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On the existence of conjugate functions of higher order*
by
M. Weiss and A. Zygmun d (Chicago)

1. In this paper we investigate properties of certain extensions of
the notion of conjugate function. Before we formulate these extensions
we recall some known facts about generalized derivatives. Proofs and
bibhographic references can be found e. g. in [5], vol. II, Chapter XT,
§§ 1-5 (see the References at the end of the paper).

A function f(x) defined in the neighbourhood of a point z, is said
to have at x, a generalized derivative of order » (r =1, 2,...) if

Fmo+1) = ag-+ ayt -+ oo+ %t’—i— o(t"

for t—0, the a; denoting constants. The number a, is called the rth
generalized derivative of f at z, and will be denoted by fem(w,). Clearly,
if an ordinary derivative f™(z,) exists so does fu(2,) and both have the
same value (r = 1, 2, ...); the existence of fy(x,) implies that of fe—n(xe);
finally, if fuy(w,) exists and F is the indefinite integral of 7, then F..1(2,)
exists and equals fy(2,) (F is defined near z, since the hypothesis implies
that f is bounded near z,).

Suppose that f, defined in the neighborhood of z,, has a generalized
derivative fp—y(m,). Writing a; for fi)(z,) we define the function 6., ?)
by the formula

1 —1 -1, 1 t
(L1) 5T @0+8) +F(@—1)] = aat g} ok ook 5t T+ 5 0l U5
it 7 is odd, and by

1 P | 13
(1.2) 5 U@+ )= Fl@o— ] = et + 538 b (5570 5000 )

if 7 is even. If
(o) = lim é,(@y, )
t—>+0
* The research resulting in this paper was supported in part by the Office of
Scientific Research of the Air Force under contract AF 49 (638)-451.
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exists, we may consider d.(x,) as the jump of the rth derivative at Woy
though we do not assume the existence of the rth derivative. Corres-
pondingly, the eondition &,(x,) =0, which we shall call smoothness of
order v of f at z,, may be interpreted as a sort of continuity of the #th
derivative at x,. For example,

Ou(@y, 1) = f(m0+t)+f(wt°_t)'—2f(wo) ,

and smoothness of order 1 is what is usually called smoothness of the
function (see [5], vol. I, p. 42) and is a substitute for the existence and
continuity of the first derivative. It is easy to see that if Fe(ay) exists,
then §,(z,) = 0.

Let now f(z) be periodic (i. e. of period 2x) and integrable (over
a period). It is very well known that the conjugate funetion

v L[ flos)—fa—t), 1
(1.3) Ha) =~ ™ 2tanit = wgglfo
exists almost everywhere. The fact is of importance and there are several
proofs of it; some use pure real-variable methods, others — complex
variable. Using the classical development }cotim == Y (z+27v)”" we can
represent (1.3) in the form

(1.4) Fz) = — % f fﬁi;f(m_—t) i,

which will be more convenient for us.

Let F(z) be the indefinite integral of f(»). We may assume that
the mean value of f over a period is 0 (subtracting a constant from f
does not affect either the existence or the value ot F), so that ¥ is periodic
and bounded. At each point where 7’ exists (it is enough to assume
that ¥ is smooth of order 1 at the point) integrating by parts we can
write the right hand side of (1.3) in the form

(=] o
a3 L[ TetdtPay-2pE t—-L [ o),
o ™ 4
0 0
where the integral is Improper at ¢ = 0. The integral (1.5) exists, however,
um?er.much more general conditions: it is known that if # is merely
periodic and integrable, and is differentiable in a set B, then (1.5) exists
at almost all points of X. It is therefore natural to agk what are the
necessary and sufficient conditions for (1.5) to exist almost everywhere
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in a set £ if we merely agsume that P is periodic and integrable. A special
case of Theorem 1 below asserts that (1.5) exists almost everywhere in E
if and only if the indefinite integral of F has a generalized second derivative
almost everywhere in .

Return to (1.4) and replace there j by ¢. Integrate by parts » times
selecting the successive primitives of @ in such a way that their mean
values over & period are 0, and denote the rth primitive of » by f. A simple
computation shows (ef. [5], vol. II, P. 65) that the right-hand side
of (1.4) can be written

1 8, 0)
(1.6) ”oj s,

where o,(x,1) is the function defined above, relative to 7. We shall
call (1.6) the conjugate of order v of § and denote it by ?:.(.'v). Thus (1.4)
is the conjugate of order 0 of #, and (1.8) the eonjugate of order 1 of 7.
The conjugate of order r can be formally defined if 1 is periodie, integrable,
and differentiable up to order r—1 at a given point (this is a prerequisite
for defining J,(x, ?)). The integral (1.6) is improper at t = 0 but converges
absolutely near ¢ = co if r> 0. The latter follows from the fact that
for t—+-+ oo we have
tblar(m[u f) = O(t_z) _l,_'O { 1 (zo+1)] +1f (o — 1) }

P

(ef. (1.1) and (1.2)). We have just indicated that if f is an rth integral
then f{z) is the (ordinary) conjugate function of ).

It is well known (see [5], vol. II, Chapter XTI, §5) that if f has
& generalized rth derivative in a set ¥, then ]":(m) exists almost every-
where in . The theorem which follows generalizes this resulf and is the
main result of the paper.

TesoREM 1. Let f(z) be periodic and integrable and suppose that
fo-n(®) ewists af each point of a set B of positive measure. Then a necessary
and sufficient condition for the r-ih conjugate 'f;(as) to ewist almost everywhere
tn B is that the indefinite integral of  has a generalized derivative of order
r+1 almost everywhere in E.

The proof of the sufficiency of the condition is comparatively simple
if one uges known results. It can be based either on purely real or complex
methods; we give the real-variable proof. The proof of the necessity of
the condition lies deeper and is accessible to us only by eomplex methods.
One of the difficulties of the situation is that in investigating the behavior
of successive differentiations of trigonometric series we cannot use Abel’s
method of summation since it is known that Abel summability of


Artur


178 M. Weiss and A. Zygmund

a trigonometric series in a set of positive measure does not necessarily
imply Abel summability of the conjugate series almost everywhere in
the set. The situation ean be straightened out by wusing Cesaro
summability (see Lemma 3 below), but this complicates the computation.

In section 2 we prove the sufficiency of the condition. Sections 3
and 4 contain the proof of the necessity. The concluding section 5 con-
tains an additional observation.

2. Given any closed set P we shall denote by yz(z), or simply y(x),
the distance of the point 2 from P. Thus the funchion y vanishes in P
and over each interval d contiguous to P the graph of y is an isosceles
triangle of height %|d|.

The proof of the following two lemmas, and bibliographic references,
may e.g. be found in [5], Chapter IV, § 2 and Chapter X1, § 4.

Lemua 1. If P is a closed set contained in a finite interval (a, b) and
2> 0, the integral

. pyrs t
(2.1) f Eﬁ#‘“

is finite for almost all x in P.

LeMMA 2. Suppose that f(x), defined in a finite interval, is measurable
and has o k-th generalized derivative in a measurable set E. Then we can
find a closed set P C E of measure arbitrarily close to that of B, and o de-
composition

with the following properties:
(@) gl@)e O (1);
(ii) h(x) =0 in P;
(iif) except possibly for a finite number of intervals contiguous to P
we have
@)} < Cxf(a),

where ¢ is independent of x and y(®) = yp(z). If { is periodic, g and h
can also be made periodic.

Let now f(x) be periodic, integrable over a period, and suppose
that the indefinite integral F of f has an (r+1)th gener&hzed derivative

at each point of ¥ C (~—x, =). We want to show that f(r) exists almost
everywhere in E.

(1) We denote by C* the class of functions having a continuous kth derivative.
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Applying Lemma 2 to F, with »-1 for k, we have for a suitable
closed P C B, with |F— P} arbitrarily small, a decomposition

F(z) = G(x)+ H (),
where @ ¢ C™™! and

(2.2 HH (2)] < Oyri(a),

except possibly for a finite number of intervals I,, Ly, ..., I, contiguouns

to P.I{ f=F', g =G, h = H, then g exists everywhere, f and h almost
everywhere, and a.lmost everywhere we have

(2.8) F=g+h.

The function % is integrable. Since @ e ("™, we have g < (7. Hence
g,. exists almost everywhere and it is enough to show that h, exists
almost everywhere in P.

The inequality (2.2) implies that at each z which is a point of density
of P we have

Hz+t) =0 as 1-0.
Hence
H(z) = Hyx) = He(2) = ... = Hpyp(a) =0

at each point of density of P. Since H is the integral of » and, by (2.3),
h has an (r—1)th generalized derivative at each point of E, this implies
that
(2.4) h(z) = hay(#) = ... = bgp-p(7) = 0
at each point of density of P. We will show that %, exists at each point
Z ¢ P which is not an end-point of the intervals I; mentioned above and

at which the integral of Lemma 1 with r+-1 for 2 is finite. In view of (2.4)
this amounts to showing that the integral

i
(2.5) f f:: o

exists for such x. Without loss of generality we may suppose that = = 0.
Finally, instead of taking the whole interval (—=, =) it is enough to
consider the part of the integral extended over an interval (—&', &),
where —¢" and & are in P and (—&', ¢) is so small that it does not overlap
with any of the I;.

Let (az, :) (6=1,2,..) be all the intervals contiguous to P and
sibuated in (0, £). Integrating by parts we have

‘ i1 dt[ =(r+1) 1[ r+z) &
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by (2.2). By hypothesis, the sum of the integrals on the right extended
over all intervals (a;, b;) is finite. Since for a; < & < b; the second mean-
value theorem gives

& &
VR S 1 - ' _H(£) by— ag\r¥E ) e
L{ t'“dt] = a§+1tJ h(t)di| = = <0 T o(l) (@< E<E<by)
a; a;

(the last equation being a consequence of the fact that z = 0 is a point
of density of P) and since y = 0 in P, we see that the integral

“h{o)
tr+1

dt = lim f
H n—'r—H);)

exists. In the same way we prove the existence of the integral extended
over (—é¢', 0). Hence h(0) exists and the sufficiency of the condition
in Theorem 1 is established.

8. We now pass to the proof of the mnecessity of the condition. The
proof uses complex methods.
Lems 3. Suppose that the trigonometric series

b
o1

(acosk + besin k) = ) Ayw)

k=0

e

(3.1)

e

k

J
A

is summable (C,a), a =0,1,2,..., in a set E of positive measure. Then
the conjugate series

(3.2) Z(aksinkm— brpeoskz) = ZBk(m)
k=1 =1

is summable (C, a) almost everywhere in B.

The result holds for all «> —1 but only the case of integral a is
of interest to us. For the proof of Lemma 3, see [4], or [3], or [2]

The Fourier series of & function f will be denoted by S [f], and the
series comjugate to S[f] by R[f]. The series obtained from these by
termwise differentiation % times will be denoted by SU[f] and §%[7,
respectively. The (C, «) means of §[f] and S[f] will be denoted by oo(z)
and o).

Leyva 4. Suppose that (3.1) and (3.2) are both summable (C, a),
a=0,1,2,.., a a point x,, the former to sum s. Lt & > a+2 and let
F(z) be the sum of the series (3.1) integrated termwise & times. Then Fu(,)
exists and has value s.
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For the proof see e. g. [5], vol. I, p. 69.
It Y Auz) is the Fourier series of a periodic f, the partial sums of
the conjugate series > By(x) are given by the formula

, )
(3.3) > B"(m)z_/l; [t rpizcosety,

k<o 4

where w is any positive number, not necessarily an integer, and the
prime ' indicates that when w is an integer B,(x) is to be multiplied by %.
In considering (C, f) means, > 0, of > By(x) it will be convenient to
use the Riesz form

(3.4) oiz) = Z By(w) (1— §>p= — % j fla+)Buyar,
k<o —co

where Jff,(t) are the (C, f) means of the expression
1— coswi 2 .
= J sinut du
o
qua function of . We are interested in integral values of § only. We have

[

K'Z,(t) = ﬁw‘ﬂf (co——u)ﬁ_l————lu iosmdu s
0
and the formula can also be written
(3.3) Bty = 0™ [(o—ufsinutdu = o™ [ (o—u)fe™du.
[ 1}
Integrating by parts B times we obtain
~ . 1 ftw __
@6 Rip—x[-1- £ __B6-L B S8 1“}
Y () I (73 )] oP(it)?
From this we easily deduce that
~ (lk e —k—1
(3.7) ) = 0(7") (trtoo; 0<E<H),

and the first equation (3.5) also gives

dk

3.8 g
(3.8) P Ko(t)

<ot (k=0,1,2,..).
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‘We write

(3.9) By =3 + B

We need estimates for HEt) in the range 1/w <t < co. From (C">.6) (since
the contribution of the second term on the right is 0) we easily obtain

ar-: C
(3.10) SHEN | <15
at? w2t
5 =2, ot=1
| a & ¢
il " "t ) A
(8.11) dt( = w(t) o

Finally, using integration by parts, the estimates (3.7) and the fact
that ﬁf,(t) is an odd function of ¢ (and so is 0 at ¢ = 0 together will all
derivatives of even order), we find that

(3.12) f (BBt = f PR 1)} at — RN ar =0 (r—odd),

8 °%8

(3.13) jt{ﬁi(t)}‘”dt = f SR 1) Odt = YR Pdi=0 (r—even),
[} Q

ov\‘

provided r < 841 N
Lemya 5. If ?; exists at the point x, then 8911 is summable (C, 7 -+2)
at @ to sum f(x).

Consider the right-hand side of (3.4) with f =7--2 and suppose
for example that 7 is odd. The (C,r+2) mean of S7[f] is

1)r+1

f o+ D R a

_%( 1)+t r%[f(w+t)+f —-t)]—K”’D()

0

~

The hypothesis of Lemma 5 implies that fu)(2) = a5, fy(@) = ag;y oy

Fo—n(@) = ap—y exist. Using (3.12) and (1.1) we find that the lagt integral
equals
rel o r ] gy e 1)+
S PYPRTRALE (A OL I Ay f P+Q,
T rl dt T on

icm
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The convergence of the integral

1F =
(3.14) o T
I 3 T et :
implies thab
&
(3.15) [ 6w, 9)@s =0ty (t->+0).

o

Denote the left-hand side here by 4(t). Integrating by parts and using (3.8)
we find that, except for a numerical factor, P is

Yo

f v K’“(t)dt

e

= |dwr L] fA(t)dt{j— (o) a

e

—o(l) + f 0(1/w) 0 (e*)d = o(1) .

On account of (3.9),

1 fér(m t)dt-f-

I/w

Q=—

Hytoroafe,t) p d
f L g at = Q,+Q,,

say, and the lemnma will be established if we show that Q,—+0 as w-—>oco.

We split the integral @, into two parts, extended over 1/o <1< 1
and 1< ¢ < co. That the second integral tends to 0 is immediate since,
a3 we have already observed, d&.(z, 1)/t is absolutely integrable away
from ¢ = 0 and, in view of (3.10) with § = »1- 2, the cofactor of this ratio
tends uwniformly to 0 away from ¢ = 0.

Consider now (3.11) for f=r+2 and denote the expression in
parenthesis on the left by L(f). Then, except for a numerical factor, the
integral which remains is

fA WLEd = [4BLE) ]~

1w

[awrwa
e

1

L= [om0 Y+ [ om0 i = o0(1).
1w

This completes the proof of Lemma 5.
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4. Return to Theorem 1 and suppose that j: exists at each 1)0121;
of & set B. By Lemma 5, 8”[f] is summable (C,7r+2) in F to sum f,.
By Lemma 3, 87[f] is summable (C,7+2) in a subset By of E of the
same meagore as E. By Lemma 4, the function F obtained by integrating
S®[7] termwise 7 -4 times has at each point of B, a generalized derivative
of order r-+4. Clearly F is a fourth integral of f. By Lemma 4, with
% =r-+4, we can find a closed subset P of E, with |E— P| arbitrarily
small, and a decomposition F = G+H, where HeC™" and |H(z)
< 0y *Y(x), except in a finite number of intervals contiguous to P.
Tt follows that H(x-+1) = o{t’™"*) at each point of density of P, and in
particular that

(4.1) H{x) = Hylz) = ... = Hppn(z) =0

at such points.
We write

z) =glx), Hz)="(2).

Since P is a fourth integral of f and G is in (7 it follows that in the
decomposition
f=g+h

the function g is in €' and % is integrable. Hence the indefinite integral
of g has a derivative of order r+1, and if we show that the indefinite
integral of h has a generalized derivative of order r+1 almost everywhere
in P, it will follow that the indefinite integral of f has a generalized
derivative of order r-+1 almost everywhere in P, and so almost every-
where in #, and Theorem 1 will be established.

Now the function » has, like f, generalized derivatives up to order
r—1 at each point of E. It follows from (4.1) that

oo = hmp(@) = 0

almost everywhere in P. Also, since g is in (7, g, exists almost everywhere,
and since by hypothesis f, exists in B, it follows that %, exists almost
everywhere in E. Thus Theorem 1 in the general form reduces to the
special case when (replacing & by f),

(4.2)
in E. In this case

s = f(,_l)(l‘) =10

-5}

1 [ 6z, t) " e t) + flo—1)
= dt = — = —_— e,
| ]

{1+.3)
t T !

icm
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where the signs ““+* and “—** correspond to the cases of r odd and even.
These cases require somewhat different treatments and we congsider
them separately.

1, * — odd.

Denote the indefinite integral of f by @. At each point where the
integral (4.3) with the sign 4" exists we have

:
c.f[f(ffH-S)-|~f(il7—8)]ds =o(t™)  (t—+40),

that is,

(44) D(z+1)—P(r—1t) = o(f"Y).

Let ¢ be a closed subset of & in which this relation holds uniformly in #;
the measure of @ ean differ arbitrarily little from that of E. If we show
that for each z, which is a point of density of @ we have

(45) B (20 +h)— B (i) = (WY,

it will follow that P, exists (and equals 0) almost evervwhere in @,
and so also almost everywhere in E.

Without loss of generality we may suppose that x, = 0 is a peint
of density of ¢. We note that if & is positive and sufficiently small, then
in (0, k) we can find a point £ such that both 1 £ and 1(£--h) are in Q.
For if y(t) is the characteristic function of @, then the measure of the
£e(0,h) with $&eQ is

2 hi2

[v@wau=2 [ y(o)dv =1,
0

(1]

the measure of the set of ée(O, h) such that 3(&+R)e@ is

13 h
[yu+man=2 [ yw)do~r,
0 hf2

and the existence of the required £ follows.
Now, (4.4) applied to the points x = & {t = &) and © = L(&+h)
$(h—§&)) gives

o (£)—@(0)

{t

il

- 0(§r+1) — 0(hr+1),

— E\r+1
& (h)— D(£) = 0{(71 - E) }=o(hr+1)'
Hence ®(h)—P{0) = o(A™™") and (4.5) follows for h—- 0. The case h—>—0
is treated similarly.

Fundamenta Mathematicae, T. XLVIIL 13
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2. r— even. o
At each point z where f, exists we now have

i
[ [f@+8)—flo—s)1ds = o),

or

(4.8) D(z+1)+B(w—1)—20() = o(t™Y),
where & is the indefinite integral of f. This implies, as we will show, that
(4.7) &2+ 28)— 20 (z+h)+B(x) = oA™Y (h—>0)

at almost all points of H. For let @ be a set of positive measure
in which (4.6) holds uniformly, and let z, be a point of density of ¢.
Without logs of generality we may suppose that z, = 0. Let L be, say,
positive and sufficiently small. Then, arguing as in the preceding case,
we can show that there is a £ in (0, ») such that the midpoints of the
intervals (0, £), (£, k) and {&, 2h) are all in Q. We write

R, =) +0(0)—20 (g) =o(f N =o',
Ry= ¢(§)+@(h)_a¢<5; h) - o{(h%E)m} = o(K™Y,
Ry = &(8)+ &(2h)— 20 (§+22h> - o{ (2"2— ’f)m} = o(R"™Y),

and so also B,—2R,+ Ry =o(k*"). But

2
Ry—2Ry+ Ry — B(0)— 20(h) + & (2h)— 2 [@(5)-2@ (FZF—’”)Jr@(H—Zh)]
=&(0)— 20 (k) + B(2h) +o (WY,
and (4.7) with 2 =, =0 follows. Hence (4.7) is valid almost every-
where in E.
At each point where (4.7) holds with r > 0 we also have

(4.8) (@ +h)—B(z) = o(h™),

by a familiar argument. Suppose for example that % = 0 and @$(0) = 0,
and suppose that the lett-hand side of (4.7) does not exceed s|h|™** for
[h| < 7. Multiplying the inequalities
]|+
=

ovr-soff <8 [of)-of| <2
{2,

)l

icm
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by 1,2,2% .. we obtain by adding the first n of them

(4.9) {@(h)'—z’@ (;7) <ot

But the hypothesis (4.2) at » = 0 implies that D(t) = o(t") = o(t), and
s0, making n—oco in (4.9) we obtain |®(k)| < sh™** for |h| < #. This
proves (4.8) for almost all x# in ¥ and completes the proof of Theorem 1.

5. THEOREM 2. Suppose that fu)(x), fu(w), vy fr—ny() ewist in a set B
and that at each x e the integral

10 8z, 8)
(5.1) ‘"E!"T“ﬁ

remains bounded as ¢—-+0. Then ]‘Nr(m) exists almost everywhere in B. In
particular, the integral (5.1) tends to a limit almost everywhere in E as
g-> -+ 0.

An argument parallel to the proof of the necessity of the condition
in Theorem 1 shows that almost everywhere in B the integral @ of f
satisfies the condition

(@-+1) = (@) + Cofo)t+ ...+ Pofz) S+ 007,

and it is known that this implies the existence of @ almost everywhere
in B (see [1] or [2]). It remains to apply Theorem 1.
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