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A representation theorem for Marczewski’s algebras
' by
K. Urbanik (Wroctaw)

I. Let us consider an arbitrary non-empty set 4. Let 4 be the class
of A-valued functions of finitely many variables running over 4 such
that 1° the functions defined by the formula f(zy, ..., @,) = a; (0 — 1,2, .
k=1,2,..,n) belong to 4, 2° 4 is closed with respect to the super-
position of functions. The system U = (4, 4> will be called an algebra.
The properties of the class A are given in papers [1] and [2].

By A we shall denote the class of all values of constant functions
belonging to 4. Further, by 4™ (n < 1) we shall denote the clags of all
functions of n variables belonging to 4. If 1 <% < n, then A™® will
denote the subelass of 4™ containing all functions depending on at
most k variables, i.e. feA™ if there is a funetion ge A® such that
oy ooy n) = g (..., ) for a system of indices iy vy ix and for every
@y ey @n e A. By A™ we shall denote the subclass of A™ containing
all constant functions.

Let f,geA™ (n>1). We say that the equality

F(@y ooy @0 = G (1, vy @)
depends on the variable ®; (1 < § < n) if there exists a system a, ey Oy A

of elements belonging to A for which

f(al’ crey Qjm1y Bfy Bjy1yeeny a‘n) = g(a’lr oy Qi1 By ity eeey )
and
Py cny @5ty G55 Qrgny onny ) 3 Gy ooy Qym1y OFy Bjaay oeny Q) -
An algebra U 15 called a Marczewski algebra if for every pair of integers
jsm (1< j < n) and for every pair of funetions f,ge A™ for which the
equality :

(1) H{(@y ooy @n) = g(@y; ..., )

depends on .x; there exists a function ke 4™ such that equality (1)
is equivalent to the equality

Ty = h(wla ey Bjety L1y ovy Zn) -
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The study of these algebras was initiated by E. Marczewski (see [3]),
who proved that the notion of independence in this class of algebras hag
the property of linear independence.

Now we shall give some examples of Marczewski algebras.

1. Let A be a linear space over a field X and leb 4, be a linear
subspace of A. If A4 is the class of all functions f defined as

n
@1y oy @) = ) Mt
B=1
where Ay, ... An ¢ K and a € Ay, then A = <4, Ay is & Marczewski algebra.
In this case we have the relations

A9 20, A™ 24" for nz2.

This example is due to E. Marczewski.

9. Let A be a linear space over a field X and let 4, be a linear
subspace of A. If 4 is the class of all funections f defined as

f(“"n sy Ln) == Zlkwk—f—a s
k=1

n .
where A, o, tne X, 2 A4 =1 and aeA,, then A= {4, 4> is a Mar-
k=1
czewski algebra. In this case we have the relations
A9 =0, A™ 4™ for n>3.

(Let us remark that 4® = A% in the case where the field <K contains
two elements only.)

3. Let § be a group of transformations of a non-empty set 4.
We suppose that every transformation that is not the identity has at
most one fixed point in A.

We say that a subset BC A is normal with respect to the group G
if B contains fixed points of all transformations that are not the identity
belonging to G and g(B)C B for every ge Q. We remark that if trans-
formations belonging to @ have no fixed point, then the empty set is
normal with regpect to Q.

Let 4, be a subset of 4 normal with respect to . If A is the class
of all functions f defined as
Haogy ooy ) = gl@;)  (1<j<m),
or

H@yy ey t0) = a,
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where g G and ae.d,, then A= (4, 4> is a Marczewski algebra. In
this case we have the relation

A(n) - A(n,l) for n>1.

In the present paper we shall prove the following representation
theorem, whieh is an answer to a problem raised by E. Marczewski.

THROREM. Let W = (4, > be a Marceewsks algebra.

() If A9 0 and A® # A%V then there is a field K such that A
s a linear space over K and further, there exists o linear subspace 4, of A
such that A 4s the class of al} functions f defined as

(@ oy a) = D) Mt t-a,

k=1
where My oy An €K and a e 4.
() If AV =0 and A® % A%, then there is a field K such that

A is a linear space over X and further, there exists a linear subspace A,
of A such that A is the class of all functions f defined as

n
f(@1y o) = Zlkwlc“l‘“a’y

i fuer
ki

Where Ay, ..., An €K, D=1 and aed,.
E=1

(iti) If A® = A® then there is a group Q of tramsformations of the
set A such that every tramsformation that is not the identity has at most one
fived point in A. Moreover, there is a subset A, C A normal with respect
fo the group G such that A is the class of all functions | defined as

f(mly---;mﬂ)=g(m1> (léjé’n),
or
Fl&yy ey ttn) = @,
where ge G and aed,.
IL. Before proving the Theorem we shall prove some lemmas. We
assume that all algebras considered in this part of the paper are Mar-

czewski algebras. ‘ R
For any f « A we denote be 7 the function belonging to 4™ defined as.

(2) fla) =1, .., ).

A™ (n>1) will denote the subclags of A™ containing all functions f
for which f(#) = #. A™ will denote the intersection A™ ~A™. The
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following assertion is a direct consequence of the definition of Mar-
czewski algebras: if f, g eA™ (n = 2) and if the equality

F@1y vony Zn) = §(@1; ooy @)

depends on z; (1 < § < n), then there is a funetion & €A™ guch that
the last equality is equivalent to the equality

B = R(Dyy vy Bi1y Bjs1y ooy Tn) -

LEaia 1. Let f,9 e A™ and 1 <j < n. If there ewist two functions
By hy € A0 such that hy # hy, and the equality f(2, ..., @) = g(xy, )
holds for o= hy(@yy ooy Tjm1y Tjtry veny Tn)y B = BBy evvy Bjm1y Biiay oeny T)
and for each @y, .., ®j_y, Bip1y ooy B € A, then f=g.

Proof. Let ns suppose that the equality

(3) F(@ry ey @n) = (@1, ooy @)

depends on w;. Then there is & function s e 4™~ guch that equality (3)

is equivalent to the equality z; = h(®y, ..., Tj—1, Tjy1y ---y Zn). Hence follows

the equality hy = & = hy, which is impossible. Thus equality (3) does

not depend on @;, which implies the assertion of our Lemma.

Lemma 2. If A 52 A for an indew n > 3, then A™ = ™Y,

Proof. First we shall prove that there is a function g ed®\ 4™V

for which § noned™. Let feA™\A™". If fnon e 4“%, then we pus

g =1 Now let us assume that fe 4",

It fe A™, then there is a function foeA® such that F(z, .., o)

= fo(@:, ;) for a pair of indices ¢, j (L < 1, j < ) and for.any @y, ..., L, € 4.

“Moreover, the function f, depends on both variables. Consequently, the

equality
fol@ys ) = @,

where ¢ = _?(m), depends on @,. Then there is a function h, € AY, such
that the last equality is equivalent to the equality @, = ho(z,). From
the equality

) fole, ) = (@) = a
we find fio(x) = z. Hence we get the inequality
(3) fol@, @) #a  for @y 7 Dy

Put gz, ...y ) = folwy, fofas, ;). In virtue of (4) and (5) we have
the formulas

ﬁ(a):fo(a,fo(a, a’)) =fo(“:a’) =a,
§@) =folz, fole, 2)) = fo(m,0) £a  for za,
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which imply g non e 4™, Further, according to (4) and (5), the following
formulas are true:

gy, ay @, ..., 0) =fo(mufo(“ya))=fo(-’la,a) #a for mz+#a,
g(a,a,..,a) =fo(”"fo(a'7 a')) =folas, @) = a,
gla, &3, @y ..., a) “‘"“fo(a'afo(mzya)) =fa, %) #a for @ a.

Hence it follows that g(@,, ..., #.) depends on @, and z,. Thus ge AN 4D,
If fnon eAm’Z), there is a triplet of indices ik (1<t,§,k<n)
such that /(2 ..., 2») depends on =;, z; and zx. Consequently, the equality

f(wu---’mn) =a,

where a = f(m)13 depends on m;, 2; and 2;,. Then there are functions
By hiy by € A7V such that the last equality is equivalent to each of
the equalities

By = Bi{ @y ooiy Bimgy Bygay ey T)
Xy = BBy ory By Dig1yeeny n),
®
Xy, == hk(wl, vooy Bty Brpge1y oany wn) .
Hence it follows that hiwy, ..., Zp—y, Tpes, ..., 3) depends on ; and
4. :_E)hus(,m)settmg Gy ooy Tn) = hy(ty, vy By, Tpyy, -y ¥y), we have
g e AMNA™". Since f(z, ..., ) = a, we have the equality = = Iz, ..., @),

which implies ¢(z) = # and, consequently, § non ¢ 4“9, Our statement
is thus proved.

Now let us eonsider a function g e A" \A™ for which g non e 4%,
Then the equality

(6) (@) =2,

depends on #; and, consequently, there is & function % e A® such that
equality (6) is equivalent to the equality

@, = h(x,).
Hence in particular we obtain the equalities
(7) hg () = &= g(h(2)) .

Setting go(wy, ..., 2a) = h{g(®y, ..., %)) we have g, non e 4™ and,
according to (7),

() = hlg(2)) ==,

which implies that g, ¢ A\ 4™, The Lemma is thus proved.
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We say that a function §e A® iy quasi-symmetric if
(8) $(2y,y Bay 1) = §(Wy, By, 1) = L2
for each @y, 7, € A. Bvery quasi-symmetric function belongs to A\ A%,
In fact, according to (8), we have the equalities
 8(@yy By B1) = La s 8{®y, By, ) = By,

which imply that (o, @, %) depends on @, %,, #; and congequently
se A%,

Leava 3. If ¢ is a quasi-symmetric function, then for all 2y, By, 5, %y € A
the following equalities are true:

9) $(,, Tyy Ta) = 5(Lg, &y, Bs)

(10) 8 (s (@, oy @5 B ) = §{1, (%2, T4y Ts) @),

(1) fls(my, o2y @), @) = 8y, ), T (@2, @s), @) for amy fed®,
(12) @y, Ly 25) = 8{f (1, By, 23) y (@15 Ty 1) @) for any f eAD,

Proof. Replacing ; by #, and &, by #; in formula (8) we obtain
the equality :
{0y, Ly, Bp) = 8(Day Ty, Bp) = By

Hence and from (8) it follows that equality (9) holds for all z, @,
x3 =, and @ — x,. Thus, in view of Lemma 1, equality (9) holds for
all z,, 2, and .

Taking into aceount formula (8) we have the equalities

S(S(muwaywz)ymumz)) = 8{@1, @y, Ta)
3(501’3(592;“'4,“’2))592) == §(®y, Bay Ta) 5
3(3(991yw2:9”4);-’”4;‘”4) = §{®y1, T, Ty)
s(xn'g(mnxu 1), 934) = 8{%1, By, Ta)

which imply that equality (10) holds for all @, @, %, @ = 2, and @, = @4
Hence, in virtue of Lemma 1, we get equality (10) for all o, x,, 2, and =,.
Further, from the equalities

‘ f(s(mlywzy o), 931) = f(zy, @),
S(f(wn wl)yf(%;%):%) = 3(9”1: flas, o), 901) = (@2, %) ,
f(s(-”1;$2amz);mz) = [ (%1, %a)

S(f(“n Tn), [ (22, T2), 93'2) = s(f(“"u La}, &) 95’2) = f(zy, 22)
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where fed®, it follows that equality (11) holds for all oy, 2y, @ — &

and @, = ¥, Which implies, in view of Lemma 1, that equality (11) holds
for all oy, %, and .

Finally, taking into account formula (8), we have for every feA®
the following equalities:

S(f(mih Ty, Ta) s (%55 Xy 3), wa) = 5‘(51?3, fotay @y, 23), .rs) = flitz, 2y, ),
S(f(‘”z, “"27 %4), f (@, Lgy Xo)s wz) = s(f(mzy Ty, Tg) Ly, ;Eg) = f(as, Iy &y)

Hence it follows that equality (12) holds for all @, s, 2, = 2, and 2, = ,,
which implies, in virtue of Lemma 1, that equality (12) holds for all
2, %, and ;. The Lemma is thus proved.

Lomma 4. If A® = A®Y (hen there is a quasi-symmetric function.

Proof. By Lemma 2 we may assume that A® 5= %Y. First we
suppose that A = A%V, Let f e A\A®Y. Then the equality f{z,, 2,) = 5
depends on x; and .. There are then two functions g, g, ¢ A9 such
that the last equality is equivalent to each of the equalities

@y = oy T5)y 2= Gy, Ty)
Hence, in particular, we obtain the formulay
(13) f(wl’ Gol®r, -702)) =T, f(gl(“’u Ta), m1) = .

Setting s(2y, @y, %) = f(gu(#ay @), Golds, #,)) We. have the equality
§(@) = flga(w, ), golw, )} = f(z, 2) = x. Thus s € A®. Moreover, from (13)

it follows that

$(@y, Tpy 1y) = f(g1('”1, 21y GoPs, %)) = f(mly 9ol %1, -772)) = &y
$( @, By, By) = f(gl(wl, Ba) s Yoy, ml)) = f(gl(xl, ), 931) =®,.
Congequently, s is a quasi-symmetrie function.
Now let us suppose that
(14) 49 = 4%V,

We shall prove that every function belonging to A\ A4®" is quasi-
symmetric. To prove this it suffices to show that for every fe A®\A®Y
we have the equality

(15) F(@yy @1y 0a) = s
for any w, e A. Contrary to this statement let us suppose that

flw, ®, 2,) 5 x, for a pair xy, 4 ¢ 4. Hence and from (14) we obtain
the equality

(16) Flay, oy, %) =y

Fundamenta Mathematicae, T. XLVIIL . 11
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Since ¢ A®D, there is a tripleb @, @5, @5 for which flay, @, %) 5 0.
Hence and from (16) it follows that the equality

flyy @y %) =21

depends on @,. Thus there is a function g ¢ A® guch that the last equality
is equivalent to the equality @, = g(%y, ;). By formula (14), g(2y, ) = z,

_or m;, which implies, in virtue of (16), g(w, %) = ;. Consequently,
Flay, @, %) # @, for @, # x;. Therefore, taking into account equality (14),
we have

(17 f(@y, ey @) =2, -

Since f¢ A%, there is a triplet @y, 7y, @ ¢ A for which f(ay, @, @)
# z,. Henee and from (16) it follows that the equality

(@, @ay Bs) =

depends on @,. Thus there is a function & € A® such that the last equality
ig equivalent to the equality @, = h(a:, ;). By formula (14), h(m, 75) =
or w,, which implies, in virbue of (16), h{w,, @)= @;. Consequently
fl2,, @, @) 5 3, for @, # 3y, which contradicts equality (17). Formula (15)
and, consequently, the Lemma are thus proved.

In the sequel we hall denote by X the class A®, Blements of K will
be denoted by small Greek letters: A, u,v, ...

LEvma 5. If A® 5 A%, then K is a field with respect to the

operations
(18) (A+p) (@, 3) = 3(}'(“’11 @)y p(@yy @) mz) y
(19) (A p) (1) @) = }*(# (1 22), wz} 3

where 8 18 a quasi-symmetric function.

Proof. First of all we remark that the existence of a quasi-symmetric
function follows from Lemma 4.

We define the zero-element and the unit element by following
formulas:

0@y, m) =my, 1{wy, %) =2.

Obviously, 0 # 1. From (8) and (18) it follows for every i K that
(A+0) (y, @) = 8{A(@y, T), By @) = A(o04, Ds)
Thus A4 0 = 1 for every A¢%X. Further
(A1), @) = Mo, @), (1) (2, @) = Ay, 1),
which implies -1 =1-1 =1 for every 1¢%K.

icm
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The following formula is a direct consequence of definition (19):
Apr)=Q-p)v  (A,p,veX).
If 20, ie Amy, o) # @ for a pair @, x, ¢ 4, then the equality
Ay, 5) = a4

depends on #,. Thus there is a function 17" e such that the last equality

is equivalent to the equality @, = A7'(, ;). Hence we obtain the
equalities
z(l_l(wl’ ;) ! mz) ) }“_1(1 (ml, wz)y wZ) ==y,

which imply - A7 =271 A=1
Taking into account assertions (9), (10) and (11) of Lemma 3, we
have the equalities

(A4 p) (w1, 23} = 3(1(3?1; Ta) s p{ty, @), mz) = 3(.“(%1, L) y A5y, @), 93:)
= (p+2A) (@1, 1),
((l+#)+7)(a‘11 L) = s(s(/"-(muwz)’/‘(5”17972)75”2)7”(“’1’wz),a’z)
= 8(1(!271, Ta), 5'(:“(“"17 @) , ¥ (21, %), wz): mz) = (A‘I‘ (ﬂ'l"”)) (015 23) 4
(A' (/"+")) (@1, p) = l(s (N(wn @)y ¥ (21, @a), f"'z); wz)
= 8(A{u (@1, 2), 3, A (@1, @), @) @) = (A -2 9) (20, )
which imply ‘
At p=pti,

for every A, pu,v ).
Further, the following equalities are a
nitions (18) and (19)

@)y =4 (u+2), A (pbo) =t ptdo

direct consequence of defi-

(49 W, 70) = 5 (A @), @) # (11, @) 21 )5
(e A+2- (@, 2) = 3(,“(1("”17 @), ﬁ’z): "’(A(mlya’a):-"’z) ) wz) .

Thus (x++) 4= p- A-+v- 4 for every 2,4,veX.
Since, by formula (8), & (A(@;, ©,), &, &) = (@1, &, %) = @, for every
AeX, the equality
s(Z(wl, Ty) y 3, %) =y

depends on ;. Thus there is a function —1 € X guch, that the last equality
is equivalent to the equality @, = —A(2y, ;). Hence we get the equality
8(}‘(9717 iy), — M@y o) wz) =3,

which jmplies A-+(—2) = 0 for every A<°K. The Lemma ig thus proved.
11*
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Lienoea 6. If A9 £ A%V, then 4 is a lnear space over K with respect

to the operations
sty =s(z,y,0) (5,yecd),

lox=2XMz,0) (AeX, zed),
where 0 is an element of AY if AV 20 and is an element of A if AV = ¢,
Proof. The element 0 is the zero-element of A. In fact, according
to (8), #+0 = s(», 6, 8) =z for every x c 4.
Further we have, in virtue of Lemma 3, the following equalities:
z+y =s(xy,0 =8y, 0)=y+a,
(z+y)+2 =s(s(m,y, 6), 2, 0) = 8(‘”;8(?/727 6), 6) =&+ (Y +2),
CAz+y) = l(s(a% ¥, 0), 0) = 3(1(‘%7 6), l(y: 6), 0) =A-w+ Ay ’
for any »,y,2¢4 and AeK.
Moreover, the equalities
Mp- ) =A(p(z, 0),0) = (4 p)z,
lz=uo,
A+ pz = 8(/1('”5 6), u(z, 0), 6) =Ao+p @
are true for any z €4 and 1, u ¢ K. Hence, setting —z = (—1)=, we get
the equality #+(—2) = 0-2 = 6. The Lemma is thus proved.

Levma 7. Let A® 2 4™ and let the addition in K be defined by

a function s. If the field K has the characteristic 2, then s is a symmetric
function, i. e.

8{(2y, ¥y, Bs) = 8(@gy, Biy, Tiy)

for every permutation iy, 4, iy of indices 1,2, 3. Moreover, for every fed™
{(n 2 2) and every @y, ..., Tyy1 ¢ A the equality

(20) '9(f($17 ey &n) s $(Tn1, Ly -”n+1),$n+1) == s(f(wl, vy @) y By -En)

i8 true.

. P.roof. To prove the symmetry of s, in view of Lemma 3 (formula (9)),
it suffices to show that for every triplet Ty, Ty T3 € 4 we have the equality

(i, By, @) = 8 (i, @y, ) .

In other words, according to Lemma, 3, it suffices to show that the

?unction 8o(1, Ty Xa) = $(my, my, @) is quasi-symmetric. We have, accord-
ing to the definition of addition in K, the eguality

Sol, @y, @) = 8 (2, 2y, 2y) = (L+1) (2, @) = 0 (2, 33) = a,,
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and, according to (8), the equality
Sol®e, Ty s Ty) = 8 (X, 2y, 2,) =5,

which imply the quasi-symmetry of s, and, consequently, the Symmetry
of s.
From formula (8) and the symmetry of s we get for any f e 4™ the
equalities
S(f(mu weey Tn)y $ (@ y Ly Tya), mn—-l) = S(f(-’vl, ey @n)y Ly a:,,_l)

S(f@”u vory Tn)y Tn—1y wn) s

i

8 (f(@yy weey Ba) y 8 (Tnsy Ty Tn) , Bp) = ${f (15 vy @), By Fn) 5

which imply that equality (20) holds for every ..., &, Tnii = Bu_y,
Zpi1 = Bn. Consequently, in view of Lemma 1, equality (20) holds for

" eVery %y, ..., %n+1- The Lemma is thus proved.

LeMMA 8, If A® 5= A%, then all junctions § defined as
H

n
Fl@yy ooy a) = Zlkmkr
k=1

n
where Ayy ey dn € K and D Ay =1, belong to 4™ (n=1,2,..).
k=1

Proof. We prove our Lemma by induetion with respect to ». For
7 = 1 the agsertion is obvious. To prove our assertion for » = 2 it suffices
to show that for every 1 eK formula

(21) Ay, ) = A @+ (1—2) 2y

is true. Setting f(my, %, 23) = A(xy, 25) in formula (12) of Lemma 3 we
infer that

(22) Ay, @y) = S(Z(“’lyms)yl(mzyml)yﬁ)

for every @, %, ¥; ¢ A. Replacing in the last formula #, and @5 by %,
2, by 2, we obtain the equality

Ty = s(l(mz; 1) Ay, 22), ) -

Hence, according to the definition of the unit element and addition in K,

we have the equality
Mgy ) = (L—A) (2, %) -

Setting 2, = 0 in formula (22) and replacing z, by 2, and 2, by
we infer that

Ay, By) = 3(1(0,“72)’ Mayy 0), 9) = Az +(1— ).

Formula (21) is thus proved for every e,
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Now let us suppose that # > 3 and that the aggertion of our Lemma
ig true for indices less than n. Let us congider a function

"
@y @y oes n) = Z}*kmk ’
=1

where 3 A, =1.

k=1
First we assume that there iz an index %, (1 <%, < n) for which
Ay 7 1. Put
g(@yy @) = (1 — Ago) 1+ Ay @

n

By ooy Doty Bhosy ooey Ta) = O A1 Aae) i
k=1
k#ko

By the induction assumption geA® and he A"V It is easy to
verify that f(zy, ..., @)= g{R(B1, «or) Brgo1) Lagr1y ooy Tn)y Try), Which im-
plies feA™,

Now let us assume that 4, = 4, = ... = A, = 1 and that the field K

n
has @ characteristic different from 2. Since 1% 0 and n-1 = 3 4 =1,
k=1

we have the inequality (n—2)-1 0. Put

Gi(tyy @) = 200+ (n—2) @, ,
9oy, @) = Zﬂwl-l- 2_1:(;2 ,

n
Ga(@3y <oy Tn) =k2;(""_2)_lél?k )

By the induction assumption, g;,g,e A® and g, e A" ?. Since
F@yy vy Tn) = gl(gz(mu Z3), Ga(ay -, wn)): we have feA®.

Finally let us assume that 4 =4, =.. = 4, = 1 and that the field
X has the characteristic 2. Since (n—2).1 =x-1 =1, by the induction
assumption the function

n—2

Fol®sy oovy @ns) =2 Ly

=
belongs to A", Using Lemma 7 we infer that
(@0 coe s ) = Fol @y, ooey Tpmng) + By + 2
= S(fo(a"lr vory Tn—z)y 8 (Tpy, Xy, 0), 9) = s(fo(mu wory Bp—g)y Tnyy mn) ’

which implies )‘eZ‘"’. The Lemma is thus proved.
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TemmA 9. If A® A(s’l), then all functions | belonging to A™ (n = 1)
are of the form

Fy ey @n) = Zlkwk,

k=1
WHETE Iyy ovy M€ K and kél =1
Proof. We shall prove our Lemma by induction with respect to n.
For = 1 the assertion is obvious. For # = 2 it follows from formula (21).
Now let us suppose that » =3 and that our assertion is true for indices
legs than n. Let feA™, Por every k (1<% < n) setting @, = o, and
pi=n(f=1,2,.,n and § # k) in #{xy, ..., 2s) We obtain the expression
Vil By y Tp)s Where obwously v, € K.
Tirgt let us agsume that there exists an index %, for which vy, # 1.
Without loss of the generality of our considerations we may suppose
that v, 7 1. By Lemma 8 the function g defined by the formula,

9@y, @) = (1—va) "0y — (1 —90) "'ty
pelongs to A%, Putting
(23)  h(®yy ey @) = gl{f (1, - &) w,,)
=( — 1) (@1 vony Ta) — va(L—¥0) " n
(24) Bi(@yy ooy Bps) = R{&1y ory Tpe1, @) (F=1,2,..,0—1)

we infer that heA™ and by e A" (j=1,2,..,n—1) C((n)lsequently,
by the induction assumption, there are functlons wi€eX G,k
=1,2,..,n—1) for which

n—1 .
S =1 (G=1,2,.,n1)
k=1
and
n—1 .
(25) Bi(@yy ooy Cnt) = 0 00 (=125 n1).
E=1
Setting @, = @y = o == L1 == Bpp1 = oo = Ln—1== # in the last equality

for j#k (L<§, & <n —~1) we obtam, according to (23), (24) and the
definition of functions , the formula

(26) uw = (L) o, 0) (B #§; 1<j, k<n—1).
Replacing @, ...y By—1y D41y -3 Tnta by @y, #; by @ and s by @,
1<ign—1)in f(wl, vy Tn) WO obtaln the expression f;{(#,, @, %s), Where

fre A%, By formula (12) of Lemma 3 we have the equality

i@y @y 25) = S(fi(wly By -’Pa)a Fil(tty, @2y Ba)y 501) 1<j<n—1).
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Setting in the last equality #, = 8, @, = @, = @; and taking into account
the definition. of functions »;, we infer that
27 18, @y, 25) = wnl@s, O) + iy, 0) (L <j <n—1).,
Further, setting @, =@ = ... = %j—1 = Zj+1 = ... = Ty = 6 in equality
(23) we obtain, according to (23), (24) and (27), the formula

w1y = (1 =) "8, @5, 5)— w1 — ) "5
=(1—w)" (f,(B,m,,m,)—vn(m,, 0))=(1—w) @, 6) (1=1,2,..,0—1).

Hence and from (26) it follows that the coefficients ,u(” (kyj=1,2,..,n—-1)
do not depend on the choice of indices . Consequently, taking into ae-
count formula (24), we may write equality (25) in the form

n—1

Ry oy Bnmry @) = D gty (1 =1,2,..,n—1),
k=1

a—1

where ) u;=1. Hence it follows that the equality
k=1

b2y ooy a) = 2 M

holds for any @, .., %u_1, @ = @y, Tn = By, v.n, Ty = Ty, Since by as-
sumption # > 3, the last equality, in view of Lemma 1, holds for any
Zyy ey Tn. Hence and from (23) follows the representation

Fl@yy ey B} = Z A g

where 4 = (1—w) (1 <k n—1), = v, and consequently

n n—1
’Zl’f —'pn) 2 Prtvy=1.
=1

Now let us assume that, for every index k (1< k< m), o=1.

Moreover, let us suppose that the field ° has & chara,cterlsmc different
from 2. Put

(28) 90(1’1,1'2) =27 $1+2 ,E 2y
foly ... 1) = go(f(mn <5 Tn), & ) ]‘(‘Z‘l, oy @) + 2, .

By Lemma 8, ¢, efi‘g’, which implies f, ¢ 4™, Moreover,

Fol@yy ooy o0y ) = 2—1"’1(5019 Z5) +2‘1J5’2 = 2_1-’171‘5‘ 2_-1‘272 Fa,.
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Consequently, applying the first part of the proof, we have the repre-
gentation

Fol#ry ey ) 2#1&%7
where py, ...y un € K and 2 tz = 1. Hence and from {28) it follows that
Fwy, . Ly dy) = Zlkm;”
=1

where A = 2p (1 <k <n—1), A, = 2u4,—1 and consequently ' 7, = 1.
k=1
Finally let us assume that ». =1 (k=1,2,..,7) and that the
field X has the characteristic 2. Put
(29) fl(x?.’mﬂi wey Tu) :f(mz;mz;%: ey @n),
(30) fg(:vz,cva,...,wn) =f(ms,m2,m3,...,w,.).

Obviously, f,, f, € A"~ and, by the induction agsumption, we have

the representations
n

(31) Ful®ay @35 oo n) = Z Wa, Fol @y Fay ooy @n) = Zlg)xk;

k=2 k=2

n 1
where A, ., A0, A9, L, AP €N and Y AP = 3 P =1, Setting @,
k=2

k=2
= =g == =0, =0 (3<k<n) in (31) and taking into
account the definition of functions v, we infer that
(32) Wy = mlay, ) =2 (3<k<n).
Replacing s, ..., 2, by 2,, 2, by 23 in f(2,, ..., 2,) We obtain the expression

9(21, @, 13), Where ¢ e A®. By formula (12) of Lemma 3 we have the
equality

gy, 2y, 25) = 3(9(951:-”17 “3),9(“'1’“'2:"‘”1):4”1)-

Sefting in the last equality a; = 8, x, = 2, and taking into account the
definition of functions v, we infer that

(33) g(8, xay o) = wy(y, 0)+vo(Fe, 0) = Byt 2= 0.

Further putting &y = ... = 1, = f in equality (31) we obtain, according
to (29) and (33), the formula

}-S)ﬂl’z =g(0,7,3) = 0.
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Hence and from (31) and (32) it follows that

n

(34) Tul@z, Tay ey ) = ’gmk
and
(35) (n—2)-1=1.
Analogously we obtain the equality
n
(36) foltay By s ) = 0+ D, 00
Put
n
(37) ho{®yy gy cory Tn) = ,ka
=1

Since, in view of (35), n-1 = 1, we have, according to Lemma 8, h, ¢ fli(" .
Moreover, in virtue of (29), (30), (34) and (36), we have the equalities

f(mz, Loy Wgy eeny mﬂ) = ha(wa; Loy Ly eeey mﬂ) H
(g, @2y @y, ooy Tn) = Rols, Tay s -, Tn)
whence it follows that the equality
f(mly '-'7mn) = hu(wls weey @)

holds for all «, ..., 2s, 2, = 2, and z, = x,. Consequently, by Lemma 1,
f = by, which implies, in view of (37), the assertion of our Lemma. The
Lemma is thus proved.

Leanta 10, If A® £ A®Y, then the set
(38) Ao={f(8): fed™

i8 a linear subspace of A. Morcover, for every fe A there is an element
% eK such that
(39) fle) = 2z +-1(6)
for any ze A.
Prooi. First we shall prove formula (39). By Lemma 8 the function
g defined by the formula
9(y, By, 75) = 2, — 3,4 @

belongs to A®. Given feA® we put

(40) hzy,y 2y, 205) = g(f(%)’ flzs), ma) = (@) —F@5) + 255

icm
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Obviously, A(z)=a and, consequently, e A®. Thus, according to
Lemma 9, there is a triplet A, 4, v ¢ X for which

hizy, @y, 05) = Ay + s+ vy

Setting o, = @3 = 6, 2, = o in the last equality and taking into
account formula (40), we infer that {39) is true.
For given A, ue¢"X we put

1) Guly, @y @) = A —Imy e, g, ) = pay + (1 ),

Evidently, in view of Lemma 8, g, ¢ A, g, ¢ 49,
easy to see that for every pair f,, f,¢ 4" the equality
(42) 9 (mla hil@), m) = gg(fz(wl), a;l)

depends on w,. Consequently, there iz a function fs €A™ such that the
last equality is equivalent to the equality @, — fs(2y). Taking into account
equalities (41) and (42) we infer that

fa(0) = }‘fl(e)+ﬂf2(0) .
Thus 4, is a linear subspace of A.
Lemya 11, If A9 = 4%, then 4 — 4™ fop every n > 1.

Proof. To prove our assertion it suffices to show, in virtue of
Lemma 2, that 4™ = A"V for every n>1. We shall prove the last
equality by induction. It is obvious for n = 1,2 and 3. Let us suppose
that » >4 and

Moreover, it is

AP = GO0 g kF=1,2,..,n—1.

Let f ¢ A™. From the last equalities it follows that for every pair
6§ (0#4, 1<14,j<n) there exists an integer s(z,7) (1< 8(4, ) < n)
such that
(43) F(@ey ooy @51, @y Bjg1y oy Bn) = Dotig) -

Obviously, s(z,j) # .

First 'we shall prove that there exists a triplet 4y, jq, my such that
$(foy %) = $(my, 4,) and 4, # 4y, 1y % Mg, jo 7= Mo. Contrary to this state-
ment let us suppose that for every triplet ¢,§, m (¢ #4j, ¢ £m, § # m)
we have the inequality

(44) 8(f, 1) #*s(m,1i).

We have, according to (43), the equalities
(45) F(@sy By Byy gy evy Tn) = Ds2,1)
(46) F(%yy By Byy Byy vy Tm) = Biaga1) 5

(47) H (g %y y By By vy Bn) = Bage) -
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Setting &, = @, in (43) and (46) we infer that the right sides of these
equalities are equal. Taking into account formula (44) we have &ysy = x,
or 2, and @ys1 = . OF &. Consegquently,
s(2,1)=20r 3, §(3,1)=20r 3.

Similarly, setting &z, = #, in {(45) and (47 ), we obtain the equalities
§(2,1)=2 or 4, s(4,1)=2 or 4,

and, setting a; =z, in (46) and (47),
$(3,1)=3 or 4, s(4,1)=3 or 4.

Thus $(2,1) =2, §(3,1) =3 and s(4,1) = 4 Hence and from (45)

and (46) it follows that
F(yy Loy Byy Tyy oy Tn) = Ty, [ (Tay Loy B3y By ey Tn) = X,
which implies that the equality
F( &gy oy Za) =2

bolds for all xs, ..., &s, & = & and o, = ;. Consequently, by Lemma 1,
it holds for amy @,..,%. Hence we get the equalities 1= $(2,3)
= $(1, 3), which contradicts inequality (44).
Let iy, jq, m, be a triplet satisfying the conditions s(j,, Q) = §(mg, tq),

o 7 o, Mg F Ggy Jo 7= My. Setting for brevity s, = $(Jq, %) We have the
equalities

F(1s oy g3 Tjgy Ligaay vony Tn) = g

f(‘”u wooy Lig—15 Pingy Ligt 15 +vs Zn) = Tsq »
which imply that the equality
(48) F@ry ooy Tn) = g,

holds for @, ..., Zigm1; Pigt1y woes Tny Big = Bjyy Biy = Tmy- Consequently, by
Temma 1, equality (48) holds for all m, ..., #,, which implies 7 e A™.
The Lemma is thus proved. '

Proof of the theorem. (i) If A” £ 0 and 4% = 4%V, then,
in virtue of Lemmas 5 and 6, there is a field X such that 4 is a linear
space over -X. Moreover, taking into account the definition of addition
and scalar-multiplication in 4 and the definition of 4, we infer that all
functions f defined as

T
H(#yy ey 2) = D) hhanta,
k=1

where 2y, ..., An €K, a € 4y, 4, is defined by formula (38) of Lemma 10,
belong to A.
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Now let fed. By Lemma 10 we have the equality

f@) =iz +a,
where Ae X and a = f(0) e 4,. Put

(49) .‘/(xu---;wn)=f(w17---,1'n)"‘l$n-a+-lv‘n,

it feA®. Obviewsly, §(«) = 2, which implies g ¢ 3,

Using Le
we have the equality ng Lemma 9

n
&

g{@, .., Tn) = ‘2, Hedy
fe=1

where wuy, ..., pn € "X Hence, according to (49), we get the representation
n
Flayy ooy ) = Zﬂkmk‘l‘a:
k=1

where 4y, ..., 4 € 'K and a e 4,. The assertion (i)
proved.

(ii) It 4Y = 0 and A® 5 4™, then, in virtue of Lemmas 5 and 6,
there is a field ‘X such that A4 is a linear -8pace over K.

Now we shall prove that all functions 1 belonging to 4 are of the form

of the Theorem is thus

(50) Py ey 2a) =g(fo('”1y---,mn)) ,

where g ¢ A and f, e A™ it fe 4™, Obviously, if g A™ and f, e 4",
then the superposition fe 4™, Conversely, let fcA™. Since 4 = o,
the function f is not constant, which implies that the equality

-~

o) = o
fiepenfis on &;. Thus there is a function % « A such that the lagt equality
is equivalent to the equality @, = h(z,). Hence, in particular, it follows that

F(h(@) =2 = h{f(z)).
Setting f(L(w)) ’ l(f(m))

Fo@ys ooy mn) = R(F(y, .oy w)),  gla) = flz)
we have the equalitics
folw) = 1{f(2)} = a,
9 (folry eony ) = f(h(f(ml, ...,wn))) = f (@, ooy @)
which impliey 7, e A% and, consequently, formula (50).

Let g e 4”. We have, by Lemma 10, the equality
g(x) = lr+g(6),
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where 1¢°X. We shall prove that A = 1. Contrary to the last equality
let us assume that 1 = 1. Then the equality g(z) = 2 depends on . Thus
there is a congtant g, e A® guch that the last equality is equivalent to
the equality & = g,, which contradicts the assumption 4® =0. Thus

g(w) =2+g(0)

for every gedY. Hence and from (50) it follows that all functions f
belonging to A™ (n =1,2,..) are of the form

Ty Tay ey Bn) = Fo(@1y ooy &) +at,

where a ¢ 4,, A, is defined by formula (38) of Lemma 10 and f, ¢ A™.
The assertion (ii) of our Theorem is a direct consequence of the last
equality and Lemmas 8 and 9.

(iii) If 4® = 4®Y, then, in view of Lemma 11, 4 is the class of
all functions f:

(51) Hy, oy mn) = hiay)  (hed, 1<j<n),

First let us assume that 4D = 4“®, This implies that 4 is one-
point set: 4 = {a,} and, consequently,

(62) Floory ooy @n) = a9

for every f € 4. Let @ be the group containing the identity transformation
of A only and let 4,= 0. Evidently, 4, is normal with respect to §
and the assertion of the Theorem is a direct consequence of formula (52).

Now let us asgsume that 4% = 4™, Put @ = 4™ 4™Y, We shall
prove that @ is a group with respect to the operation

(91 92) (@) = g1 (g5(2)) .
Obvioungly, if g,,¢,¢ G, then g,-g,¢ @ and

(g1 02)- 95 = 91" (2 05)
for any gy, s, g5 G-

Sefting e{w) =« we have ec@ and ¢.g =¢g-¢ =g for every gel.
For given ge¢§ the equality g(s,) = 2, depends on z,. Thus there is
a function g ' e 4™ such that the last equality is equivalent to the
equality @, = g '(z,). Evidently, §" ¢Q and g-¢ ' =g *.g = e. Thus &
is & group of transformations of 4.

Let g eG and g # e. If the equality g(x) = x is independent of =,
then g(z) 7 = for every x e 4. If the last equality. depends on x, then
there is a constant a ¢ A” such that this equality is equivalent to the
equality z = a. Thus every transformation which is not the identity
has at most one fixed point in 4. Moreover, setting 4, = 49, we infer
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that A, is @ normal set with respect to §. Finally, from (31) it follows
that all functions f belonging to 4 are of the form

f(wu---,mn):g(wi) 1<i<gn),
or
F@yy oony ) = a,

where ge¢G and aeA4,. The Theorem is thus proved.
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