be a family
of models of a fixed type.

If every model My is of rank « and of order B, and does mot contain
the empty relation, then for any model M which is o submodel of the product

P W, there exists a subsel Ty C T such that
tel

1° M s embedded in the product P My,
— —_ tely
2° Ty <M B8,
Proof. Let A; be a set in M, and let p; be the projection of the
product P A, on the {-axis A,. According to (3.3) the projection p;
tel

is 2 homomorphism of P %% into 9. From the definitions of products
tel

and projections and from theorem 3 it follows that {pihier is a separating
and productable family of homomorphisms of P . Since M is a sub-
tel

model of P M;, the family {pher is also a separating and productable
tel

family of homomorphisms of model M. Let M= (A, By, ..., By Deep
and M= <Ay, BP0, R, . Dpep, teT. Lot {ag, .y dg, - Dpcp De the
type of the models considered and let V= A%—R,, &< p. From the
productability of {pher and (4.11) it follows that for every v = {a, ...,
oy Yooy € V¥ there exists such a 4, ¢ that non R (py (@) oors

D1,(38)5 o Jo<ag. Lith T = L_{E)(t,,). Since the family {pher separates
veP

the model 9, for every w — (&,b) ¢ A? with a b there exists such
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a t,eT that pyla) # p,(0). I* denotes the set of all {,, where
w={@, b>eA? and a 5=b. We put

To=T*oUT®,
E<p
Since T*C Ty, the family {p;ier, separates M. Since | JTWC T, the
. 8<s
family {Didter, 18 by (411) a productable family of homomorphisms
of M. Hence M is by theorem 6 embedded in P M;. By the definitions

teTy
of T® V¥ and rank « we have

O O < T% < T = T,

Moreover T* < A% = P>, Hence and from the definition of T, we obtain

TOZ e T F<TE-B-xo, Q.o d.

— — -

To< T*+

References

[1] G. Birkhoff, Subdirect unions in universal algebra, Bulletin of the Amer.
Mathem, Scc. 50 1944), p. 764,

[2] C. C. Chang, Some general theorems on direct products and their applications,
in the theory of models, Proceedings, Kon. Nederl. Akad. v. Wetenschappen A 57(1954),
p. 592-598. :

[3] A. Mostowski, Logika matematycena, ‘Warszawa-Wroctaw 1948.

[4] — On direct products of theories, Journal of Sym. Logie 17 (1952), p. 1-31.

[5] A. Tarski, Oontributions to the theory of models, Proceedings, Kon. Nederl.
Akad. v. Wetenschappen A 57 (1954), p. 572-588.

Regu par la Rédaction le 20. 10. 1958

Fundamenta Mathemaficae, T. XLVIIL 9


Artur




