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1. Introduection. For arbitrary metric spaces X and ¥, we denote
by Y¥ the set of all continuous mappings of X into Y, and by X x ¥ —
the Cartesian product of X and ¥. If a mapping fe ¥X, then we shall
write also f: X Y.

If X,CX and fe Y™ then f|X, will denote the partial mapping
of f, i. e. the mapping f,, defined in X, by the formula f,(z) = f(x); we
shall say that f is an estension of f, over X and then we shall write f, C f.

Two mappings f, g« Y¥ are called homotopic (written fozg) if there
exists a mapping he Y1 (I denotes the closed interval [0,1]) such
that for each weX

h(w,O):f(m), h(m,l)zg(m).

Iffe¥* is homotopic to a constant mapping (i. e. a mapping onto
a single-point set in Y) then we shall write fo1.

If the points #,, 2, belong to the same component of the space X,
then we shall write: o, ~w, in X.

Let X be a closed and bounded subset of the n-dimensional Euclidean
space B” and let 0 denote the origin of R"

In 1931 K. Borsuk proved in the paper [1] the following theorem:

The set R\ X 4is connected if and only if the funclional space
(R™{0})F is conmected or, which 4s the same, if any two mappings
f, g€ (R {0NF are homotopic. :

The same author also gave a criterion concerning the separation of
the Euclidean space between two points (see, for instance, [4], p. 302):

(B e, in BX) = (@—a)| X ~(2—2a)| X 31 (RN{0)T 5

that is to say: ‘

The set X does not separate the space R™ between two points
Ty, % e R* X if and only if the mappings (z—z)|X and (z—@)|X
are homotopic in (R™ {0})%.
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In this paper we shall give an extension of Borsuk’s theorems to
the case of arbitrary Banach spaces (Theorems 2 and 3). (%)

In this case the space (R™{0})¥ is replaced by the space E(PDy
consisting of all non-vanishing compact fields on X, where X is a bounded
closed subset of the Banach space and the homotopy of two mappings
7,9 € (R™\{0})F is replaced by a homotopy of two elements of the
space C(PZI).

The proof of Theorems 2 and 3 is based on Theorem 1, which is
Borsuk’s Extension Homotopy Theorem (%) formulated for Banach spaces.

The invariance of the disconnection property of Banach spaces under
a certain class of homeomorphisms is deduced directly from Theorem 3.
The proof of this does not refer to the Leray-Schauder notion of the
degree of a mapping [8]; it is, as & matter of fact, a consequence of the
well-known Schauder Fixed Points Theorem.

2. Preliminaries. We shall use the following notation: #,—in-
finite-dimensional Banach space, B, —a subspace of By of dimension s,
P, —the space F. without the origin 0, P, —the space F, without 0.
If Z is a subset of B, we denote the closure of Z by Z and the convex
closure (i. e. the smallest convex closed set containing Z) by conv(Z).
‘We shall denote by V{2, ¢) an open spherical region in the space E.
with centre z, and radius ¢ and by Sul(w,, ¢) its boundary; if w, e B,
then we shall put

Valos @) = Veoloy 0) ~ By Bua(oy 0) = Seoly, 0) ~ By .
In the sequel we shall use the following lemmas:

2.1. Let X be a closed bounded separable convex subset of By, Then X
18 a retract of B, 4. 6. there ewists a mapping r: B —X such that r(z) = »
for every e X.

Proof. For 2 e B \X and y ¢ B, the function

p(z,y) =mjn{2"i"ili_‘f%;%”zﬂ’ 0}

is continuous on the set Fo\X and we have 0 < p(z, y) < 2. Hence if
{ux} is 2 dense sequence of points in X, then the function

x, & E.X,
(52""? (@, )" (lg; 27pe, Y sy we X,

is the required retraction of E., onto X.

r(m) =

(*) These theorems were announced in 5]
() For Borsuk’s Theorem, see [2] and [7], p. 86.
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Let X be an arbitrary space. A mapping F:X->E, is said to be
compact on X if the image F(X) is contained in some compact set.

Compact mappings will be denoted in the sequel by capital letters
F, G H

A compact mapping F: X -, iz said to be finite-dimensional on X
if its values lie in some finite-dimensional subspace B, C F, depending
on F,ie F:X—>Ey.

The following theorem is due to J. Schauder and J. Leray [8]:

2.2. APPROXIMATION THEOREM. Let F: X —+F,, be a compact mapping
on X. For every £> 0, there exists a finite-dimensional mapping F: X —Ey
such that
wn |F(2)—Fx)|<e for each wxeX.

Proof. For a given > 0, we can find a finite subset {y,, %2y -..) ¥x}
of B such that every point of the compact set F(X) is at a distance
Jess than & from at least one of the y;. Let &, be a finite-dimensional
subspace of B, which contains all the points y; (¢ = 1,2, ..., k).

Let ns put .
Z M) ys
@) Fx) = %«——- for welX,
_é; Li(@)
where '

(3)  Afw) =max{0,s—|Flz)—yf} for zeX (i=1,2,.,k).

The mapping F, defined by (2) is finite-dimensional on X, F,: X —En,
and satisfies inequality (1); thus the proof is complete.

92.3. Bvery compact mapping F: X —Eo, can be represented in the form

{4) Plo) = ) Fula),

n=0

where the mappings Ty are finite-dimensional on X (n=0,1, ..) and
(5) 1Fa)] < 01—" for every wmeX and m=1,2,..

Proof. This is a simple consequence of the Approximation Theo-
rem 2.2. _

In the sequel we shall use the following theorem, which is a very
special case of the theorem of Dugundji eoncerning extensions of con-
tinuous transformations [3]:

9.4. EXTENSION OF COMPACT MAPPINGS THEOREM. Let X, be a closed
subset of a metric space X. Then every compact mapping F: Xo—Ew can
be extended to a compact mapping F:X—conv(F(Xy)).
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Proof. In the case when the mapping F is finite-dimensional our
theorem is a simple consequence of lemma 2.1 and the well-known
Tietze Extension Theorem ([7], p. 80). For the proof of our theorem
in the general case let us consider the representation of F on X, given
by formulas (4) and (5). Let Fp (n = 0,1,2,...) be an extension of the
finite-dimensional mapping F, from X, over X such that

“Fn(‘v)”<oln for zeX and n=1,2,..

Denote by r a retraction of E, on the set conv(If‘(X,,)), which is
obviously bounded and separable.
The mapping F defined on X by the formula

Fla)=r( S’Fn(m))

is the required extension of F from X, over X.

As a simple consequence of the Approximation Theorem 2.2 we
shall prove the well-known Schauder Fixed Point Theorem [10], which
will be used in the sequel:

2.5. If X is a closed conver subset of B and ¥ a compact mapping
of X into itself, then F has a fized point.

Proof. By 2.1 for each k= 1,2, ... there exists & finite-dimensional
mapping Fy3: X —X A Euyy such that

(6) [ F{z)— Fipfz)] < 715 for each 2¢X.

By the Brouwer Fixed Point Theorem ([4]) the mapping F, has a fized
point zy = Fyy(x;) and hence by (6) we have

(") 1P —ai <.

Sinee F is a compaet mapping, we can assume, without loss of generality,
that there exists IzimF(a:k) = g*. On account of (7) we have limw, = z*

Ir==00

and hence }L_mF () = F (%), i. e. a* = F(2*), Which completes the proof.

3. The space C(ZZX) of compact fields in F.. Now let .Y be
a subset of the Banach space .

A mapping : X%, is said to be a compact vector field on X if it
can be represented in the form

(®) $#) = 2—P(a),

where F: X —FE, is a compact mapping on the set X.
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The set of all compact vector fields on X will be denoted by (S(Eﬁ).

A compact vector field feC(BZ) is said to be finite-dimensional
if the mapping F of formula (8) is finite-dimensional. The set of all
finite-dimensional vector fields on X will be denoted by €, (EX).

In the sequel we shall consider the set (E(E;’f,) as a metric space and
define the distance o(f,g) by setting

(9) o(f,9) =sup|f(@)—g(e)] for each f,g¢C(E).

From the Approximation theorem 2.2 we obtain:
3.1. The set C,(Ex) is dense in the space C(EX).
3.2. If X is closed in B and fe C(BZ) then the set f(X) is also
closed in .
Proof. Let g, e f(X), imyn=1v,, ya= f{@) = 2n—F (&n); without loss
n=eo0
of generality, we can assume that there exists UmF(x,) = y*, y* ¢ Ex.

n=00

We bave lima, =yo+y* Umf(m)=flyety*), ie yo=7W+y),

Yot y*eX. -
If X and Y are subsets of E, then we shall put

C(YE) = CED) A Y5, G X5 = QB ~ T~

In the sequel we shall consider the space C(PX) of non-vanishing
compact fields on X.
Let X be a closed subset of E,. From 3.1, 3.2 we infer that:

3.3. The set (iO(P;’S) is dense in the space QZ(Pﬁ).

4. Notion of homotopy in the space & (PX). Two non-vanishing
compact vector fields 7, g e C(PX) are called homotopic in the space g (P)
(we shall write f~g¢ in §(Px)) if there exists a mapping h e PE*T which
satisfies the following conditions:

1° h{x,0) = f(x), h(x,1) =g(x) for each xeX;

2° 3 mapping b can be represented in the form

hiz,t) =x—H(,1),

where the mapping H:X x I-»Ey is compact on X xI.

The relation of homotopy established in the space C(PL) is a relation
of equivalence and thus the set of all non-vanishing compact vector
fields fe (S(P;E) decomposes into disjoint classes of homotopic fields.

4.1. Let X, be a subset of X and f,¢ e G (PE); then f~~g in C(PL)
implies flX,2g|X, in C(PR).
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1.2. For a given e G(PY), if a positive number & is less than the
distance dist{f(X),0) then for every g« C(PE) the condition o(f,g)<e
implies fozg in €(PX). ‘

Proof. Let f(z) = x—F(z) and g(x) = x—G(x). For each r¢ X we
have lz—F(2)] > ¢ [|F{z)—G(z)]| < e From these inequalities we infer
that, for each 2 ¢ X and tel, # # H(xz,1) = tF(x)+(1—1) G(x) and thus
the mapping % e G(PX*’) defined by h(z,t) =x—H(z,t) (since H is
a compact mapping on X x I) is a homotopy between f and g.

Properties 3.3 and 4.2 imply: )

4.3, Bvery compact field fe C(Px) is homotopic to some finite-di-
mensional field g e Cy(PZ).

4.4, Let X =V (xg, o) be a closed spherical region in B, Then any
two compact fields f, g€ C(PZ) are homotopic f~g in C(PE).

Proof. By 4.3 we can assume that the compact fields f, g e & (PI)
are finite-dimensional. Let f(x) = 2—F(z), ¢(x) = ©— G (); we can assume
that the values of F and & lie in the same finite-dimensional subspace
E, C E. and that the point x, belongs to By. Put Vi = X ~ By, fy = f|Va,
Fo=F\Tp, go=g\Va, Go=GVs. We have f;, ¢o:Va—Py and thus fo~g,.
Let holx,t) = #— Hy(x, t) be & homotopy joining f, with g, in the space
P we have Hyax,0) = Fy(#), Hyx,1) = Gyz) for each # eV, We
shall extend the mapping H,:V, x I +F, over X x I to a compact mapping
H:X % I—+FE, which satisfies the following conditions:

xr % H(z,t) for each ze¢X and tel,
H(z,0)=F(x), H(»,1) = G(z) for each 2eX.

For this denote by {e, e, ..., €n}, €re En, a basis of E, and by
{ti, Ly ..., ln} the dual basis in the conjugate space to E,; thus every
element ze E, can be written in the form

k3
(10) = D lfe)e.
i=1
Let us consider the following closed subset of X xI:
To=(Xx{0}) v (VaxI)w (XX
and define on T, a real-valued functions ¢ (¢ =1, 2, ..., %) as follows:
L{F(z)) ~ for ®eX and t=0,
(11) plz, 1) =1 L{G(x)) for 2eX andt=1,
L{Hox,t)) for zeV, and tel.
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Tietze Extension Theorem yields an extension @iz, 1) of gfz, 1)
over X x I; since each function ¢; is bounded, we ean assume thab also
each @; is bounded and thus the mapping H: X x I ¢ B, defined by

(12) H(z,1) =Z¢i(m; the;

=1

is compact. From (10) and (11) it follows that the mapping H defined
by (12) is the desired extension of H, over X x I and thus the proof
ig complete. :

5. Extension Homotopy Theorem. We shall consider the
questipn of extending a non-vanishing compact field defined on a closed
subset X, of X C Fo to a non-vanishing compact field defined over the
whole X. We shall prove that the existence of such extension depends
only on the homotopy class of the given compact field.

THEOREM 1 (ON THE EXTENSION OF HOMOTOPY [B]). Let X, be a closed
subset of X C Bo amd fo, go € C(PEY two homotopic in C(PZY) compact
fields. Then if there is an extension fe C(PZ) of f, over X, there is also
an extension g e C(P%) of g, over X with § and g homatopic in C(PE).

Proof. The homotopy of the non-vanishing compact fields
fo) =2—Fy(x), FyXy—EBy,
golz) = —Gy(x), GpXy—>EFw,

means that there exists a compact mapping Hy:X x I->E,, satisfying
the following conditions:

o #= Hyx,t) for each 2eX, and tel,
Hyw,0) =Fo(x), Hyx,1)=G(z) for each zeX,.

There exists, by hypotesis, an extension fe (L'(Pﬁ), fla) = 2—F (),
of f, over X; thus F,CF: X —~E,.
Denote by T, the following subset of the Cartesian product X xI:

Ty = (XyxI) v (X x{0}),
and define the following mapping Hp: Ty Feo:

Hi{z, 0) = F(x) for xze¢eX and =0,
Hi(x,1) = Hy(z,t) for zeX,and 0<I<1.

The mapping Hy¥ is compact on T, and hence by 2.4 it can be
extended to a compact mapping H*: X X I+ By over X x I.
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Let us define the set X; C X by the condition:
(we X;) if and only if (x— Hy(z,t) =0 for some tel).

X, and X, are obviously disjoint closed subsets of X. Hence there
is a comtinuous real-valued function A(x) defined over X whose range
is between 0 and 1 and which is 0 on X, and 1 on X,.

Now consider the mapping

H(z,t) = H*(w, Az)1)

for xzeX and tel.

It is clear that H is a compact mapping on X X I and for each z¢ X

and tel
o 7= H(x,t).
If we define g(x) by
g{z) =a4—G(x), where @(z)=H(z,1), zeX,

it is clear that g(z) is an extension of go(z) over X, and likewise that
H(z,0) = F(x) for z ¢ X. Since H (@, 1) = G(z) by definition, we conclude
that the non-vanishing compact fields

f@)=z—Flx) and g¢(z)=2z—G2x) (e X)

are homotopic in &(PZ), The proof of Theorem 1 is complete.

, 6. Separation of the space between two points. Let X
be a closed and bounded subset of H.

TeEOREM 2. The set X does not separates the Banach space B, be-
tween two points @, &, € B\ X if and only if the non-vanishing compact
fields (z—a, )| X, (86— 2,)] X are homotopic in the space C(PZ).

The proof of theorem 1 is based on the following

Levma 1. Zet U be a bounded open set in Eey v a point in U and ¥
the boundary of U. Then the non-vanishing compact field (z—xz,)| ¥ cannot
be extended to a non-vanishing compact field over U = U Y.

Proof. Suppose it were possible to extend (z—2)|Y over U to
& non-vanishing compact field f, say, f(z) = z—F (@), flz) = o—2x, for
each r¢ Y.

Le’& o be so large that T and F (T) are contained in the spherical
region Vo, = Voo, o) of radius o and z, as centre.

The formulas

FHz) = 2,

F¥(z) = P(2)

for zeV U,

for zeU

icm
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would then define F*: V-V, as a compact mapping of V. into itself
without fixed points. This is a contradiction of the Schauder Fixed-
Points Theorem 2.5. The proof is complete.

Proof of Theorem 2. Assuming first that x, and x, are not separated
by X we shall prove that the compact fields (r—a,)|X and (z—a,)! X
are not homotopic. We are given

ENX=T0UT,

U, V being disjoint sets which are open in F., and @, ¢ U, 2, ¢ V. One
of the sets U, V, say U, is bounded. The non-vanishing compact field
(z— 2,)| X can be extended over U v X, in fact over B \{z,} 2 U v X.
On the other hand, according to Lemma 1, it is not possible, in view
of the boundary of U being contained in X, to extend (z—a,)|X over
U « X to a non-vanishing compact field. Hence (x—uz,)| X and (z— my)| X
are not homotopic in the space G(P2X) since Theorem 1 would be con-
tradicted if they were.

Now let us assume that o ~w, in B, X. Then one can join @
and @, by a continuous arc in E\X, i e. one can find & continuous
function #(t) of the real parameter f, 0 <t <1, with values in B> X
such that

r0)=a, r(l)=2,.
The mapping h: X x I-+Py, defined by

h{x,t) =x—r(t), @eX and tel,

. X
is obviously a homotopy joining (v—x)|X and (z—m)| X in E(P%).
Hence Theorem 2 is proved.

7. The main theorem. For the proof of the main theorem vwe
shall use the following lemmas.

LeMMA 2. Lét Voo = Voo @, 0)y %o € Bn C Eooy Vo = Vo ~ En. Suppose
that the mapping F:V,— By, has a finite number of fized po?'nts DByyBpyeeey Bp €
€Va. Then there is a compact mapping F:Ve—Ey which has the same
fiwed points as F and which is an extension of F over Voo

Proof. By 2.1 it follows that Vois & retrach of Ve, i. . there is
& mapping i: Ve —Vy such that #(z) =@ for z e Va.
Putting for each 2 eV

we obviously obtain the desired compact mapping F:Ve->En.
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Tava 3. Let X be a closed bounded subset of By and fo e Px. Then
there exists a mapping | e Bor such that:
1° the set N of all roots of the equation

flz}=0
is finite; if @y, 2, e N then @y, v, belong to different componenis of B\ X,
2° f(m) = folx) for each zeX.

The proof is a slight modification of the proof of a similar Lemma
given in [4], p. 300.

Levwma 4. Suppose that a bounded and closed subset X of B, does
not disconnect Bo, and that Ve == Vuo(oy, 0) 18 & spherical region which
contains X. Then every non-vamishing compact field fo e C(PZ) can be
extended over Vo, 1o a compact non-vanishing field f e C(PL).

Proof. By Theorem 1 and 4.3 we can assume, without loss of
generality, that a compact field fy(a) = o~—F () is finite-dimensional,
i.e. Fp: X —~H,.

Suppose that S, is the boundary of V. and that a point z* ¢,
does not belong to V. Define the mapping f, ¢ PE, X; = S u X by

j »* for ze8,,

flz) =a—Fy(2), where F(x) =lF () for weX
0 € .

Putting X¥ = X, ~ Ba, ff =f| XF we have f¥ e PXi,

By Lemma 3 there exists a mapping f¥ EE?,," such that the set N
of all roots of the equation f3(z) = 0 is finite, ¥ = {&,, &,, ..., 2}, and
fa(x) = fi(x) for every me X*.

By Lemma 2 the mapping 7§|(V.\N) can be extended to a finite-
dimensional field f,e € (PLoV),

Since the set V' N is connected, the points yy Bgy .oy T CAD be
joined by a chain V;,Vﬁo, e, VL CVm\X of open spher1ea1 regions
such that V2, interseets VL, if and only if [i—jl=1 ({,§=1,2,..,10).

Let B, be a finite-dimensional subspace of X, spa.nned by the
centres of Vi, (1 =1,2 .4, -y I) and containing E,.

Let us put 7' = UIV;, T*=TA B Vi=Von Bn, Xy=T\T,
—_ =
Xi =V T fi=1X3. :
Since Xn is counected, it follows that the mapping 7* ¢ PA% can be

extended to a mapping ff ¢ P m\n over Vu\Vi, where V, is a certain
open spherical region contained in 7% Since filw) = z—o* for @ € Sp—y
=FEnn 8%, we have f,|8,,_;~1 and consequently fy|8;,1 =1, where
Si—1 is the boundary of ¥.,. This implies that 7§ C ffe PV'”
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By Lemma 2 we extend the mapping fi(z) =a—Fi(x), zeVn,

to a compact field f ¢ €(PL) and thus the proof of Lemma 4 is complete.

The main result of this paper is the following

THEOREM 3 (ON THE DISCONNECTION OF BANACH SPACES). Let X
be o bounded closed subset of the Banach space Ey. The set B \X is
connected if and only if any two non -vanishing compact fields f, g € C(PZ)
are homotopic in the space (P, X).

Proof. Necessity. Suppose that X does not disconmnect F, and
frge g(PZ). By Lemma 4 compact fields f and g can be extended to
non-vanishing compact fields f,7e C(PL) over a closed spherical region
V. which contains X. B

By 44 we have =7 in G(PZ"") and hence by 4.1 the compact
fields f and ¢ are homotopic in C(PX).

Sufficiency. Suppose that X disconmects Eo. Then there certainly
exigt two points 2, and @, separated by X, By Theorem 2 the non-
vanishing compact fields (»—«,)|X and (2—,)|X are not homotopic
in §(PZ) and thus the proof of Theorem 3 is complete.

8. Jordan separation theorem in Banach spaces. We shall
say that two bounded and closed subsets .X and ¥ of H are homeomorphw
in the marrow sense if there exists a homeomorphism % e QZ(EW) such that
Y =h(X).

It is clear that if the closed and bounded subsets X and ¥ of Ex are
homeomorphic in the narrow semse then the space C(PZ) consists of one
homotopy class if and only if the space C(P T) consists of one homotopy class.

From this we obtain the following, due to J. Leray [9]:

CoRROLARY 1. If a closed and bounded subset X of the Banach space
B, disconmects Bo, then so does every subset of Be which is homeomorphio
to X in the narrow sense.

As an obvious applcation of Corrolary 1 we obtain the following:

CORROLARY 2 (JORDAN SEPARATION THEOREM). 4 subset of B, which
is homeomorphic in the narrow sense to a sphere Su(wo, 0) disconnecis Be.
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On completion of proximity spaces by local clusters *
by
S. Leader (Rutgers)

1. Introduction. In [4] the concept of a ‘“‘cluster” of subsets
from a proximity space X was introduced and used to construct the
compactification X of X by identifying each point z in X with the cluster
of all subsets of X which are close to ». Viewing the completion X* of X
ag o subspace of X, the present paper characterizes those clusters, the
“local” clusters, from X which are defermined by points in X*. These
clusters can be used to construct a completion theory for proximity
gpaces along the same lines ag the compactification theory in [4].

The key concept in any completion theory for proximity spaces
is that of “small’’ sets, since X* consists of just those points in X which
are close to small subsets of X. The concept of small sets can be introduced
through various devices: uniform structures, uniform coverings, or pseudo-
metrics. Smirnov uses the second device in [11], [12], [13] and [14]. We
shall use the third device here making use of the ideas and results of [4].

In the last two sections of the paper two conjectures are posed for
consideration by the interested reader.

2. Gauges. A gauge o on a proximity space X is a real-valued
function o(z, ) on X x X satisfying the following two conditions:

(21) ol#,9) <o(@,?)+eoly,#) forall a,y, in X.

(2.2) Given 4 close to B in X and ¢ > 0, there exists a in A and 5in B
such that e(a, b) <e.

We define o(4, B) to be the infimum of ¢(a, b) for allain 4 and bin B.
We define o[A], the o-diameter of 4, to be the supremum of o(z,¥)
for all » and v in 4.

That o(y,y) <0 follows from (2.2) for all y in X. The reversed
inequality follows from (2.1) if we set z = y. 8o o(¥, 4) = 0. Thus, setting
7= in (2.1), we find o(x,y) < oly, ®) for all » and y in X. So ¢(z,¥)
= g(y, x). Finally, setting y = in (2.1) gives 0 < o(z, 2).
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