

Dedicated to Professor L. Lusternik on his 60-th birthday

On the disconnection of Banach spaces

by

A. Granas (Toruń)

1. Introduction. For arbitrary metric spaces X and Y, we denote by Y^X the set of all continuous mappings of X into Y, and by $X \times Y$ — the Cartesian product of X and Y. If a mapping $f \in Y^X$, then we shall write also $f: X \to Y$.

If $X_0 \subset X$ and $f \in Y^X$ then $f|X_0$ will denote the partial mapping of f, i.e. the mapping f_0 , defined in X_0 by the formula $f_0(x) = f(x)$; we shall say that f is an extension of f_0 over X and then we shall write $f_0 \subset f$.

Two mappings $f, g \in Y^X$ are called homotopic (written $f \simeq g$) if there exists a mapping $h \in Y^{X \times I}$ (I denotes the closed interval [0, 1]) such that for each $x \in X$

$$h(x, 0) = f(x), \quad h(x, 1) = g(x).$$

If $f \in Y^X$ is homotopic to a constant mapping (i. e. a mapping onto a single-point set in Y) then we shall write $f \simeq l$.

If the points x_1, x_2 belong to the same component of the space X, then we shall write: $x_1 \sim x_2$ in X.

Let X be a closed and bounded subset of the n-dimensional Euclidean space \mathbb{R}^n and let 0 denote the origin of \mathbb{R}^n .

In 1931 K. Borsuk proved in the paper [1] the following theorem:

The set $R^n \setminus X$ is connected if and only if the functional space $(R^n \setminus \{0\})^X$ is connected or, which is the same, if any two mappings $f, g \in (R^n \setminus \{0\})^X$ are homotopic.

The same author also gave a criterion concerning the separation of the Euclidean space between two points (see, for instance, [4], p. 302):

$$(x_1 \sim x_2 \text{ in } R^n \setminus X) \equiv (x - x_1) | X \sim (x - x_2) | X \text{ in } (R^n \setminus \{0\})^X;$$

that is to say:

The set X does not separate the space R^n between two points $x_1, x_2 \in R^n \setminus X$ if and only if the mappings $(x-x_1)|X$ and $(x-x_2)|X$ are homotopic in $(R^n \setminus \{0\})^X$.

In this paper we shall give an extension of Borsuk's theorems to the case of arbitrary Banach spaces (Theorems 2 and 3). (1)

In this case the space $(R^n \setminus \{0\})^X$ is replaced by the space $\mathbb{C}(P_\infty^X)$ consisting of all non-vanishing compact fields on X, where X is a bounded closed subset of the Banach space and the homotopy of two mappings $f, g \in (R^n \setminus \{0\})^X$ is replaced by a homotopy of two elements of the space $\mathbb{C}(P_\infty^X)$.

The proof of Theorems 2 and 3 is based on Theorem 1, which is Borsuk's Extension Homotopy Theorem (2) formulated for Banach spaces.

The invariance of the disconnection property of Banach spaces under a certain class of homeomorphisms is deduced directly from Theorem 3. The proof of this does not refer to the Leray-Schauder notion of the degree of a mapping [8]; it is, as a matter of fact, a consequence of the well-known Schauder Fixed Points Theorem.

2. Preliminaries. We shall use the following notation: E_{∞} —infinite-dimensional Banach space, E_n —a subspace of E_{∞} of dimension n, P_{∞} —the space E_{∞} without the origin 0, P_n —the space E_n without 0. If Z is a subset of E_{∞} , we denote the closure of Z by \overline{Z} and the convex closure (i. e. the smallest convex closed set containing Z) by $\operatorname{conv}(Z)$. We shall denote by $V_{\infty}(x_0, \varrho)$ an open spherical region in the space E_{∞} with centre x_0 and radius ϱ and by $S_{\infty}(x_0, \varrho)$ its boundary; if $x_0 \in E_n$, then we shall put

$$V_n(x_0, \varrho) = V_\infty(x_0, \varrho) \cap E_n$$
, $S_{n-1}(x_0, \varrho) = S_\infty(x_0, \varrho) \cap E_n$.

In the sequel we shall use the following lemma:

2.1. Let X be a closed bounded separable convex subset of E_{∞} . Then X is a retract of E_{∞} , i. e. there exists a mapping $r: E_{\infty} \to X$ such that r(x) = x for every $x \in X$.

Proof. For $x \in E_{\infty} \setminus X$ and $y \in E_{\infty}$ the function

$$p(x,y) = \min \left\{ 2 - \frac{\|x - y\|}{\inf_{x \in X} \|x - z\|}, 0 \right\}$$

is continuous on the set $E_{\infty}\backslash X$ and we have $0\leqslant p(x,y)\leqslant 2$. Hence if $\{y_k\}$ is a dense sequence of points in X, then the function

$$r(x) = \begin{cases} x, & x \in X, \\ \left(\sum_{k=1}^{\infty} 2^{-k} p(x, y_k)\right)^{-1} \left(\sum_{k=1}^{\infty} 2^{-k} p(x, y_k) y_k\right), & x \notin X, \end{cases}$$

is the required retraction of E_{∞} onto X.

Let X be an arbitrary space. A mapping $F: X \to E_{\infty}$ is said to be compact on X if the image F(X) is contained in some compact set.

Compact mappings will be denoted in the sequel by capital letters F, G, H.

A compact mapping $F: X \to E_{\infty}$ is said to be *finite-dimensional on* X if its values lie in some finite-dimensional subspace $E_n \subset E_{\infty}$ depending on F, i. e. $F: X \to E_n$.

The following theorem is due to J. Schauder and J. Leray [8]:

2.2. APPROXIMATION THEOREM. Let $F\colon X\to E_\infty$ be a compact mapping on X. For every $\varepsilon>0$, there exists a finite-dimensional mapping $F_\varepsilon\colon X\to E_n$ such that

(1)
$$||F(x) - F_{\varepsilon}(x)|| < \varepsilon \quad \text{for each} \quad x \in X.$$

Proof. For a given $\varepsilon > 0$, we can find a finite subset $\{y_1, y_2, ..., y_k\}$ of E_{∞} such that every point of the compact set $\overline{F(X)}$ is at a distance less than ε from at least one of the y_i . Let E_n be a finite-dimensional subspace of E_{∞} which contains all the points y_i (i = 1, 2, ..., k).

Let us put

(2)
$$F_s(x) = \frac{\sum_{i=1}^k \lambda_i(x) y_i}{\sum_{i=1}^k \lambda_i(x)} \quad \text{for} \quad x \in X,$$

where

(3)
$$\lambda_i(x) = \max\{0, \varepsilon - ||F(x) - y_i||\} \quad \text{for} \quad x \in X \ (i = 1, 2, ..., k).$$

The mapping F_{ε} defined by (2) is finite-dimensional on X, F_{ε} : $X \to E_n$, and satisfies inequality (1); thus the proof is complete.

2.3. Every compact mapping $F: X \to E_{\infty}$ can be represented in the form

(4)
$$F(x) = \sum_{n=0}^{\infty} F_n(x),$$

where the mappings F_n are finite-dimensional on X (n = 0, 1, ...) and

(5)
$$||F_n(x)|| \leq \frac{1}{2^n}$$
 for every $x \in X$ and $n = 1, 2, ...$

Proof. This is a simple consequence of the Approximation Theorem 2.2.

In the sequel we shall use the following theorem, which is a very special case of the theorem of Dugundji concerning extensions of continuous transformations [3]:

2.4. Extension of compact mappings theorem. Let X_0 be a closed subset of a metric space X. Then every compact mapping $F: X_0 \to E_\infty$ can be extended to a compact mapping $\overline{F}: X \to \operatorname{conv}(F(X_0))$.

⁽¹⁾ These theorems were announced in [5].

⁽²⁾ For Borsuk's Theorem, see [2] and [7], p. 86.

Proof. In the case when the mapping F is finite-dimensional our theorem is a simple consequence of lemma 2.1 and the well-known Tietze Extension Theorem ([7], p. 80). For the proof of our theorem in the general case let us consider the representation of F on X_0 given by formulas (4) and (5). Let \overline{F}_n (n=0,1,2,...) be an extension of the finite-dimensional mapping F_n from X_0 over X such that

$$\|\overline{F}_n(x)\| \leqslant \frac{1}{2^n}$$
 for $x \in X$ and $n = 1, 2, ...$

Denote by r a retraction of E_{∞} on the set $\operatorname{conv}(F(X_0))$, which is obviously bounded and separable.

The mapping \overline{F} defined on X by the formula

$$\overline{F}(x) = r\left(\sum_{n=0}^{\infty} \overline{F}_n(x)\right)$$

is the required extension of F from X_0 over X.

As a simple consequence of the Approximation Theorem 2.2 we shall prove the well-known Schauder Fixed Point Theorem [10], which will be used in the sequel:

2.5. If X is a closed convex subset of E_{∞} and F a compact mapping of X into itself, then F has a fixed point.

Proof. By 2.1 for each k=1,2,... there exists a finite-dimensional mapping $F_{1/k}:X\to X\cap E_{n(k)}$ such that

(6)
$$||F(x)-F_{1/k}(x)|| \leqslant \frac{1}{k} \quad \text{for each} \quad x \in X.$$

By the Brouwer Fixed Point Theorem ([4]) the mapping $F_{1/k}$ has a fixed point $x_k = F_{1/k}(x_k)$ and hence by (6) we have

$$||F(x_k) - x_k|| \leqslant \frac{1}{k}.$$

Since F is a compact mapping, we can assume, without loss of generality, that there exists $\lim_{k\to\infty} F(x_k) = x^*$. On account of (7) we have $\lim_{k\to\infty} x_k = x^*$ and hence $\lim_{k\to\infty} F(x_k) = F(x^*)$, i. e. $x^* = F(x^*)$, which completes the proof.

3. The space $\mathfrak{C}(E_{\infty}^X)$ of compact fields in E_{∞} . Now let X be a subset of the Banach space E_{∞} .

A mapping $f: X \to E_{\infty}$ is said to be a *compact vector field on* X if it can be represented in the form

$$f(x) = x - F(x),$$

where $F: X \to E_{\infty}$ is a compact mapping on the set X.

The set of all compact vector fields on X will be denoted by $\mathfrak{C}(E_{\infty}^{X})$.

A compact vector field $f \in \mathbb{C}(E_{\infty}^{\mathbb{X}})$ is said to be *finite-dimensional* if the mapping F of formula (8) is finite-dimensional. The set of all finite-dimensional vector fields on X will be denoted by $\mathbb{C}_0(E_{\infty}^{\mathbb{X}})$.

In the sequel we shall consider the set $\mathfrak{C}(E_{\infty}^{X})$ as a metric space and define the distance $\varrho(f,g)$ by setting

(9)
$$\varrho(f,g) = \sup_{x \in X} \|f(x) - g(x)\| \quad \text{for each} \quad f, g \in \mathfrak{C}(E_{\infty}^{X}).$$

From the Approximation theorem 2.2 we obtain:

3.1. The set $\mathfrak{C}_0(E_\infty^X)$ is dense in the space $\mathfrak{C}(E_\infty^X)$.

3.2. If X is closed in E_{∞} and $f \in \mathfrak{C}(E_{\infty}^X)$ then the set f(X) is also closed in E_{∞} .

Proof. Let $y_n \in f(X)$, $\lim_{n = \infty} y_n = y_0$, $y_n = f(x_n) = x_n - F(x_n)$; without loss of generality, we can assume that there exists $\lim_{n = \infty} F(x_n) = y^*$, $y^* \in E_{\infty}$. We have $\lim_{n = \infty} x_n = y_0 + y^*$, $\lim_{n = \infty} f(x_n) = f(y_0 + y^*)$, i. e. $y_0 = f(y_0 + y^*)$, $y_0 + y^* \in X$.

If X and Y are subsets of E_{∞} then we shall put

$$\mathbb{C}(Y^X) = \mathbb{C}(E_{\infty}^X) \cap Y^X, \quad \mathbb{C}_0(Y^X) = \mathbb{C}_0(E_{\infty}^X) \cap Y^X.$$

In the sequel we shall consider the space $\mathfrak{C}(P_\infty^X)$ of non-vanishing compact fields on X.

Let X be a closed subset of E_{∞} . From 3.1, 3.2 we infer that:

3.3. The set $\mathfrak{C}_0(P_{\infty}^X)$ is dense in the space $\mathfrak{C}(P_{\infty}^X)$.

4. Notion of homotopy in the space $\mathbb{C}(P_{\infty}^X)$. Two non-vanishing compact vector fields $f, g \in \mathbb{C}(P_{\infty}^X)$ are called *homotopic* in the space $\mathbb{C}(P_{\infty}^X)$ (we shall write $f \simeq g$ in $\mathbb{C}(P_{\infty}^X)$) if there exists a mapping $h \in P_{\infty}^{X \times I}$ which satisfies the following conditions:

 $1^{\circ} h(x,0) = f(x), h(x,1) = g(x) \text{ for each } x \in X;$

 2° a mapping h can be represented in the form

$$h(x,t) = x - H(x,t),$$

where the mapping $H: X \times I \rightarrow E_{\infty}$ is compact on $X \times I$.

The relation of homotopy established in the space $\mathbb{C}(P_{\infty}^X)$ is a relation of equivalence and thus the set of all non-vanishing compact vector fields $f \in \mathbb{C}(P_{\infty}^X)$ decomposes into disjoint classes of homotopic fields.

4.1. Let X_0 be a subset of X and $f, g \in \mathbb{C}(P_{\infty}^X)$; then $f \simeq g$ in $\mathbb{C}(P_{\infty}^X)$ implies $f|X_0 \simeq g|X_0$ in $\mathbb{C}(P_{\infty}^{X_0})$.

4.2. For a given $f \in \mathbb{C}(P_{\infty}^X)$, if a positive number ε is less than the distance $\operatorname{dist}(f(X), 0)$ then for every $g \in \mathbb{C}(P_{\infty}^X)$ the condition $\varrho(f, g) < \varepsilon$ implies $f \simeq g$ in $\mathbb{C}(P_{\infty}^X)$.

Proof. Let f(x) = x - F(x) and g(x) = x - G(x). For each $x \in X$ we have $||x - F(x)|| > \varepsilon$, $||F(x) - G(x)|| < \varepsilon$. From these inequalities we infer that, for each $x \in X$ and $t \in I$, $x \neq H(x,t) = tF(x) + (1-t)G(x)$ and thus the mapping $h \in \mathbb{C}(P_{\infty}^{\times X}I)$ defined by h(x,t) = x - H(x,t) (since H is a compact mapping on $X \times I$) is a homotopy between f and g.

Properties 3.3 and 4.2 imply:

4.3. Every compact field $f \in \mathbb{C}(P_{\infty}^X)$ is homotopic to some finite-dimensional field $g \in \mathbb{C}_0(P_{\infty}^X)$.

4.4. Let $X = \overline{V_{\infty}(x_0, g)}$ be a closed spherical region in E_{∞} . Then any two compact fields $f, g \in \mathbb{C}(P_{\infty}^X)$ are homotopic $f \simeq g$ in $\mathbb{C}(P_{\infty}^X)$.

Proof. By 4.3 we can assume that the compact fields $f, g \in \mathbb{C}(P_{\infty}^{\times})$ are finite-dimensional. Let f(x) = x - F(x), g(x) = x - G(x); we can assume that the values of F and G lie in the same finite-dimensional subspace $E_n \subset E_{\infty}$ and that the point x_0 belongs to E_n . Put $V_n = X \cap E_n$, $f_0 = f|V_n$, $F_0 = F|V_n$, $g_0 = g|V_n$, $G_0 = G|V_n$. We have $f_0, g_0 \colon V_n \to P_n$ and thus $f_0 \simeq g_0$. Let $h_0(x,t) = x - H_0(x,t)$ be a homotopy joining f_0 with g_0 in the space $P_n^{r} \cap Y_n$; we have $H_0(x,0) = F_0(x)$, $H_0(x,1) = G_0(x)$ for each $x \in V_n$. We shall extend the mapping $H_0 \colon V_n \times I \to E_n$ over $X \times I$ to a compact mapping $H: X \times I \to E_{\infty}$ which satisfies the following conditions:

$$x
eq H(x,t) \quad ext{for each} \quad x \, \epsilon \, X \ ext{and} \ t \, \epsilon \, I \, ,$$
 $H(x,0) = F(x) \, , \ H(x,1) = G(x) \quad ext{for each} \quad x \, \epsilon \, X \, .$

For this denote by $\{e_1, e_2, ..., e_n\}$, $e_k \in E_n$, a basis of E_n and by $\{l_1, l_2, ..., l_n\}$ the dual basis in the conjugate space to E_n ; thus every element $z \in E_n$ can be written in the form

$$(10) z = \sum_{i=1}^n l_i(z)e_i.$$

Let us consider the following closed subset of $X \times I$:

$$T_0 = (X \times \{0\}) \cup (V_n \times I) \cup (X \times l)$$

and define on T_0 a real-valued functions φ_i (i=1,2,...,n) as follows:

(11)
$$\varphi(x,t) = \begin{cases} l_i(F(x)) & \text{for } x \in X \text{ and } t = 0, \\ l_i(G(x)) & \text{for } x \in X \text{ and } t = 1, \\ l_i(H_0(x,t)) & \text{for } x \in V_n \text{ and } t \in I. \end{cases}$$

Tietze Extension Theorem yields an extension $\widetilde{\varphi}_i(x,t)$ of $\varphi_i(x,t)$ over $X \times I$; since each function φ_i is bounded, we can assume that also each $\widetilde{\varphi}_i$ is bounded and thus the mapping $H: X \times I \in E_n$ defined by

(12)
$$H(x,t) = \sum_{i=1}^{n} \widetilde{\varphi}_{i}(x,t) e_{i}$$

is compact. From (10) and (11) it follows that the mapping H defined by (12) is the desired extension of H_0 over $X \times I$ and thus the proof is complete.

5. Extension Homotopy Theorem. We shall consider the question of extending a non-vanishing compact field defined on a closed subset X_0 of $X \subset E_\infty$ to a non-vanishing compact field defined over the whole X. We shall prove that the existence of such extension depends only on the homotopy class of the given compact field.

THEOREM 1 (ON THE EXTENSION OF HOMOTOPY [5]). Let X_0 be a closed subset of $X \subset E_{\infty}$ and $f_0, g_0 \in \mathbb{C}(P_{\infty}^{X_0})$ two homotopic in $\mathbb{C}(P_{\infty}^{X_0})$ compact fields. Then if there is an extension $f \in \mathbb{C}(P_{\infty}^X)$ of f_0 over X, there is also an extension $g \in \mathbb{C}(P_{\infty}^X)$ of g_0 over X with f and g homotopic in $\mathbb{C}(P_{\infty}^X)$.

Proof. The homotopy of the non-vanishing compact fields

$$f_0(x) = x - F_0(x), \quad F_0: X_0 \to E_\infty,$$

 $g_0(x) = x - G_0(x), \quad G_0: X_0 \to E_\infty,$

means that there exists a compact mapping $H_0: X \times I \to E_\infty$ satisfying the following conditions:

$$x \neq H_0(x,t)$$
 for each $x \in X_0$ and $t \in I$, $H_0(x,0) = F_0(x)$, $H_0(x,1) = G_0(x)$ for each $x \in X_0$.

There exists, by hypotesis, an extension $f \in \mathbb{C}(P_{\infty}^X)$, f(x) = x - F(x), of f_0 over X; thus $F_0 \subset F: X \to E_{\infty}$.

Denote by T_0 the following subset of the Cartesian product $X \times I$:

$$T_0 = (X_0 \times I) \cup (X \times \{0\}),$$

and define the following mapping $H_0^*: T_0 \to E_{\infty}$:

$$\begin{split} H_0^\star(x,\,0) &= F(x) & \text{for} \quad x \,\epsilon\, X \text{ and } t = 0 \;, \\ H_0^\star(x,\,t) &= H_0(x,t) & \text{for} \quad x \,\epsilon\, X_0 \text{ and } 0 \leqslant t \leqslant 1 \;. \end{split}$$

The mapping H_0^* is compact on T_0 and hence by 2.4 it can be extended to a compact mapping $H^*: X \times I \to E_{\infty}$ over $X \times I$.

Let us define the set $X_1 \subset X$ by the condition:

$$(x \in X_1)$$
 if and only if $(x - H_0(x, t) = 0$ for some $t \in I$).

 X_1 and X_0 are obviously disjoint closed subsets of X. Hence there is a continuous real-valued function $\lambda(x)$ defined over X whose range is between 0 and 1 and which is 0 on X_1 and 1 on X_0 .

Now consider the mapping

$$H(x,t) = H^*(x,\lambda(x)t)$$
 for $x \in X$ and $t \in I$.

It is clear that H is a compact mapping on $X\times I$ and for each $x\in X$ and $t\in I$

$$x \neq H(x,t)$$
.

If we define q(x) by

$$g(x) = x - G(x)$$
, where $G(x) = H(x, 1)$, $x \in X$,

it is clear that g(x) is an extension of $g_0(x)$ over X, and likewise that H(x,0)=F(x) for $x\in X$. Since H(x,1)=G(x) by definition, we conclude that the non-vanishing compact fields

$$f(x) = x - F(x)$$
 and $g(x) = x - G(x)$ $(x \in X)$

are homotopic in $\mathbb{C}(P_{\infty}^{X})$. The proof of Theorem 1 is complete.

6. Separation of the space between two points. Let X be a closed and bounded subset of E_{∞} .

THEOREM 2. The set X does not separates the Banach space E_{∞} between two points $x_1, x_2 \in E_{\infty} \setminus X$ if and only if the non-vanishing compact fields $(x-x_1)|X$, $(x-x_2)|X$ are homotopic in the space $\mathbb{C}(P_{\infty}^X)$.

The proof of theorem 1 is based on the following

LEMMA 1. Let U be a bounded open set in E_{∞} , x_1 a point in U and Y the boundary of U. Then the non-vanishing compact field $(x-x_1)|Y$ cannot be extended to a non-vanishing compact field over $\overline{U} = U \cup Y$.

Proof. Suppose it were possible to extend $(x-x_1)|Y$ over \overline{U} to a non-vanishing compact field f, say, $f(x)=x-F(x),\ f(x)=x-x_1$ for each $x\in Y$.

Let ϱ be so large that \overline{U} and $F(\overline{U})$ are contained in the spherical region $\overline{V}_{\infty} = \overline{V}_{\infty}(x_1, \varrho)$ of radius ϱ and x_1 as centre.

The formulas

$$F^*(x) = x_1$$
 for $x \in \overline{V} \setminus U$,
 $F^*(x) = F(x)$ for $x \in U$

Proof of Theorem 2. Assuming first that x_1 and x_2 are not separated by X we shall prove that the compact fields $(x-x_1)|X$ and $(x-x_2)|X$ are not homotopic. We are given

$$E_{\infty}\backslash X=U\cup V,$$

U, V being disjoint sets which are open in E_{∞} , and $x_1 \in U$, $x_2 \in V$. One of the sets U, V, say U, is bounded. The non-vanishing compact field $(x-x_2)|X$ can be extended over $U \cup X$, in fact over $E_{\infty} \setminus \{x_2\} \supset U \cup X$. On the other hand, according to Lemma 1, it is not possible, in view of the boundary of U being contained in X, to extend $(x-x_1)|X$ over $U \cup X$ to a non-vanishing compact field. Hence $(x-x_1)|X$ and $(x-x_2)|X$ are not homotopic in the space $\mathfrak{C}(P_{\infty}^X)$ since Theorem 1 would be contradicted if they were.

Now let us assume that $x_1 \sim x_2$ in $E_{\infty} \backslash X$. Then one can join x_1 and x_2 by a continuous arc in $E_{\infty} \backslash X$, i. e. one can find a continuous function r(t) of the real parameter t, $0 \leq t \leq 1$, with values in $E_{\infty} \backslash X$ such that

$$r(0) = x_1, \quad r(1) = x_2.$$

The mapping $h: X \times I \rightarrow P_{\infty}$, defined by

$$h(x,t) = x - r(t)$$
, $x \in X$ and $t \in I$,

is obviously a homotopy joining $(x-x_1)|X$ and $(x-x_2)|X$ in $\mathfrak{C}(P_{\infty}^X)$. Hence Theorem 2 is proved.

7. The main theorem. For the proof of the main theorem we shall use the following lemmas.

LEMMA 2. Let $V_{\infty} = V_{\infty}(x_0, \varrho)$, $x_0 \in E_n \subset E_{\infty}$, $V_n = V_{\infty} \cap E_n$. Suppose that the mapping $F: \overline{V}_n \to E_n$ has a finite number of fixed points $x_1, x_2, ..., x_k \in V_n$. Then there is a compact mapping $\overline{F}: \overline{V}_{\infty} \to E_n$ which has the same fixed points as F and which is an extension of F over \overline{V}_{∞} .

Proof. By 2.1 it follows that \overline{V}_n is a retract of \overline{V}_{∞} , i. e. there is a mapping $r: \overline{V}_{\infty} \to \overline{V}_n$ such that r(x) = x for $x \in \overline{V}_n$.

Putting for each $x \in \overline{V}_{\infty}$

$$\overline{F}(x) = F(r(x))$$

we obviously obtain the desired compact mapping $\overline{F}: \overline{V}_{\infty} \to E_n$.

LEMMA 3. Let X be a closed bounded subset of E_n and $f_0 \in P_n^X$. Then there exists a mapping $f \in E_n^{E_n}$ such that:

1º the set N of all roots of the equation

$$f(x)=0$$

is finite; if $x_1, x_2 \in X$ then x_1, x_2 belong to different components of $E_n \setminus X$, $2^{\circ} f(x) = f_0(x)$ for each $x \in X$.

The proof is a slight modification of the proof of a similar Lemma given in [4], p. 300.

LEMMA 4. Suppose that a bounded and closed subset X of E_{∞} does not disconnect E_{∞} and that $V_{\infty} = V_{\infty}(x_0, \varrho)$ is a spherical region which contains X. Then every non-vanishing compact field $f_0 \in \mathbb{C}(P_{\infty}^X)$ can be extended over \overline{V}_{∞} to a compact non-vanishing field $f \in \mathbb{C}(P_{\infty}^{\overline{V}_{\infty}})$.

Proof. By Theorem 1 and 4.3 we can assume, without loss of generality, that a compact field $f_0(x)=x-F_0(x)$ is finite-dimensional, i. e. $F_0:X\to E_n$.

Suppose that S_{∞} is the boundary of V_{∞} and that a point $x^* \in E_n$ does not belong to \overline{V}_{∞} . Define the mapping $f_1 \in P_{\infty}^{X_1}$, $X_1 = S_{\infty} \cup X$ by

$$f_1(x) = x - F_1(x)$$
, where $F_1(x) = \begin{cases} x^* & \text{for} & x \in S_\infty, \\ F_0(x) & \text{for} & x \in X. \end{cases}$

Putting $X_1^* = X_1 \cap E_n$, $f_1^* = f_1 | X_1^*$ we have $f_1^* \in P_n^{X_1^*}$.

By Lemma 3 there exists a mapping $f_2^* \in E_n^{\overline{V}_n}$ such that the set N of all roots of the equation $f_2^*(x) = 0$ is finite, $N = \{x_1, x_2, ..., x_k\}$, and $f_2^*(x) = f_1^*(x)$ for every $x \in X_1^*$.

By Lemma 2 the mapping $f_2^*|(\overline{V}_n \setminus N)$ can be extended to a finite-dimensional field $f_2 \in \mathbb{C}(P_{\infty}^{\overline{V}_{\infty} \setminus N})$.

Since the set $\overline{V}_{\infty} \setminus N$ is connected, the points $x_1, x_2, ..., x_k$ can be joined by a chain $V_{\infty}^1, V_{\infty}^2, ..., V_{\infty}^l \subset V_{\infty} \setminus X$ of open spherical regions such that \overline{V}_{∞}^i intersects \overline{V}_{∞}^j if and only if |i-j|=1 (i,j=1,2,...,l).

Let E_m be a finite-dimensional subspace of E_{∞} spanned by the centres of \overline{V}_{∞}^i (i=1,2,...,l) and containing E_n .

 $\begin{array}{l} \text{Let us put } T=\bigcup_{i=1}^l V_\infty^i, \ T^*=T \cap E_m, \ \overline{V}_m=\overline{V}_\infty \cap E_m, \ X_2=\overline{V}_\infty \backslash T, \\ X_2^*=\overline{V}_m \backslash T^*, \ f_2^*=f_2|X_2^*. \end{array}$

Since X_2^* is connected, it follows that the mapping $f^* \in P_m^{X_2^*}$ can be extended to a mapping $f_3^* \in P_m^{\overline{V}_m \backslash V'_m}$ over $\overline{V}_m \backslash V'_m$, where V'_m is a certain open spherical region contained in T^* . Since $f_3^*(x) = x - x^*$ for $x \in S_{m-1} = E_m \cap S_\infty$, we have $f_3 | S_{m-1} \simeq 1$ and consequently $f_3 | S'_{m-1} \simeq 1$, where S'_{m-1} is the boundary of V'_m . This implies that $f_3^* \subset f_4^* \in P_m^{\overline{V}_m}$.

THEOREM 3 (ON THE DISCONNECTION OF BANACH SPACES). Let X be a bounded closed subset of the Banach space E_{∞} . The set $E_{\infty}\backslash X$ is connected if and only if any two non-vanishing compact fields $f,g\in \mathbb{C}(P_{\infty}^X)$ are homotopic in the space $\mathbb{C}(P_{\infty}^X)$.

Proof. Necessity. Suppose that X does not disconnect E_{∞} , and $f, g \in \mathbb{C}(P_{\infty}^X)$. By Lemma 4 compact fields f and g can be extended to non-vanishing compact fields $\bar{f}, \bar{g} \in \mathbb{C}(P_{\infty}^{\overline{V}_{\infty}})$ over a closed spherical region \overline{V}_{∞} which contains X.

By 4.4 we have $\tilde{f} \simeq \bar{g}$ in $\mathbb{C}(P_{\infty}^{\widetilde{p}_{\infty}})$ and hence by 4.1 the compact fields f and g are homotopic in $\mathbb{C}(P_{\infty}^{X})$.

Sufficiency. Suppose that X disconnects E_{∞} . Then there certainly exist two points x_1 and x_2 separated by X. By Theorem 2 the non-vanishing compact fields $(x-x_1)|X$ and $(x-x_2)|X$ are not homotopic in $\mathfrak{C}(P_{\infty}^X)$ and thus the proof of Theorem 3 is complete.

8. Jordan separation theorem in Banach spaces. We shall say that two bounded and closed subsets X and Y of E_{∞} are homeomorphic in the narrow sense if there exists a homeomorphism $h \in \mathbb{C}(E_{\infty}^X)$ such that Y = h(X).

It is clear that if the closed and bounded subsets X and Y of E_{∞} are homeomorphic in the narrow sense then the space $\mathbb{C}(P_{\infty}^{X})$ consists of one homotopy class if and only if the space $\mathbb{C}(P_{\infty}^{Y})$ consists of one homotopy class.

From this we obtain the following, due to J. Leray [9]:

CORROLARY 1. If a closed and bounded subset X of the Banach space E_{∞} disconnects E_{∞} , then so does every subset of E_{∞} which is homeomorphic to X in the narrow sense.

As an obvious application of Corrolary 1 we obtain the following: Coerolary 2 (Jordan Separation Theorem). A subset of E_{∞} which is homeomorphic in the narrow sense to a sphere $S_{\infty}(x_0,\varrho)$ disconnects E_{∞} .

References

[1] K. Borsuk, Über Schnitte der n-dimensionalen Euklidischen Räume, Math. Annalen 106 (1932), p. 239-248.

[2] — Sur les prolongements des transformations continues, Fund. Math. 28 (1937),
 p. 99-110.

[3] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), p. 353-367.

[4] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton 1952.

- [5] A. Granas, On disconnection of Banach spaces (in Russian), Bull. Acad. Pol.
- Sci., Série des Sci. Math., Astr. et Phys. 7 (1959), p. 395-399.

 [6] Homotopy extension theorem and some of its applications to the theory of non-linear equations (in Russian), ibidem 7 (1959), p. 387-394.
 - [7] W. Hurewicz and H. Wallman, Dimension theory, Princeton 1948.
- [8] J. Leray and J. Schauder, Topologie et équations tonctionnelles, Ann. École Norm. Sup. 51 (1934), p. 45-78.
- [9] J. Leray, Topologie des espaces abstraits de M. Banach, C. R. Acad. Sci. Paris 200 (1935), p. 1082.
- [10] J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math. 2 (1930), p. 171-180.

Reçu par la Rédaction le 22. 8. 1959

On completion of proximity spaces by local clusters *

by

S. Leader (Rutgers)

1. Introduction. In [4] the concept of a "cluster" of subsets from a proximity space X was introduced and used to construct the compactification \overline{X} of X by identifying each point x in \overline{X} with the cluster of all subsets of X which are close to x. Viewing the completion X^* of X as a subspace of \overline{X} , the present paper characterizes those clusters, the "local" clusters, from X which are determined by points in X^* . These clusters can be used to construct a completion theory for proximity spaces along the same lines as the compactification theory in [4].

The key concept in any completion theory for proximity spaces is that of "small" sets, since X^* consists of just those points in \overline{X} which are close to small subsets of X. The concept of small sets can be introduced through various devices: uniform structures, uniform coverings, or pseudometrics. Smirnov uses the second device in [11], [12], [13] and [14]. We shall use the third device here making use of the ideas and results of [4].

In the last two sections of the paper two conjectures are posed for consideration by the interested reader.

- **2. Gauges.** A gauge ϱ on a proximity space X is a real-valued function $\varrho(x,y)$ on $X\times X$ satisfying the following two conditions:
- $(2.1) \quad \varrho(x,y) \leqslant \varrho(x,z) + \varrho(y,z) \quad \text{for all} \quad x,y,z \ \text{in} \ X.$
- (2.2) Given A close to B in X and $\varepsilon > 0$, there exists a in A and b in B such that $\varrho(a, b) < \varepsilon$.

We define $\varrho(A,B)$ to be the infimum of $\varrho(a,b)$ for all a in A and b in B. We define $\varrho[A]$, the ϱ -diameter of A, to be the supremum of $\varrho(x,y)$ for all x and y in A.

That $\varrho(y,y)\leqslant 0$ follows from (2.2) for all y in X. The reversed inequality follows from (2.1) if we set z=y. So $\varrho(y,y)=0$. Thus, setting z=x in (2.1), we find $\varrho(x,y)\leqslant \varrho(y,x)$ for all x and y in X. So $\varrho(x,y)=\varrho(y,x)$. Finally, setting y=x in (2.1) gives $0\leqslant \varrho(x,z)$.

^{*} Research supported by a grant from the Research Council of Rutgers — The State University.