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An alternative form of Egoroff’s theorem
by
S. J. Taylor (Birmingham)

Given a sequence of measurable, real-valued functions {f,(z)} defined
for = ¢ B, a Lebesgue measurable subset of finite meagure of Euclidean
m-space (m >1), and such that

1) fulw)—>f(®) a5 m-sco,

for all z in E; the well-known theorem due to Egoroff states that the
convergence is almost uniform in the following sense. For any given
&> 0, there exists a measurable subset 8 CE such that |B--8] < & (2)
and, for all eS8,

ful®)—F(2) uniformly a8 n->oo.
In the present note it is shown that the difference |f,(2)—f()| satisfies
some order condition in a subset T CH such that |E—7T) = 0. That is,

under the condition (1), there exists a subset T' and & decreasing sequence
{6,} of positive numbers such that 6,—~0 as n—+oo, and for e T,

[fn(@) — 1 ()]
6

n

(2) -0 a8 #—>co.

Further, in the new form of the theorem, it is not necessary to assume
that |H] is finite: the finiteness of |E| is essential for the validity of the
usual form.

The new form of the theorem clearly has many applications; in fact,
many of the standard proofs which use Egoroff’s theorem become clearer
when this version is used. In [4], I showed that the Lebesgue density
theorem could be strengthened and the proof given did not involve the
use of the usual form of the density theorem. However, the direct methods
of [4] did not give the strongest form of the density theorem in m-space
(m > 2). If we assume the usual forms of the density theorem, stronger
forms can be obtained by applying the new form of Egoroff’s theorem.
This solves the problem stated in [4].

(1met in Euclidean m -space, |B| will denote the m-dimensional Lebesgue
outer measure of K.
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170 8. J. Taylor

The other application which I consider briefly formed the motivation
for the present note. This shows that an absolutely continuous function
is almost uniformly differentiable in the sense that the second order
error term satisfies some order condition almost everywhere. In 1-di-
mengion, if f(z) is Lebesgue integrable over [a, b], and

Py = [ i,

we can say that there exists a positive function »(%) monotonic for » > 0,
with Hm ¢ (%) = 0, such that
A0+

1 | Pla+h)—F)
) ) /@)

for almost all 4 in [a, b]. The problem as to whether or not (3) is true
was suggested to me by Professor H. E. Daniels.
THEOREM 1. Suppose that B is a Lebesgue measurable subset of Buclidean

m-space, and {f()} (n=1,2,..) is a sequence of measurable functions
such that

(3)

-0 as h—0

@)y —=f(z) a8 n—ooo

for all © in E. Then there exists a monotonic sequence {6,} of positive numbers,
with 6,0 as n—>oco, and a subset S CE with |BE—§| = 0 such that

fn(®) — f (@)}
dn

-0 a8 mroo
for all z in 8.
Proof. Express ¥ =kU E,, where each E; is measurable and has
=1

finite meagure. Then f.(x)—>f(z) for all  in Ey. Apply Egoroff’s Theorem
(see Saks [3], p. 18), to the sequenee {f,(x)} defined on Ey.Fork=1,2,..,
p=1,2,.., let By, be a measurable subget of E;; such that

4) [ By — B < 274,

and. fa(z)~>f(z) wniformly for all & in By,. Write § =) ) By,. Then

k=1 py=1
it follows from (4) that [Bj- U B, =0 and therefore [E—§|=0.
. p=i
For eajcy fixed %, u, choose an increasing sequence {ny,,,} (r = 1,2,...)
of positive integers such that, for all z By,

{5) o) =i <zT7  when .
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Let 1, %gy «-.y N4y ... De an increasing sequence of positive integers such
that

T N 1

(6) P (=5 as —>00
for each fixed %k, u. We now gefine {3,} by
- s 1 for 1<n<nyg,
(1) "Tli for mtl<n<m  (t=2,3,..).

Clearly {6,} is @ monotonic decreasing sequence of positive numbers
and d,—0 a8 n—>oo. If # is any point of §, then it is in &, for some
integers k, u. By (6) we can find ¢, such that n;> g, for ¢ >1t,. It
follows from (5) and (7) that

[fa(@)—~f@) <8 for n>mny,.
A fortori, we have found a set §, and a sequence {8,} such that

[Fn() — f ()]
O

-0 a§ #n-—>oo,

for every o in §. )
CoROLLARY. Under the conditions of Theorem 1, in the case where B
has finite measure, there exists a monotonic sequence {8,} of positive numbers,
with 8,0 as n—-co such that, given any &> 0, there is a subset B, CE
with |BE—B,| <& and
[fn(@) —1 ()|
b
This follows immediately on applying Egoroff’s theorem to the
funetions
Pulz) = !Mm)(;—_f(m)l for =ze8
n

—0  uniformly for z in E,.

where 8§ C B, and {8,} satisty the conditions of theorem 1. Thus this
Corollary is an apparently stronger form of the standard Egoroff Theorem.

ApPPLICATION 1. Suppose that ¥ is a measurable set in m-space.
For z in B, n=1,2,..., define
(8) falw) = sup }II—I'}lﬂwl

an<in

the supremum being taken for all closed m-dimensional rfact,angles I
containing @, having sides parallel to fixed coordinate axes in Ry, and
having diameter d(I), not greater than 1/n.

Then there is & subset B’ C B, with |E—F'| = 0, sueh that, when
rel)

(9) fa(@)—0 a5 @—oo.
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This result is due to Riesz [2], and Buseman and Feller [1]: a simplified
proof is given in Saks [3], p. 130. In R, the result is no more than the
Lebesgue density theorem, while in R, (m > 2), it is a more precise
theorem. In the above definition of density it is essential that the inter-
vals I have their sides parallel to given prescribed directions. Without
this condition, (9) ceases to be true even for closed sets E: for a proof
gee [1], p. 243, ;

THEOREM 2. Given any measurable set B in Buclidean m-space, there
8 a real fumction y(t), monotonic increasing, and defined for t> 0 with
lim y(t) = 0, such that, for xe8 - :

{04
1 |[InB|
p(@D)| |

where I is any rectangle containing x with sides parallel to the coordinate
axes of Ry, and SCE is such that |E—8| = 0.

Proof. For rectangles I with sides parallel to the coordinate axes
of Bn, | ~E|/|I| is a continuous function of the vertices of .. Hence

ll—s-() as  d(l)—>0

. ! ’
fn(w) = gup M -1
- zel, II I
ALN<TIn

where the supremnm is now taken over closed rectangles whose vertices
have rational coordinates. Hence fal) is a measurable function of z
and we can apply theorem 1 to the sequence {f,(x)} in the set B’ for

which (9) holds. Let {0}, SCEB' satisfy the conditions of theorem 1,
50 that for zeS : : )

(o) - : f"ﬁg—w)—-ﬂ) a8 m—oo,
A . 'n

Define a function v(t) as follows:

. : 1 .
PO=0, y(H) =t =25,
) _-l.A - ,:q.,- '- _1"
w(t) is hpg;air‘f.pg‘_n;‘__l;gt'g . fn=2,3,..).

Clearly y(¢) is monotonic and limy(t) =0, If z is a point of 8, I is any
=0+ - . .

closed rectangle econtaining » and 1/(a-+1) < a(I) < 1/n, then w(d(D)

= 6y, and therefore

1 I [IHEI i fn(J')
s 11 , ; .
p@)| g S e
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By (10), it follows that
1
p{d(D)

APPLICATION 2. One can think of the Lebesgue density theorem as
a special case of the theorem about differentiating an indefinite integral.
Thus if

IE“—E'—1}—>0 as  d(I)—0.
1|

eE(w)z{l for weE,
0 for 2¢E,
and
&€
F(2) = [ exlt)at;

we kmow that F'(z) exists and equals ex(z) for all values of & except for
an exceptional set of zero measure. Theorem 2 in 1 dimension deals with
the rate at which (F(m-{-h)—F(m))/h approaches its limit when #A—-0.
Clearly & similar method can be applied to any absolutely continuous
function F(x). This ylelds

TamoREM 3. Suppose that F(x) is an absolutely continwous function
of the real variable x, with F'(x) = f(x) for « ¢ H; then there is a monotonic
increasing function y(t), defined for t> 0, with ;hﬁw(t) =0, such that

1 | Ple+h)—F(z)

—f{x)|-0 as h—=0
w(IRl) kb
for any ze SCEH where | H—8| = 0.
Proof. Put
hy—F
o) = sy |TEHN-T@ ;2 @ _t@)].
o<ihl<in

Then ¢,(#) is measurable because the same supremum is obtained b.y
restricting h to rational values. Further g.(z)—0 for we<E, and E is
a measurable set. We can now proceed exactly as in theorem 2 to obtain
the function y(t), and the set S.

In an obvious way theorem 3 extends the idea that if f(x) is con-

tinuous as a function of x in a <z < b, and F(x) = af f(t)dt, then there

is some order function y(k), again monotonic with :]—i»? p(t) = 0, such that

(Pt M=F@) ! < pm
h
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for all z, h such that ¢ < # < 2+ & < b. This last result is guite elementary,

and an immediate corollary of the uniform continuity of f(w).
Remark. When first proving theorems 2 and 3, I based them on

a version of theorem 1 for a continuous parameter family of funectiong

{flx)}  with  fal@)>f(z) as

for # ¢ B. Unfortunately this continuous parameter version of theorem 1
is untrue since it is not valid even for the standard version of Egoroff’s
theorem. A simple counterexample has recently been given by Weston
[5]; this shows how the theorem can break down in this case.

h—0
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On the existence of conjugate functions of higher order*
by
M. Weiss and A. Zygmun d (Chicago)

1. In this paper we investigate properties of certain extensions of
the notion of conjugate function. Before we formulate these extensions
we recall some known facts about generalized derivatives. Proofs and
bibhographic references can be found e. g. in [5], vol. II, Chapter XT,
§§ 1-5 (see the References at the end of the paper).

A function f(x) defined in the neighbourhood of a point z, is said
to have at x, a generalized derivative of order » (r =1, 2,...) if

F(@+1) = ag+ gt + e+ %’t’+ o)

for t—0, the a; denoting constants. The number a, is called the rth
generalized derivative of f at z, and will be denoted by fem(w,). Clearly,
if an ordinary derivative f™(z,) exists so does fu(2,) and both have the
same value (r = 1, 2, ...); the existence of fy(x,) implies that of fe—n(xe);
finally, if fuy(w,) exists and F is the indefinite integral of 7, then F..1(2,)
exists and equals fy(2,) (F is defined near z, since the hypothesis implies
that f is bounded near z,).

Suppose that f, defined in the neighborhood of z,, has a generalized
derivative fp—y(m,). Writing a; for fi)(z,) we define the function 6., ?)
by the formula

- 1. 1 t
(L1) 317 0) + 10— 1)) = to-t Gt Tt 7 5 By O 7

if » iy odd, and by

(12) 3 U@ +1) — @0 t)] = et + 5P+, 50,

2, 1 14
U 5 0@, )

if # is even. If
Opl{)

* The research resulting in this paper was supported in part by the Office of
Scientific Research of the Air Force under contract AF 49 (638)-451.
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