

A representation theorem for Marczewski's algebras

by

K. Urbanik (Wrocław)

I. Let us consider an arbitrary non-empty set A. Let A be the class of A-valued functions of finitely many variables running over A such that 1° the functions defined by the formula $f(x_1, ..., x_n) = x_k$ (n = 1, 2, ...; k = 1, 2, ..., n) belong to A, 2° A is closed with respect to the superposition of functions. The system $\mathfrak{A} = \langle A, A \rangle$ will be called an algebra. The properties of the class A are given in papers [1] and [2].

By $A^{(0)}$ we shall denote the class of all values of constant functions belonging to A. Further, by $A^{(n)}$ $(n \leq 1)$ we shall denote the class of all functions of n variables belonging to A. If $1 \leq k \leq n$, then $A^{(n,k)}$ will denote the subclass of $A^{(n)}$ containing all functions depending on at most k variables, i. e. $f \in A^{(n,k)}$ if there is a function $g \in A^{(k)}$ such that $f(x_1, \ldots, x_n) = g(x_{i_1}, \ldots, x_{i_k})$ for a system of indices i_1, \ldots, i_k and for every $x_1, \ldots, x_n \in A$. By $A^{(n,0)}$ we shall denote the subclass of $A^{(n)}$ containing all constant functions.

Let $f, g \in A^{(n)}$ $(n \ge 1)$. We say that the equality

$$f(x_1,\ldots,x_n)=g(x_1,\ldots,x_n)$$

depends on the variable x_j $(1 \le j \le n)$ if there exists a system $a_1, ..., a_n, a'_j$ of elements belonging to A for which

$$f(a_1, \ldots, a_{j-1}, a_j, a_{j+1}, \ldots, a_n) = g(a_1, \ldots, a_{j-1}, a_j, a_{j+1}, \ldots, a_n)$$

and

$$f(a_1, \ldots, a_{j-1}, a'_j, a_{j+1}, \ldots, a_n) \neq g(a_1, \ldots, a_{j-1}, a'_j, a_{j+1}, \ldots, a_n)$$

An algebra $\mathfrak A$ is called a *Marczewski algebra* if for every pair of integers $j, n \ (1 \le j \le n)$ and for every pair of functions $f, g \in A^{(n)}$ for which the equality

(1)
$$f(x_1, ..., x_n) = g(x_1, ..., x_n)$$

depends on x_i there exists a function $h \in A^{(n-1)}$ such that equality (1) is equivalent to the equality

$$x_j = h(x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_n).$$

or

The study of these algebras was initiated by E. Marczewski (see [3]), who proved that the notion of independence in this class of algebras has the property of linear independence.

Now we shall give some examples of Marczewski algebras.

1. Let A be a linear space over a field $\mathcal K$ and let A_0 be a linear subspace of A. If A is the class of all functions f defined as

$$f(x_1,\ldots,x_n)=\sum_{k=1}^n\lambda_kx_k+a\,,$$

where $\lambda_1, ..., \lambda_n \in \mathcal{K}$ and $a \in A_0$, then $\mathfrak{A} = \langle A, A \rangle$ is a Marczewski algebra. In this case we have the relations

$$\mathbf{A}^{(0)} \neq 0$$
, $\mathbf{A}^{(n)} \neq \mathbf{A}^{(n,1)}$ for $n \geqslant 2$.

This example is due to E. Marczewski.

2. Let A be a linear space over a field $\mathcal K$ and let A_0 be a linear subspace of A. If A is the class of all functions f defined as

$$f(x_1,\ldots,x_n)=\sum_{k=1}^n\lambda_kx_k+a$$
,

where $\lambda_1, ..., \lambda_n \in \mathcal{K}$, $\sum_{k=1}^n \lambda_k = 1$ and $\alpha \in A_0$, then $\mathfrak{A} = \langle A, A \rangle$ is a Marczewski algebra. In this case we have the relations

$$A^{(0)} = 0$$
, $A^{(n)} \neq A^{(n,1)}$ for $n \ge 3$.

(Let us remark that $A^{(2)} = A^{(2,1)}$ in the case where the field \mathcal{K} contains two elements only.)

3. Let \mathcal{G} be a group of transformations of a non-empty set A. We suppose that every transformation that is not the identity has at most one fixed point in A.

We say that a subset $B \subset A$ is normal with respect to the group \mathcal{G} if B contains fixed points of all transformations that are not the identity belonging to \mathcal{G} and $g(B) \subset B$ for every $g \in \mathcal{G}$. We remark that if transformations belonging to \mathcal{G} have no fixed point, then the empty set is normal with respect to \mathcal{G} .

Let A_0 be a subset of A normal with respect to G. If A is the class of all functions f defined as

$$f(x_1,\ldots,x_n)=g(x_j) \qquad (1\leqslant j\leqslant n)\;,$$

 $f(x_1,\ldots,x_n)=a,$

where $g \in \mathcal{G}$ and $a \in A_0$, then $\mathfrak{A} = \langle A, A \rangle$ is a Marczewski algebra. In this case we have the relation

$$A^{(n)} = A^{(n,1)} \quad \text{for} \quad n \geqslant 1.$$

In the present paper we shall prove the following representation theorem, which is an answer to a problem raised by E. Marczewski.

THEOREM. Let $\mathfrak{A} = \langle A, A \rangle$ be a Marczewski algebra.

(i) If $A^{(0)} \neq 0$ and $A^{(3)} \neq A^{(3,1)}$, then there is a field K such that A is a linear space over K and further, there exists a linear subspace A_0 of A such that A is the class of all functions f defined as

$$f(x_1,\ldots,x_n)=\sum_{k=1}^n\lambda_kx_k+a,$$

where $\lambda_1, \ldots, \lambda_n \in \mathcal{K}$ and $\alpha \in A_0$.

(ii) If $A^{(0)}=0$ and $A^{(3)}\neq A^{(3,1)}$, then there is a field ${\mathfrak K}$ such that A is a linear space over ${\mathfrak K}$ and further, there exists a linear subspace $A_{\mathbf 0}$ of A such that A is the class of all functions f defined as

$$f(x_1,\ldots,x_n)=\sum_{k=1}^n\lambda_kx_k+a,$$

where $\lambda_1, \ldots, \lambda_n \in \mathcal{K}$, $\sum_{k=1}^n \lambda_k = 1$ and $a \in A_0$.

(iii) If $A^{(8)} = A^{(8,1)}$, then there is a group $\mathcal G$ of transformations of the set A such that every transformation that is not the identity has at most one fixed point in A. Moreover, there is a subset $A_0 \subset A$ normal with respect to the group $\mathcal G$ such that A is the class of all functions f defined as

$$f(x_1,\ldots,x_n)=g(x_j) \qquad (1\leqslant j\leqslant n)\,,$$

01

$$f(x_1,\ldots,x_n)=a,$$

where $g \in G$ and $a \in A_0$.

II. Before proving the Theorem we shall prove some lemmas. We assume that all algebras considered in this part of the paper are Marczewski algebras.

For any $f \in A$ we denote be \hat{f} the function belonging to $A^{(1)}$ defined as

$$\hat{f}(x) = f(x, ..., x).$$

 $\widetilde{A}^{(n)}$ $(n \ge 1)$ will denote the subclass of $A^{(n)}$ containing all functions f for which $\widehat{f}(x) = x$. $\widetilde{A}^{(n,k)}$ will denote the intersection $\widetilde{A}^{(n)} \cap A^{(n,k)}$. The

following assertion is a direct consequence of the definition of Marczewski algebras: if $f, g \in \widetilde{A}^{(n)}$ $(n \ge 2)$ and if the equality

$$f(x_1,\ldots,x_n)=g(x_1,\ldots,x_n)$$

depends on x_j $(1 \le j \le n)$, then there is a function $h \in \widetilde{A}^{(n-1)}$ such that the last equality is equivalent to the equality

$$x_j = h(x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_n)$$
.

LEMMA 1. Let $f, g \in A^{(n)}$ and $1 \le j \le n$. If there exist two functions $h_1, h_2 \in A^{(n-1)}$ such that $h_1 \ne h_2$ and the equality $f(x_1, ..., x_n) = g(x_1, ..., x_n)$ holds for $x_j = h_1(x_1, ..., x_{j-1}, x_{j+1}, ..., x_n)$, $x_j = h_2(x_1, ..., x_{j-1}, x_{j+1}, ..., x_n)$ and for each $x_1, ..., x_{j-1}, x_{j+1}, ..., x_n \in A$, then f = g.

Proof. Let us suppose that the equality

(3)
$$f(x_1, ..., x_n) = g(x_1, ..., x_n)$$

depends on x_j . Then there is a function $h \in A^{(n-1)}$ such that equality (3) is equivalent to the equality $x_j = h(x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_n)$. Hence follows the equality $h_1 = h = h_2$, which is impossible. Thus equality (3) does not depend on x_j , which implies the assertion of our Lemma.

LEMMA 2. If
$$A^{(n)} \neq A^{(n,1)}$$
 for an index $n \geq 3$, then $\widetilde{A}^{(n)} \neq \widetilde{A}^{(n,1)}$.

Proof. First we shall prove that there is a function $g \in A^{(n)} \setminus A^{(n,1)}$ for which \hat{g} non $\in A^{(1,0)}$. Let $f \in A^{(n)} \setminus A^{(n,1)}$. If \hat{f} non $\in A^{(1,0)}$, then we put g = f. Now let us assume that $\hat{f} \in A^{(1,0)}$.

If $f \in A^{(n,2)}$, then there is a function $f_0 \in A^{(2)}$ such that $f(x_1, ..., x_n) = f_0(x_i, x_j)$ for a pair of indices i, j $(1 \le i, j \le n)$ and for any $x_1, ..., x_n \in A$. Moreover, the function f_0 depends on both variables. Consequently, the equality

$$f_0(x_1,x_2)=a,$$

where $a = \hat{f}(x)$, depends on x_1 . Then there is a function $h_0 \in A^{(1)}$, such that the last equality is equivalent to the equality $x_1 = h_0(x_2)$. From the equality

$$f_0(x, x) = \hat{f}(x) = a$$

we find $\hat{h}_0(x) = x$. Hence we get the inequality

(5)
$$f_0(x_1, x_2) \neq a \quad \text{for} \quad x_1 \neq x_2$$
.

Put $g(x_1, ..., x_n) = f_0(x_1, f_0(x_2, x_3))$. In virtue of (4) and (5) we have the formulas

$$\hat{g}(a) = f_0(a, f_0(a, a)) = f_0(a, a) = a,$$

$$\hat{g}(x) = f_0(x, f_0(x, x)) = f_0(x, a) \neq a \quad \text{for} \quad x \neq a,$$

which imply \hat{g} non $\epsilon A^{(1,0)}$. Further, according to (4) and (5), the following formulas are true:

$$g(x_1, a, a, ..., a) = f_0(x_1, f_0(a, a)) = f_0(x_1, a) \neq a$$
 for $x_1 \neq a$,
 $g(a, a, ..., a) = f_0(a, f_0(a, a)) = f_0(a, a) = a$,
 $g(a, x_2, a, ..., a) = f_0(a, f_0(x_2, a)) = f_0(a, x_2) \neq a$ for $x_2 \neq a$.

Hence it follows that $g(x_1, ..., x_n)$ depends on x_1 and x_2 . Thus $g \in A^{(n)} \setminus A^{(n,1)}$. If $f \text{ non } \in A^{(n,2)}$, there is a triplet of indices $i, j, k \ (1 \leq i, j, k \leq n)$ such that $f(x_1, ..., x_n)$ depends on x_i, x_j and x_k . Consequently, the equality

$$f(x_1,\ldots,x_n)=\alpha.$$

where $a = \hat{f}(x)$, depends on x_i, x_j and x_k . Then there are functions $h_i, h_j, h_k \in A^{(n-1)}$ such that the last equality is equivalent to each of the equalities

$$x_i = h_i(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n),$$

 $x_j = h_j(x_1, ..., x_{j-1}, x_{j+1}, ..., x_n),$
 $x_k = h_k^*(x_1, ..., x_{k-1}, x_{k+1}, ..., x_n).$

Hence it follows that $h_k(x_1,\ldots,x_{k-1},x_{k+1},\ldots,x_n)$ depends on x_i and x_j . Thus, setting $g(x_1,\ldots,x_n)=h_k(x_1,\ldots,x_{k-1},x_{k+1},\ldots,x_n)$, we have $g \in A^{(n)} \setminus A^{(n,1)}$. Since $f(x,\ldots,x)=a$, we have the equality $x=h_k(x,\ldots,x)$, which implies $\hat{g}(x)=x$ and, consequently, \hat{g} non $\in A^{(1,0)}$. Our statement is thus proved.

Now let us consider a function $g \in A^{(n)} \setminus A^{(n,1)}$ for which \hat{g} non $\in A^{(1,0)}$. Then the equality

$$\hat{g}(x_1) = x_2$$

depends on x_1 and, consequently, there is a function $h \in A^{(1)}$ such that equality (6) is equivalent to the equality

$$x_1 = h(x_2).$$

Hence in particular we obtain the equalities

(7)
$$h(\hat{g}(x)) = x = \hat{g}(h(x)).$$

Setting $g_0(x_1,\ldots,x_n)=h(g(x_1,\ldots,x_n))$ we have g_0 non $\epsilon A^{(n,1)}$ and, according to (7),

$$\hat{g}_0(x) = h(\hat{g}(x)) = x,$$

which implies that $g_0 \in \widetilde{A}^{(n)} \setminus \widetilde{A}^{(n,1)}$. The Lemma is thus proved.

We say that a function $s \in \widetilde{A}^{(3)}$ is quasi-symmetric if

(8)
$$s(x_1, x_2, x_1) = s(x_2, x_1, x_1) = x_2$$

for each $x_1, x_2 \in A$. Every quasi-symmetric function belongs to $\widetilde{A}^{(3)} \setminus \widetilde{A}^{(3,2)}$. In fact, according to (8), we have the equalities

$$s(x_1, x_2, x_1) = x_2, \quad s(x_1, x_2, x_2) = x_1,$$

which imply that $s(x_1, x_2, x_3)$ depends on x_1, x_2, x_3 and consequently $s \in A^{(3,2)}$.

LEMMA 3. If s is a quasi-symmetric function, then for all $x_1, x_2, x_3, x_4 \in A$ the following equalities are true:

(9)
$$s(x_1, x_2, x_3) = s(x_2, x_1, x_3),$$

$$(10) s(s(x_1, x_2, x_3), x_4, x_3) = s(x_1, s(x_2, x_4, x_3), x_3),$$

(11)
$$f(s(x_1, x_2, x_3), x_3) = s(f(x_1, x_3), f(x_2, x_3), x_3)$$
 for any $f \in \widetilde{A}^{(2)}$

(12)
$$f(x_1, x_2, x_3) = s(f(x_1, x_1, x_2), f(x_1, x_2, x_1), x_1)$$
 for any $f \in \widetilde{A}^{(3)}$.

Proof. Replacing x_1 by x_2 and x_2 by x_1 in formula (8) we obtain the equality

$$s(x_1, x_2, x_2) = s(x_2, x_1, x_2) = x_1.$$

Hence and from (8) it follows that equality (9) holds for all $x_1, x_2, x_3 = x_1$ and $x_3 = x_2$. Thus, in view of Lemma 1, equality (9) holds for all x_1, x_2 and x_3 .

Taking into account formula (8) we have the equalities

$$\begin{split} s\left(s\left(x_1,\,x_2,\,x_2\right),\,x_4,\,x_2\right)\right) &= s\left(x_1,\,x_4,\,x_2\right)\,,\\ s\left(x_1,\,s\left(x_2,\,x_4,\,x_2\right),\,x_2\right) &= s\left(x_1,\,x_4,\,x_2\right)\,,\\ s\left(s\left(x_1,\,x_2,\,x_4\right),\,x_4,\,x_4\right) &= s\left(x_1,\,x_2,\,x_4\right)\,,\\ s\left(x_1,\,s\left(x_2,\,x_4,\,x_4\right),\,x_4\right) &= s\left(x_1,\,x_2,\,x_4\right)\,, \end{split}$$

which imply that equality (10) holds for all x_1 , x_2 , x_4 , $x_3 = x_2$ and $x_3 = x_4$. Hence, in virtue of Lemma 1, we get equality (10) for all x_1 , x_2 , x_3 and x_4 . Further, from the equalities

$$\begin{split} f\big(s(x_1,x_2,x_1)\,,\,x_1\big) &= f(x_2,x_1)\,,\\ s\big(f(x_1,x_1)\,,f(x_2,x_1)\,,\,x_1\big) &= s\big(x_1,f(x_2,x_1)\,,\,x_1\big) = f(x_2,x_1)\,,\\ f\big(s(x_1,x_2,x_2)\,,\,x_2\big) &= f(x_1,x_2)\,,\\ s\big(f(x_1,x_2)\,,f(x_2,x_2)\,,\,x_2\big) &= s\big(f(x_1,x_2)\,,\,x_2\,,\,x_2\big) = f(x_1,x_2)\,, \end{split}$$

where $f \in \widetilde{A}^{(2)}$, it follows that equality (11) holds for all $x_1, x_2, x_3 = x_1$ and $x_3 = x_2$, which implies, in view of Lemma 1, that equality (11) holds for all x_1, x_2 and x_3 .

Finally, taking into account formula (8), we have for every $f \in \widetilde{A}^{(8)}$ the following equalities:

$$s(f(x_3, x_3, x_3), f(x_3, x_2, x_3), x_3) = s(x_3, f(x_3, x_2, x_3), x_3) = f(x_3, x_2, x_3),$$

$$s(f(x_2, x_2, x_3), f(x_2, x_2, x_2), x_2) = s(f(x_2, x_2, x_3), x_2, x_2) = f(x_2, x_2, x_3).$$

Hence it follows that equality (12) holds for all x_2 , x_3 , $x_1 = x_2$ and $x_1 = x_3$, which implies, in virtue of Lemma 1, that equality (12) holds for all x_1 , x_2 and x_3 . The Lemma is thus proved.

LEMMA 4. If $A^{(3)} \neq A^{(3,1)}$, then there is a quasi-symmetric function.

Proof. By Lemma 2 we may assume that $\widetilde{A}^{(3)} \neq \widetilde{A}^{(3,1)}$. First we suppose that $\widetilde{A}^{(2)} \neq \widetilde{A}^{(2,1)}$. Let $f \in \widetilde{A}^{(2)} \setminus \widetilde{A}^{(2,1)}$. Then the equality $f(x_1, x_2) = x_3$ depends on x_1 and x_2 . There are then two functions $g_1, g_2 \in \widetilde{A}^{(2)}$ such that the last equality is equivalent to each of the equalities

$$x_1 = g_1(x_2, x_3), \quad x_2 = g_2(x_1, x_3).$$

Hence, in particular, we obtain the formulas

(13)
$$f(x_1, g_2(x_1, x_2)) = x_2, \quad f(g_1(x_1, x_2), x_1) = x_2.$$

Setting $s(x_1, x_2, x_3) = f(g_1(x_3, x_1), g_2(x_3, x_2))$ we have the equality $\hat{s}(x) = f(g_1(x, x), g_2(x, x)) = f(x, x) = x$. Thus $s \in \widetilde{A}^{(s)}$. Moreover, from (13) it follows that

$$\begin{split} s\left(x_{1},\,x_{2},\,x_{1}\right) &= f\left(g_{1}(x_{1},\,x_{1}),\,g_{2}(x_{1},\,x_{2})\right) = f\left(x_{1},\,g_{2}(x_{1},\,x_{2})\right) = x_{2},\\ s\left(x_{2},\,x_{1},\,x_{1}\right) &= f\left(g_{1}(x_{1},\,x_{2}),\,g_{2}(x_{1},\,x_{1})\right) = f\left(g_{1}(x_{1},\,x_{2}),\,x_{1}\right) = x_{2}. \end{split}$$

Consequently, s is a quasi-symmetric function.

Now let us suppose that

$$\widetilde{A}^{(2)} = \widetilde{A}^{(2,1)}.$$

We shall prove that every function belonging to $\widetilde{A}^{(3)} \backslash \widetilde{A}^{(3,1)}$ is quasi-symmetric. To prove this it suffices to show that for every $f \in \widetilde{A}^{(3)} \backslash \widetilde{A}^{(3,1)}$ we have the equality

$$f(x_1, x_1, x_3) = x_3$$

for any $x_1, x_3 \in A$. Contrary to this statement let us suppose that $f(x_1, x_1, x_3) \neq x_3$ for a pair $x_1, x_3 \in A$. Hence and from (14) we obtain the equality

(16)
$$f(x_1, x_1, x_3) = x_1.$$

Since $f \notin \widetilde{A}^{(3,1)}$, there is a triplet x_1, x_2, x_3 for which $f(x_1, x_2, x_3) \neq x_1$. Hence and from (16) it follows that the equality

$$f(x_1, x_2, x_3) = x_1$$

depends on x_2 . Thus there is a function $g \in \widetilde{A}^{(2)}$ such that the last equality is equivalent to the equality $x_2 = g(x_1, x_3)$. By formula (14), $g(x_1, x_3) = x_1$ or x_3 , which implies, in virtue of (16), $g(x_1, x_3) = x_1$. Consequently, $f(x_1, x_2, x_3) \neq x_1$ for $x_2 \neq x_1$. Therefore, taking into account equality (14), we have

(17)
$$f(x_1, x_2, x_1) = x_2.$$

Since $f \notin A^{(3,1)}$, there is a triplet $x_1, x_2, x_3 \in A$ for which $f(x_1, x_2, x_3) \neq x_2$. Hence and from (16) it follows that the equality

$$f(x_1, x_2, x_3) = x_2$$

depends on x_2 . Thus there is a function $h \in \widetilde{A}^{(2)}$ such that the last equality is equivalent to the equality $x_2 = h(x_1, x_3)$. By formula (14), $h(x_1, x_3) = x_1$ or x_3 , which implies, in virtue of (16), $h(x_1, x_3) = x_1$. Consequently $f(x_1, x_2, x_1) \neq x_2$ for $x_2 \neq x_1$, which contradicts equality (17). Formula (15) and, consequently, the Lemma are thus proved.

In the sequel we hall denote by $\mathcal K$ the class $\widetilde{A}^{(2)}$. Elements of $\mathcal K$ will be denoted by small Greek letters: λ, μ, ν, \dots

LEMMA 5. If $A^{(3)} \neq A^{(3,1)}$, then K is a field with respect to the operations

(18)
$$(\lambda + \mu)(x_1, x_2) = s(\lambda(x_1, x_2), \mu(x_1, x_2), x_2),$$

$$(\lambda \cdot \mu)(x_1, x_2) = \lambda(\mu(x_1, x_2), x_2),$$

where s is a quasi-symmetric function.

Proof. First of all we remark that the existence of a quasi-symmetric function follows from Lemma 4.

We define the zero-element and the unit element by following formulas:

$$0(x_1, x_2) = x_2, \quad 1(x_1, x_2) = x_1.$$

Obviously, $0 \neq 1$. From (8) and (18) it follows for every $\lambda \in \mathcal{K}$ that

$$(\lambda+0)(x_1,x_2)=s(\lambda(x_1,x_2),x_2,x_2)=\lambda(x_1,x_2).$$

Thus $\lambda + 0 = \lambda$ for every $\lambda \in \mathcal{K}$. Further

$$(\lambda \cdot 1)(x_1, x_2) = \lambda(x_1, x_2), \quad (1 \cdot \lambda)(x_1, x_2) = \lambda(x_1, x_2),$$

which implies $\lambda \cdot 1 = 1 \cdot \lambda = \lambda$ for every $\lambda \in \mathcal{K}$.

The following formula is a direct consequence of definition (19):

$$\lambda \cdot (\mu \cdot \nu) = (\lambda \cdot \mu) \cdot \nu \quad (\lambda, \mu, \nu \in \mathcal{K}).$$

If $\lambda \neq 0$, i. e. $\lambda(x_1, x_2) \neq x_2$ for a pair $x_1, x_2 \in A$, then the equality

$$\lambda(x_1,x_2)=x_3$$

depends on x_1 . Thus there is a function $\lambda^{-1} \in \mathcal{K}$ such that the last equality is equivalent to the equality $x_1 = \lambda^{-1}(x_3, x_2)$. Hence we obtain the equalities

$$\lambda(\lambda^{-1}(x_1, x_2), x_2) = x_1, \quad \lambda^{-1}(\lambda(x_1, x_2), x_2) = x_1,$$

which imply $\lambda \cdot \lambda^{-1} = \lambda^{-1} \cdot \lambda = 1$.

Taking into account assertions (9), (10) and (11) of Lemma 3, we have the equalities

$$(\lambda + \mu)(x_1, x_2) = s(\lambda(x_1, x_2), \mu(x_1, x_2), x_2) = s(\mu(x_1, x_2), \lambda(x_1, x_2), x_2)$$
$$= (\mu + \lambda)(x_1, x_2),$$

$$\begin{aligned} \big((\lambda + \mu) + \nu \big) (x_1, x_2) &= s \big(s \big(\lambda(x_1, x_2), \mu(x_1, x_2), x_2 \big), \nu(x_1, x_2), x_2 \big) \\ &= s \big(\lambda(x_1, x_2), s \big(\mu(x_1, x_2), \nu(x_1, x_2), x_2 \big), x_2 \big) = (\lambda + (\mu + \nu)) (x_1, x_2), \end{aligned}$$

$$(\lambda \cdot (\mu + \nu))(x_1, x_2) = \lambda \{s(\mu(x_1, x_2), \nu(x_1, x_2), x_2), x_2\}$$

= $s(\lambda(\mu(x_1, x_2), x_2), \lambda(\nu(x_1, x_2), x_2), x_2) = (\lambda \cdot \mu + \lambda \cdot \nu)(x_1, x_2),$

which imply

$$\lambda + \mu = \mu + \lambda$$
, $(\lambda + \mu) + \nu = \lambda + (\mu + \nu)$, $\lambda \cdot (\mu + \nu) = \lambda \cdot \mu + \lambda \cdot \nu$

for every $\lambda, \mu, \nu \in \mathcal{K}$.

Further, the following equalities are a direct consequence of definitions (18) and (19)

$$\begin{aligned} & \left((\mu + \nu) \cdot \lambda \right) (x_1, x_2) = \dot{s} \left(\mu \left(\lambda(x_1, x_2), x_2 \right), \nu \left(\lambda(x_1, x_2), x_2 \right), \dot{x}_2 \right), \\ & \left(\mu \cdot \lambda + \nu \cdot \lambda \right) (x_1, x_2) = s \left(\mu \left(\lambda(x_1, x_2), x_2 \right), \nu \left(\lambda(x_1, x_2), x_2 \right), x_2 \right). \end{aligned}$$

Thus $(\mu + \nu) \cdot \lambda = \mu \cdot \lambda + \nu \cdot \lambda$ for every $\lambda, \mu, \nu \in \mathcal{K}$.

Since, by formula (8), $s(\lambda(x_1, x_1), x_3, x_1) = s(x_1, x_3, x_1) = x_3$ for every $\lambda \in \mathcal{K}$, the equality

$$s(\lambda(x_1,x_2),x_3,x_2)=x_2$$

depends on x_3 . Thus there is a function $-\lambda \in \mathcal{K}$ such that the last equality is equivalent to the equality $x_3 = -\lambda(x_1, x_2)$. Hence we get the equality

$$s(\lambda(x_1, x_2), -\lambda(x_1, x_2), x_2) = x_2,$$

which implies $\lambda + (-\lambda) = 0$ for every $\lambda \in \mathcal{K}$. The Lemma is thus proved.

Lemma 6. If $A^{(3)} \neq A^{(3,1)}$, then A is a linear space over \mathcal{K} with respect to the operations

$$x+y = s(x, y, \theta) \quad (x, y \in A),$$
$$\lambda \cdot x = \lambda(x, \theta) \quad (\lambda \in \mathcal{K}, x \in A),$$

where θ is an element of $A^{(0)}$ if $A^{(0)} \neq 0$ and is an element of A if $A^{(0)} = 0$.

Proof. The element θ is the zero-element of A. In fact, according to (8), $x + \theta = s(x, \theta, \theta) = x$ for every $x \in A$.

Further we have, in virtue of Lemma 3, the following equalities:

$$x+y = s(x, y, \theta) = s(y, x, \theta) = y+x,$$

$$(x+y)+z = s(s(x, y, \theta), z, \theta) = s(x, s(y, z, \theta), \theta) = x+(y+z),$$

$$\lambda(x+y) = \lambda(s(x, y, \theta), \theta) = s(\lambda(x, \theta), \lambda(y, \theta), \theta) = \lambda \cdot x + \lambda y,$$

for any $x, y, z \in A$ and $\lambda \in \mathcal{K}$.

Moreover, the equalities

$$\lambda(\mu \cdot x) = \lambda(\mu(x, \theta), \theta) = (\lambda \cdot \mu)x,$$

$$1 \cdot x = x,$$

$$(\lambda + \mu)x = s(\lambda(x, \theta), \mu(x, \theta), \theta) = \lambda \cdot x + \mu \cdot x$$

are true for any $x \in A$ and λ , $\mu \in \mathcal{K}$. Hence, setting -x = (-1)x, we get the equality x + (-x) = 0. x = 0. The Lemma is thus proved.

LEMMA 7. Let $A^{(3)} \neq A^{(3,1)}$ and let the addition in \mathcal{K} be defined by a function s. If the field \mathcal{K} has the characteristic 2, then s is a symmetric function, i. e.

$$s(x_1, x_2, x_3) = s(x_{i_1}, x_{i_2}, x_{i_3})$$

for every permutation i_1, i_2, i_3 of indices 1, 2, 3. Moreover, for every $f \in A^{(n)}$ $(n \ge 2)$ and every $x_1, \ldots, x_{n+1} \in A$ the equality

(20)
$$s(f(x_1,\ldots,x_n),s(x_{n-1},x_n,x_{n+1}),x_{n+1}) = s(f(x_1,\ldots,x_n),x_{n-1},x_n)$$
 is true.

Proof. To prove the symmetry of s, in view of Lemma 3 (formula (9)), it suffices to show that for every triplet $x_1, x_2, x_3 \in A$ we have the equality

$$s(x_1, x_2, x_3) = s(x_1, x_3, x_2)$$
.

In other words, according to Lemma 3, it suffices to show that the function $s_0(x_1, x_2, x_3) = s(x_3, x_1, x_2)$ is quasi-symmetric. We have, according to the definition of addition in \mathcal{K} , the equality

$$s_0(x_1, x_2, x_1) = s(x_1, x_1, x_2) = (1+1)(x_1, x_2) = 0(x_1, x_2) = x_2$$

and, according to (8), the equality

$$s_0(x_2, x_1, x_1) = s(x_1, x_2, x_1) = x_2$$

which imply the quasi-symmetry of s_0 and, consequently, the symmetry of s.

From formula (8) and the symmetry of s we get for any $f \in \boldsymbol{A}^{(n)}$ the equalities

$$s(f(x_1, ..., x_n), s(x_{n-1}, x_n, x_{n-1}), x_{n-1}) = s(f(x_1, ..., x_n), x_n, x_{n-1})$$

= $s(f(x_1, ..., x_n), x_{n-1}, x_n)$

$$s(f(x_1,\ldots,x_n),s(x_{n-1},x_n,x_n),x_n)=s(f(x_1,\ldots,x_n),x_{n-1},x_n),$$

which imply that equality (20) holds for every $x_1, ..., x_n, x_{n+1} = x_{n-1}, x_{n+1} = x_n$. Consequently, in view of Lemma 1, equality (20) holds for every $x_1, ..., x_{n+1}$. The Lemma is thus proved.

LEMMA 8. If $A^{(8)} \neq A^{(3,1)}$, then all functions f defined as

$$f(x_1,\ldots,x_n)=\sum_{k=1}^n\lambda_kx_k,$$

where $\lambda_1, ..., \lambda_n \in \mathcal{K}$ and $\sum_{k=1}^n \lambda_k = 1$, belong to $\widetilde{A}^{(n)}$ (n = 1, 2, ...).

Proof. We prove our Lemma by induction with respect to n. For n=1 the assertion is obvious. To prove our assertion for n=2 it suffices to show that for every $\lambda \in \mathcal{K}$ formula

(21)
$$\lambda(x_1, x_2) = \lambda \cdot x_1 + (1 - \lambda)x_2$$

is true. Setting $f(x_1,\,x_2,\,x_3)=\lambda(x_2,\,x_3)$ in formula (12) of Lemma 3 we infer that

(22)
$$\lambda(x_2, x_3) = s(\lambda(x_1, x_3), \lambda(x_2, x_1), x_1)$$

for every $x_1, x_2, x_3 \in A$. Replacing in the last formula x_2 and x_3 by x_1 , x_1 by x_2 we obtain the equality

$$x_1 = s(\lambda(x_2, x_1), \lambda(x_1, x_2), x_2)$$
.

Hence, according to the definition of the unit element and addition in ${}^{\circ}\!X$, we have the equality

 $\lambda(x_2, x_1) = (1 - \lambda)(x_1, x_2)$.

Setting $x_1=\theta$ in formula (22) and replacing x_2 by x_1 and x_3 by x_2 we infer that

$$\lambda(x_1, x_2) = s(\lambda(\theta, x_2), \lambda(x_1, \theta), \theta) = \lambda x_1 + (1 - \lambda)x_2.$$

Formula (21) is thus proved for every $\lambda \in \mathcal{K}$.

Now let us suppose that $n \ge 3$ and that the assertion of our Lemma is true for indices less than n. Let us consider a function

$$f(x_1, x_2, ..., x_n) = \sum_{k=1}^n \lambda_k x_k,$$

where $\sum_{k=1}^{n} \lambda_k = 1$.

First we assume that there is an index k_0 $(1 \le k_0 \le n)$ for which $\lambda_{k_0} \ne 1$. Put

$$g(x_1, x_2) = (1 - \lambda_{k_0}) x_1 + \lambda_{k_0} x_2,$$

$$h(x_1, \ldots, x_{k_0-1}, x_{k_0+1}, \ldots, x_n) = \sum_{\substack{k=1\\k \neq k_0}}^n \lambda_k (1 - \lambda_{k_0})^{-1} x_k.$$

By the induction assumption $g \in \widetilde{A}^{(2)}$ and $h \in \widetilde{A}^{(n-1)}$. It is easy to verify that $f(x_1, \ldots, x_n) = g(h(x_1, \ldots, x_{k_0-1}, x_{k_0+1}, \ldots, x_n), x_{k_0})$, which implies $f \in \widetilde{A}^{(n)}$.

Now let us assume that $\lambda_1 = \lambda_2 = ... = \lambda_n = 1$ and that the field $\mathcal K$ has a characteristic different from 2. Since $1 \neq 0$ and $n \cdot 1 = \sum_{k=1}^n \lambda_k = 1$, we have the inequality $(n-2) \cdot 1 \neq 0$. Put

$$\begin{split} g_1(x_1, x_2) &= 2x_1 + (n-2)x_2, \\ g_2(x_1, x_2) &= 2^{-1}x_1 + 2^{-1}x_2, \\ g_3(x_3, \dots, x_n) &= \sum_{k=3}^n (n-2)^{-1}x_k. \end{split}$$

By the induction assumption, $g_1, g_2 \in \widetilde{A}^{(2)}$ and $g_3 \in \widetilde{A}^{(n-2)}$. Since $f(x_1, ..., x_n) = g_1(g_2(x_1, x_2), g_3(x_3, ..., x_n))$, we have $f \in \widetilde{A}^{(n)}$.

Finally let us assume that $\lambda_1 = \lambda_2 = \dots = \lambda_n = 1$ and that the field \mathfrak{A} has the characteristic 2. Since $(n-2) \cdot 1 = n \cdot 1 = 1$, by the induction assumption the function

$$f_0(x_1, ..., x_{n-2}) = \sum_{k=1}^{n-2} x_k$$

belongs to $\widetilde{A}^{(n-2)}$. Using Lemma 7 we infer that

$$\begin{split} f(x_1, \dots, x_n) &= f_0(x_1, \dots, x_{n-2}) + x_{n-1} + x_n \\ &= s\left(f_0(x_1, \dots, x_{n-2}), s\left(x_{n-1}, x_n, \theta\right), \theta\right) = s\left(f_0(x_1, \dots, x_{n-2}), x_{n-1}, x_n\right), \end{split}$$

which implies $f \in \widetilde{A}^{(n)}$. The Lemma is thus proved.

LEMMA 9. If $A^{(3)} \neq A^{(3,1)}$, then all functions f belonging to $\widetilde{A}^{(n)}$ $(n \geqslant 1)$ are of the form

$$f(x_1,\ldots,x_n)=\sum_{k=1}^n\lambda_kx_k,$$

where $\lambda_1, ..., \lambda_n \in \mathcal{K}$ and $\sum_{k=1}^n \lambda_k = 1$.

Proof. We shall prove our Lemma by induction with respect to n. For n=1 the assertion is obvious. For n=2 it follows from formula (21). Now let us suppose that $n \ge 3$ and that our assertion is true for indices less than n. Let $f \in \widetilde{A}^{(n)}$. For every k $(1 \le k \le n)$ setting $x_k = x_1$ and $x_j = x_2$ (j = 1, 2, ..., n and $j \ne k)$ in $f(x_1, ..., x_n)$ we obtain the expression $v_k(x_1, x_2)$, where obviously $v_k \in \mathcal{K}$.

First let us assume that there exists an index k_0 for which $\nu_{k_0} \neq 1$. Without loss of the generality of our considerations we may suppose that $\nu_n \neq 1$. By Lemma 8 the function g defined by the formula

$$g(x_1, x_2) = (1 - \nu_n)^{-1} x_1 - \nu_n (1 - \nu_n)^{-1} x_2$$

belongs to A(2). Putting

(23)
$$h(x_1, ..., x_n) = g(f(x_1, ..., x_n), x_n) = (1 - \nu_n)^{-1} f(x_1, ..., x_n) - \nu_n (1 - \nu_n)^{-1} x_n,$$

$$(24) h_j(x_1, \ldots, x_{n-1}) = h(x_1, \ldots, x_{n-1}, x_j) (j = 1, 2, \ldots, n-1)$$

we infer that $h \in \widetilde{A}^{(n)}$ and $h_j \in \widetilde{A}^{(n-1)}$ (j = 1, 2, ..., n-1). Consequently, by the induction assumption, there are functions $\mu_k^{(j)} \in \mathcal{K}$ (j, k = 1, 2, ..., n-1) for which

$$\sum_{k=1}^{n-1} \mu_k^{(j)} = 1 \qquad (j = 1, 2, ..., n-1)$$

and

(25)
$$h_j(x_1, \dots, x_{n-1}) = \sum_{k=1}^{n-1} \mu_k^{(j)} x_k \quad (j = 1, 2, \dots, n-1).$$

Setting $x_1 = x_2 = ... = x_{k-1} = x_{k+1} = ... = x_{n-1} = \theta$ in the last equality for $j \neq k$ $(1 \leq j, k \leq n-1)$ we obtain, according to (23), (24) and the definition of functions ν_k , the formula

$$(26) \hspace{1cm} \mu_k^{(j)} x_k = (1-\nu_n)^{-1} \nu_k(x_k,\,\theta) \hspace{0.5cm} (k\neq j;\; 1\leqslant j,\, k\leqslant n-1) \; .$$

Replacing $x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n-1}$ by x_1, x_j by x_2 and x_n by x_3 $(1 \le j \le n-1)$ in $f(x_1, \ldots, x_n)$ we obtain the expression $f_j(x_1, x_2, x_3)$, where $f_j \in A^{(3)}$. By formula (12) of Lemma 3 we have the equality

$$f_j(x_1, x_2, x_3) = s(f_j(x_1, x_1, x_3), f_j(x_1, x_2, x_1), x_1) \quad (1 \le j \le n-1).$$

Setting in the last equality $x_1 = \theta$, $x_2 = x_3 = x_j$ and taking into account the definition of functions r_k we infer that

(27)
$$f_j(\theta, x_j, x_j) = \nu_n(x_j, \theta) + \nu_j(x_j, \theta) \quad (1 \le j \le n-1).$$

Further, setting $x_1 = x_2 = \dots = x_{j-1} = x_{j+1} = \dots = x_{n-1} = \theta$ in equality (25) we obtain, according to (23), (24) and (27), the formula

$$\mu_j^{(j)} x_j = (1 - \nu_n)^{-1} f_j(\theta, x_j, x_j) - \nu_n (1 - \nu_n)^{-1} x_j$$

$$= (1 - \nu_n)^{-1} (f_j(\theta, x_j, x_j) - \nu_n (x_j, \theta)) = (1 - \nu_n)^{-1} \nu_j(x_j, \theta) \qquad (j = 1, 2, ..., n - 1).$$

Hence and from (26) it follows that the coefficients $\mu_k^{(j)}(k, j = 1, 2, ..., n-1)$ do not depend on the choice of indices j. Consequently, taking into account formula (24), we may write equality (25) in the form

$$h(x_1,...,x_{n-1},x_j)=\sum_{k=1}^{n-1}\mu_kx_k \quad (j=1,2,...,n-1),$$

where $\sum_{k=1}^{n-1} \mu_k = 1$. Hence it follows that the equality

$$h(x_1, ..., x_n) = \sum_{k=1}^{n-1} \mu_k x_k$$

holds for any $x_1, ..., x_{n-1}, x_n = x_1, x_n = x_2, ..., x_n = x_{n-1}$. Since by assumption $n \ge 3$, the last equality, in view of Lemma 1, holds for any $x_1, ..., x_n$. Hence and from (23) follows the representation

$$f(x_1,\ldots,x_n)=\sum_{k=1}^n\lambda_kx_k,$$

where $\lambda_k = (1 - \nu_n) \mu_k$ $(1 \leqslant k \leqslant n - 1)$, $\lambda_n = \nu_n$ and consequently

$$\sum_{k=1}^n \lambda_k = (1-\nu_n) \sum_{k=1}^{n-1} \mu_k + \nu_n = 1 \; .$$

Now let us assume that, for every index k $(1 \le k \le n)$, $v_k = 1$. Moreover, let us suppose that the field $\mathcal K$ has a characteristic different from 2. Put

(28)
$$g_0(x_1, x_2) = 2^{-1}x_1 + 2^{-1}x_2, f_0(x_1, \dots, x_n) = g_0(f(x_1, \dots, x_n), x_n) = 2^{-1}f(x_1, \dots, x_n) + 2^{-1}x_n.$$

By Lemma 8, $g_0 \in \widetilde{A}^{(2)}$, which implies $f_0 \in \widetilde{A}^{(n)}$. Moreover,

$$f_0(x_1, x_2, \dots, x_2) = 2^{-1}v_1(x_1, x_2) + 2^{-1}x_2 = 2^{-1}x_1 + 2^{-1}x_2 \not\equiv x_1$$

Consequently, applying the first part of the proof, we have the representation

$$f_0(x_1,\ldots,x_n) = \sum_{k=1}^n \mu_k x_k,$$

where $\mu_1, \ldots, \mu_n \in \mathcal{K}$ and $\sum_{k=1}^n \mu_k = 1$. Hence and from (28) it follows that

$$f(x_1,\ldots,x_n)=\sum_{k=1}^n\lambda_kx_k,$$

where $\lambda_k = 2\mu_k$ $(1 \leqslant k \leqslant n-1)$, $\lambda_n = 2\mu_n-1$ and consequently $\sum_{k=1}^n \lambda_n = 1$.

Finally let us assume that $r_k = 1$ (k = 1, 2, ..., n) and that the field K has the characteristic 2. Put

$$f_1(x_2, x_3, \dots, x_n) = f(x_2, x_2, x_3, \dots, x_n),$$

$$f_2(x_2, x_3, ..., x_n) = f(x_3, x_2, x_3, ..., x_n).$$

Obviously, $f_1, f_2 \in \widetilde{A}^{(n-1)}$ and, by the induction assumption, we have the representations

(31)
$$f_1(x_2, x_3, ..., x_n) = \sum_{k=2}^n \lambda_k^{(1)} x_k, \quad f_2(x_2, x_3, ..., x_n) = \sum_{k=2}^n \lambda_k^{(2)} x_k,$$

where $\lambda_2^{(1)},\ldots,\lambda_n^{(1)},\lambda_2^{(2)},\ldots,\lambda_n^{(2)}\in\mathcal{K}$ and $\sum_{k=2}^n\lambda_k^{(1)}=\sum_{k=2}^n\lambda_k^{(2)}=1$. Setting $x_2=\ldots=x_{k-1}=x_{k+1}=\ldots=x_n=\theta$ ($3\leqslant k\leqslant n$) in (31) and taking into account the definition of functions r_k we infer that

(32)
$$\lambda_k^{(1)} x_k = \nu_k(x_k, \theta) = x_k \quad (3 \le k \le n).$$

Replacing x_3, \ldots, x_n by x_1, x_1 by x_3 in $f(x_1, \ldots, x_n)$ we obtain the expression $g(x_1, x_2, x_3)$, where $g \in \widetilde{A}^{(3)}$. By formula (12) of Lemma 3 we have the equality

$$g(x_1, x_2, x_3) = s(g(x_1, x_1, x_3), g(x_1, x_2, x_1), x_1).$$

Setting in the last equality $x_1 = \theta$, $x_3 = x_2$ and taking into account the definition of functions ν_k we infer that

(33)
$$g(\theta, x_2, x_2) = \nu_1(x_2, \theta) + \nu_2(x_2, \theta) = x_2 + x_2 = \theta.$$

Further putting $x_3 = ... = x_n = \theta$ in equality (31) we obtain, according to (29) and (33), the formula

$$\lambda_2^{(1)} x_2 = g(\theta, x_2, x_2) = \theta$$
.

Representation theorem

163

Hence and from (31) and (32) it follows that

(34)
$$f_1(x_2, x_3, ..., x_n) = \sum_{k=0}^{n} x_k$$

and

$$(35) (n-2) \cdot 1 = 1.$$

Analogously we obtain the equality

(36)
$$f_2(x_2, x_3, \dots, x_n) = x_2 + \sum_{k=4}^{n} x_k.$$

Put

(37)
$$h_0(x_1, x_2, ..., x_n) = \sum_{k=1}^n x_k.$$

Since, in view of (35), $n \cdot 1 = 1$, we have, according to Lemma 8, $h_0 \in \widetilde{A}^{(n)}$. Moreover, in virtue of (29), (30), (34) and (36), we have the equalities

$$f(x_2, x_2, x_3, ..., x_n) = h_0(x_2, x_2, x_3, ..., x_n),$$

$$f(x_3, x_2, x_3, ..., x_n) = h_0(x_3, x_2, x_3, ..., x_n),$$

whence it follows that the equality

$$f(x_1,\ldots,x_n)=h_0(x_1,\ldots,x_n)$$

holds for all $x_2, ..., x_n, x_1 = x_2$ and $x_1 = x_3$. Consequently, by Lemma 1, $f = h_0$, which implies, in view of (37), the assertion of our Lemma. The Lemma is thus proved.

LEMMA 10. If $A^{(8)} \neq A^{(3,1)}$, then the set

(38)
$$A_0 = \{ f(\theta) : f \in A^{(1)} \}$$

is a linear subspace of A. Moreover, for every $f \in A^{(1)}$ there is an element $\lambda \in \mathcal{K}$ such that

$$f(x) = \lambda x + f(\theta)$$

for any $x \in A$.

Proof. First we shall prove formula (39). By Lemma 8 the function g defined by the formula

$$g(x_1, x_2, x_3) = x_1 - x_2 + x_3$$

belongs to $\widetilde{A}^{(3)}$. Given $f \in A^{(1)}$ we put

(40)
$$h(x_1, x_2, x_3) = g(f(x_1), f(x_2), x_3) = f(x_1) - f(x_2) + x_3.$$

Obviously, $\hat{h}(x) = x$ and, consequently, $h \in \widetilde{A}^{(3)}$. Thus, according to

Lemma 9, there is a triplet $\lambda, \mu, \nu \in \mathcal{K}$ for which

$$h(x_1, x_2, x_3) = \lambda x_1 + \mu x_2 + \nu x_3$$
.

Setting $x_2 = x_3 = \theta$, $x_1 = x$ in the last equality and taking into account formula (40), we infer that (39) is true.

For given $\lambda, \mu \in \mathcal{H}$ we put

(41)
$$g_1(x_1, x_2, x_3) = \lambda x_1 - \lambda x_2 + x_3, \quad g_2(x_1, x_2) = \mu x_1 + (1 - \mu) x_2.$$

Evidently, in view of Lemma 8, $g_1 \in \widetilde{A}^{(3)}$, $g_2 \in \widetilde{A}^{(2)}$. Moreover, it is easy to see that for every pair $f_1, f_2 \in A^{(1)}$ the equality

$$(42) g_1(x_1, f_1(x_1), x_2) = g_2(f_2(x_1), x_1)$$

depends on x_2 . Consequently, there is a function $f_3 \in A^{(1)}$ such that the last equality is equivalent to the equality $x_2 = f_3(x_1)$. Taking into account equalities (41) and (42) we infer that

$$f_3(\theta) = \lambda f_1(\theta) + \mu f_2(\theta)$$

Thus A_0 is a linear subspace of A.

LEMMA 11. If
$$A^{(3)} = A^{(3,1)}$$
, then $A^{(n)} = A^{(n,1)}$ for every $n \ge 1$.

Proof. To prove our assertion it suffices to show, in virtue of Lemma 2, that $\widetilde{A}^{(n)} = \widetilde{A}^{(n,1)}$ for every $n \ge 1$. We shall prove the last equality by induction. It is obvious for n = 1, 2 and 3. Let us suppose that $n \ge 4$ and

$$\widetilde{A}^{(k)} = \widetilde{A}^{(k,1)}$$
 for $k = 1, 2, ..., n-1$.

Let $f \in \widetilde{A}^{(n)}$. From the last equalities it follows that for every pair $i, j \ (i \neq j, \ 1 \leqslant i, j \leqslant n)$ there exists an integer $s(i, j) \ (1 \leqslant s(i, j) \leqslant n)$ such that

$$(43) f(x_1, \ldots, x_{j-1}, x_i, x_{j+1}, \ldots, x_n) = x_{s(i,j)}.$$

Obviously, $s(i, j) \neq j$.

First we shall prove that there exists a triplet i_0, j_0, m_0 such that $s(j_0, i_0) = s(m_0, i_0)$ and $i_0 \neq j_0$, $i_0 \neq m_0$, $j_0 \neq m_0$. Contrary to this statement let us suppose that for every triplet $i, j, m \ (i \neq j, i \neq m, j \neq m)$ we have the inequality

$$s(j,i) \neq s(m,i).$$

We have, according to (43), the equalities

$$f(x_2, x_2, x_3, x_4, \dots, x_n) = x_{s(2,1)},$$

$$(46) f(x_3, x_2, x_3, x_4, \dots, x_n) = x_{s(3,1)},$$

$$f(x_4, x_2, x_3, x_4, ..., x_n) = x_{s(4,1)}.$$

Setting $x_2 = x_3$ in (45) and (46) we infer that the right sides of these equalities are equal. Taking into account formula (44) we have $x_{s(2,1)} = x_2$ or x_3 and $x_{s(3,1)} = x_2$ or x_3 . Consequently,

$$s(2,1) = 2 \text{ or } 3$$
, $s(3,1) = 2 \text{ or } 3$.

Similarly, setting $x_2 = x_4$ in (45) and (47), we obtain the equalities

$$s(2,1) = 2 \text{ or } 4$$
, $s(4,1) = 2 \text{ or } 4$,

and, setting $x_3 = x_4$ in (46) and (47),

$$s(3,1) = 3$$
 or 4 , $s(4,1) = 3$ or 4 .

Thus s(2, 1) = 2, s(3, 1) = 3 and s(4, 1) = 4. Hence and from (45) and (46) it follows that

$$f(x_2, x_2, x_3, x_4, \ldots, x_n) = x_2, \quad f(x_3, x_2, x_3, x_4, \ldots, x_n) = x_3,$$

which implies that the equality

$$f(x_1,\ldots,x_n)=x_1$$

holds for all $x_2, ..., x_n, x_1 = x_2$ and $x_1 = x_3$. Consequently, by Lemma 1, it holds for any $x_1, ..., x_n$. Hence we get the equalities 1 = s(2, 3) = s(1, 3), which contradicts inequality (44).

Let i_0, j_0, m_0 be a triplet satisfying the conditions $s(j_0, i_0) = s(m_0, i_0)$, $j_0 \neq i_0, m_0 \neq i_0, j_0 \neq m_0$. Setting for brevity $s_0 = s(j_0, i_0)$ we have the equalities

$$f(x_1, ..., x_{i_0-1}, x_{j_0}, x_{i_0+1}, ..., x_n) = x_{s_0},$$

$$f(x_1, ..., x_{i_0-1}, x_{m_0}, x_{i_0+1}, ..., x_n) = x_{s_0},$$

which imply that the equality

$$f(x_1, ..., x_n) = x_{s_0}$$

holds for $x_1, \ldots, x_{i_0-1}, x_{i_0+1}, \ldots, x_n, x_{i_0} = x_{j_0}, x_{i_0} = x_{m_0}$. Consequently, by Lemma 1, equality (48) holds for all x_1, \ldots, x_n , which implies $f \in \widetilde{A}^{(n,1)}$. The Lemma is thus proved.

Proof of the theorem. (i) If $A^{(0)} \neq 0$ and $A^{(3)} \neq A^{(3,1)}$, then, in virtue of Lemmas 5 and 6, there is a field $\mathcal K$ such that A is a linear space over $\mathcal K$. Moreover, taking into account the definition of addition and scalar-multiplication in A and the definition of θ , we infer that all functions f defined as

$$f(x_1, ..., x_n) = \sum_{k=1}^n \lambda_k x_k + a,$$

where $\lambda_1, \ldots, \lambda_n \in \mathcal{K}$, $a \in A_0$, A_0 is defined by formula (38) of Lemma 10, belong to A.

Now let $f \in A$. By Lemma 10 we have the equality

$$\hat{f}(x) = \lambda x + a$$

where $\lambda \in \mathcal{K}$ and $\alpha = f(\theta) \in A_0$. Put

(49)
$$g(x_1, ..., x_n) = f(x_1, ..., x_n) - \lambda x_n - a + x_n,$$

if $f \in A^{(n)}$. Obviously, $\hat{g}(x) = x$, which implies $g \in \widetilde{A}^{(n)}$. Using Lemma 9 we have the equality

$$g(x_1,\ldots,x_n)=\sum_{k=1}^n\mu_kx_k,$$

where $\mu_1, \ldots, \mu_n \in \mathcal{X}$. Hence, according to (49), we get the representation

$$f(x_1,\ldots,x_n)=\sum_{k=1}^n\lambda_kx_k+a,$$

where $\lambda_1, \ldots, \lambda_n \in \mathcal{X}$ and $a \in A_0$. The assertion (i) of the Theorem is thus proved.

(ii) If $A^{(0)} = 0$ and $A^{(3)} \neq A^{(3,1)}$, then, in virtue of Lemmas 5 and 6, there is a field \mathcal{K} such that A is a linear space over \mathcal{K} .

Now we shall prove that all functions f belonging to A are of the form

(50)
$$f(x_1, ..., x_n) = g(f_0(x_1, ..., x_n)),$$

where $g \in A^{(1)}$ and $f_0 \in \widetilde{A}^{(n)}$ if $f \in A^{(n)}$. Obviously, if $g \in A^{(1)}$ and $f_0 \in \widetilde{A}^{(n)}$, then the superposition $f \in A^{(n)}$. Conversely, let $f \in A^{(n)}$. Since $A^{(0)} = 0$, the function f is not constant, which implies that the equality

$$\hat{f}(x_1) = x_2$$

depends on x_1 . Thus there is a function $h \in A^{(1)}$ such that the last equality is equivalent to the equality $x_1 = h(x_2)$. Hence, in particular, it follows that

$$\hat{f}(h(x)) = x = h(\hat{f}(x)).$$

Setting

$$f_0(x_1, ..., x_n) = h(f(x_1, ..., x_n)), \quad g(x) = \hat{f}(x)$$

we have the equalities

$$\hat{f}_0(x) = h(\hat{f}(x)) = x,$$

 $y(f_0(x_1, ..., x_n)) = \hat{f}(h(f(x_1, ..., x_n))) = f(x_1, ..., x_n),$

which implies $f_0 \in \widetilde{A}^{(n)}$ and, consequently, formula (50). Let $g \in A^{(1)}$. We have, by Lemma 10, the equality

$$g(x) = \lambda x + g(\theta),$$

where $\lambda \in \mathcal{K}$. We shall prove that $\lambda = 1$. Contrary to the last equality let us assume that $\lambda \neq 1$. Then the equality g(x) = x depends on x. Thus there is a constant $g_0 \in A^{(0)}$ such that the last equality is equivalent to the equality $x = g_0$, which contradicts the assumption $A^{(0)} = 0$. Thus

$$g(x) = x + g(\theta)$$

for every $g \in A^{(1)}$. Hence and from (50) it follows that all functions f belonging to $A^{(n)}$ (n = 1, 2, ...) are of the form

$$f(x_1, x_2, ..., x_n) = f_0(x_1, ..., x_n) + a$$

where $a \in A_0$, A_0 is defined by formula (38) of Lemma 10 and $f_0 \in \widetilde{A}^{(n)}$. The assertion (ii) of our Theorem is a direct consequence of the last equality and Lemmas 8 and 9.

(iii) If $A^{(3)} = A^{(9,1)}$, then, in view of Lemma 11, A is the class of all functions f:

(51)
$$f(x_1, ..., x_n) = h(x_j) \quad (h \in A^{(1)}, \ 1 \leq j \leq n).$$

First let us assume that $A^{(1)} = A^{(1,0)}$. This implies that A is one-point set: $A = \{a_0\}$ and, consequently,

$$f(x_1,\ldots,x_n)=a_0$$

for every $f \in A$. Let \mathcal{G} be the group containing the identity transformation of A only and let $A_0 = 0$. Evidently, A_0 is normal with respect to \mathcal{G} and the assertion of the Theorem is a direct consequence of formula (52).

Now let us assume that $A^{(1)} \neq A^{(1,0)}$. Put $G = A^{(1)} \setminus A^{(1,0)}$. We shall prove that G is a group with respect to the operation

$$(g_1 \cdot g_2)(x) = g_1(g_2(x))$$
.

Obviously, if $g_1, g_2 \in \mathcal{G}$, then $g_1 \cdot g_2 \in \mathcal{G}$ and

$$(g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$$

for any $g_1, g_2, g_3 \in \mathcal{G}$.

Setting e(x) = x we have $e \in \mathcal{G}$ and $e \cdot g = g \cdot e = g$ for every $g \in \mathcal{G}$. For given $g \in \mathcal{G}$ the equality $g(x_1) = x_2$ depends on x_1 . Thus there is a function $g^{-1} \in A^{(1)}$ such that the last equality is equivalent to the equality $x_1 = g^{-1}(x_2)$. Evidently, $g^{-1} \in \mathcal{G}$ and $g \cdot g^{-1} = g^{-1} \cdot g = e$. Thus \mathcal{G} is a group of transformations of A.

Let $g \in \mathcal{G}$ and $g \neq e$. If the equality g(x) = x is independent of x, then $g(x) \neq x$ for every $x \in A$. If the last equality depends on x, then there is a constant $a \in A^{(0)}$ such that this equality is equivalent to the equality x = a. Thus every transformation which is not the identity has at most one fixed point in A. Moreover, setting $A_0 = A^{(0)}$, we infer

that A_0 is a normal set with respect to \mathcal{G} . Finally, from (51) it follows that all functions f belonging to A are of the form

$$f(x_1,\ldots,x_n)=g(x_j) \qquad (1\leqslant j\leqslant n),$$

 \mathbf{or}

$$f(x_1,\ldots,x_n)=\alpha\,,$$

where $g \in \mathcal{G}$ and $a \in A_0$. The Theorem is thus proved.

References

- [1] E. Marczewski, A general scheme of the notions of independence in mathematics, Bulletin Acad. Pol. Sci., Série Sc. Math., Astr. et Phys. 6 (1958), p. 731-736.
- [2] Independence in algebras of sets and Boolean algebras, Fund. Math. this volume, p. 135-145.
- [3] Independence in some abstract algebras, Bull. Acad. Pol. Sci., Série Sc. Math., Astr. et Phys. 7 (1959), p. 611-616.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 17. 1. 1959