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On superpositions of simple mappings
by
K. Sieklucki (Warszawa)

1. Introduction. K. Borsuk and R. Molski considered in [4]
a class of continuous mappings called simple mappings. A continuous
mapping f of a space X onto the space ¥ is of order <k if for every
point y ¢ ¥ the set f~'(y) contains at most % points (cf. [8], p. 52). The
mappings of order <2 are said to be simple mappings. In [4] the authors
raise the following question (p. 92, No 4): does there exist a continnous
mapping of a finite order which is not a superposition of a finite number
of simple mappings?

The purpose of this paper is to prove that every continunous mapping
1 of a finite order defined on the compact space X of a finite dimension
is & superposition of a finite number of simple mappings. On the other
hand, we shall construct a compact infinite dimensional space X and
a continuous mapping of a finite order f defined on X which will not be
a superposition of a finite number of simple mappings.

2. Auxiliary definitions and notations.

Definition 2.1. A collection of subsets of a space X constitutes
a decomposition W of X if the sets of W are disjoint and non-empty,
and if they fill up X. The decomposition B is said to be upper semi-
continuous if for every closed subset 4 of X the union of all sets of I8
intersecting A is closed in X (see [8], p. 42).

P. Alexandroff ([1] and [2]; cf. also [8], p. 42) has proved the follow-
ing theorem: In order that a decomposition W of & compact space X be
upper semicontinuous, it is sufficient and necessary that there exist a space Y
and a continuous mapping f of X onto ¥ such that the sets belonging to I8
are the same as the sets f'(y) where y e Y.

Let {43} (¢=1,2,..) denote a sequence of subsets of the space X
and let Lim 4; be defined as in [7], p. 241-245. We shall use the following
importaﬁtmproperties of the notion of this limit:

(i) The generalized Bolzano-Weierstrass theorem. If the space is
separable, then from every sequence of its subsets we can choose a convergent
subsequence (may be to the empty set) (see [7], p. 246).
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(ii) If the space X is compact and sets A, A4;CX (1=1,2,..) are
non-empty and closed, then the condition A =TimA; is equivalent to

4—>00

limdist (4, 4;) = 0, where
£-200
. _ . ) ;
dist(4, B) m?:X(ig);fge(a,b), supinfo(a, )

(81 p- 21)- :

(iii) In order that the decomposition L of the compact space X be upper
semicontinuous, it is mecessary amd sufficient that for every convergent
sequence (W, W;e D (8 =1,2,..), there exists a set W, e I satisfying
I.flIIL W c WD .

1500

Definition 2.2. Let ¥ = {U.} and B = {V;} be two decompositions
of the space X. The decomposition of X consisting of all non-empty
intersections U,~V; will be denoted by U~ B.

Levma 2.3. If the decompositions U = {U,} and B = {V;} of the
compact space X are upper semicontinuous, then the decomposition
W= U~ B is also upper semicontinuous.

Proof. Let {W.} be a convergent sequence of sets belonging to 2.
For every i=1,2,.. there exist U,ell and V;<B such that
Wy =UgnVy;. By property (i) we can assume that the sequence
U, converges to Uj and V; converges to Vi. Using property (iii) we
can find Uy CUyel, ViCV,eB. Since X is compact and since U,
AV #0 for i=1,2,.., we obtain U, V,# 0. Then there exists
Wo=UynVyeW and Lim W,,C W,. By property (iii) this proves the
lemma. o

Definition 2.4. Let U and B be upper semicontinuous decom-
positions of X and let m be a natural number. If for each set of 1l there
exists a set of B containing it and for each set of B there exist at most
m sets of W contained in it, then we shall write U C B.

m

3. Expressing the problem in terms of semicontinuous
decompositions. We now prove

Levwma 3.1. Let us comsider the mappings: f, of X = X, onto X,,
Jo of X, onto Xy, ..., fr of X, onto X,y = ¥, where X is a compact space
and let @ = frofigo..ofpofy (1< 7). Then in order that all the functions
Fus fos oy I be comtinuous it is necessary and sufficient that all the functions
@1y Pasoeny Pr DE cONtinuous.

Proof. It is obvious that the condition is necessary. To prove its
sufficiency suppose that ¢, @,,..., ¢, are continuous and f1, is the first
non-continuous funetion in the sequence 7, f,, ..., fr. Of course I > 1.
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Then there exists a sequence {m}, #; ¢ Xy, lima; = x,¢ Xy, such that
lim fi,(;), if 16 exists, differs from fi,(w,). Sinc: sznH, as the continuous
lim—?’;ge of a compact space, is also compact, we can assume thatb

1) e Xy Eﬁm:mm

and there exists P_ﬁlofzo(mi) 7 f1(@s)-

Let &; denote an arbitrary point of the (non-empty) set ¢ili(m;) C X.
Then

(@) Pro-1(82) = ;.
Let us choose a convergent subsequence
(3) . hm 57'1; = ED .
00

With regard to the continuity of ¢, and from (2) we obtain
Po-1(€0) = limgy,1(&;) = lima;,. Hence by (1) we obtain
1300 100

(4) Pr~1(€o) = 2y .

Sinece @y, = f1, o @ip—1, it follows from (2) that
(5) Eg:‘}’lo(fi‘-) = limf;(;)
and from (4) o
(6) P1o{€0) = fio{wo) -

Combining (5), (6) and (3) in view of the continuity of ¢, we obtain
ﬁmfzn(mji) = fi(2,) contrary to (1). This proves the sufficiency.

LemMA 3.2. In order that the continuous mapping | of order <k
defined on the compact X and determining the wpper semicontinuous de-
composition L& be a superposition of r mappings of order <m 2 < m< k)
it is necessary and sufficient that there exists a sequence MW (1= 0,1, ...,7)
of upper semicontinuous decompositions of X such thai

1° WP consists of the poinis of X,

22 W CWC..C W™ C B =9

m m m m

Proof. To prove necessity let us suppose that f = frofrmye..afesfy
where f; (1 =1, 2, ..., ) i3 the continuous mapping of order <\m defined
on X; onto X, ;. The functions p, = identity on X = X,, ¢y = fiofi10...0
ofpofy (I=1,2,...,7) are obviously continuous. Denoting by W’ the
upper semicontinuous decomposition of X corresponding to ¢
(t=0,1,..,7) we obtain the sequence of upper semicontinuous de-
composgitions satisfying 1° and 2°. To prove sufficiency let us suppose

15*
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that the sequence W (I =0,1,..,r) of upper semicontinuous decom-
positions of X satisfies conditions 1° and 2° By Alexandroff’s theorem
there exists a sequence of continuous functions ¢; mapping X; onto
X1, (I=0,1, .., r) and such that ¢, = identity on X = X,. Condition 29
implies that for every I=1,2,..,7 there exists a function f, of X, onto
X,y such that ¢; = fregy. In view of lemma 3.1 the functions f,, f,, ..., 7,
are continuous. By condition 2° they are also of order <Im. Since f = g,
=frofpio..0fy0f;, the proof is complete.

4. Main theorem. We have the following

Definition 4.1. Let I = {W.} denote an upper semicontinuoug
decomposition of the space X. Moreover let us suppose that in X there
exists a binary relation <. The relation - is said to be closed relative
to W if

1° X ig partially ordered by -<. This means that

(a) If ! <27 then not #? < z';

(b) if #* < #?® and 2* < 4% then z' < 7.

2° Each set W.e¢ I8 is completely ordered by ~2. This means that
{besides 1°) for each 2, 22 ¢ W, such that o' s 22 either 4! < 2% or 42 < ot
holds.

3° Let {W,} be an arbitrary convergent sequence of sets of IB.
By property (iii) (p. 218) there exists W,, ¢ I such that Lim W, CW,.

100

We require that if o3, 27 ¢ W, «f < o} fori =1,2, ..., lima; = aj € W,
100

limaf = af ¢ W, then either Yo = T8 O Th= 2e.
T-00

Definition 4.2. Let M = {W,} be an upper semicontinnous de-
composition of X and let < be a relation closed relative to 0. Writing

II(W.) = W.x W, we can introduce in UII W.) a topology induced

by the imbedding in the Cartesian produet X x X and a relation < de-
fined by the method of first differences (see for example [9], p. 159).

Levma 4.3, Let there ewist in the compact meiric space X an upper
semicontinuous decomposition I = {W,} and a relation - closed relative
o 8. Let us suppose that the convergent sequence (W.,} satisfies

1. W, =P (1=1,2,...) where p is a natural number;

. there exists 6 > 0 such that if W, = (i, 23, ..

min g(w,,a*,) =6 holds.
I<r<u<p

Then
1. Tim W, = p.
i-00

wy &7}, then, for every i,
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2. For every two sequences {II}}, {IT} such that Hi,ﬂze]] (W2,
<l (i=1,2,..), 1_11217;: e lI(W,)) (v=1 »2), we have the re-

lation ITy < IT3.
Proof. By property (ii), p. 218, we conclude that hmdlst (hm Wo, Woy
= 0. Hence in each sphere K (z,¢), where z « Lim W,, for almost all <

00

there exist ;e W.. So leW <W,=p holds. It Tim W, < W,

k%)
-0

" then for almost all 4 at lea,st two points a7, o} € W, would belong to

& sphere K (x, ¢) where x e Lim W, . Hence we should have o(a}, af) < e

400
contrary to the suppositions. By the above remarks and in view of our
suppositions we can assume that W, = (af, 45, ..., %) for i =0,1,...
where limaf =« for v =1,2,...,p.
1—0Q

By assumption 2 we infer that for almost all ¢ the pair I7} can be
written as (&, #"> where », 4, do not depend on i. Similarly IT?
= (&, @*) where v,, u, do not depend on {. Then JI} = (z ,w’“}, It
= {@g*, 2. In view of assumption 2 we conclude that either ai* -2 zf*
or #jt = @ and @' -2 2f* for i = 1, 2, ... In the first case by the closeness
of < we have a3* < af*. In the second case », = #,, Uy F Uy and we have
o = @i, @b < xb, which proves that I < ITZ.

LemmA 4.4. If in the metric compact space X there exist an .upper
semicontinuous decomposition W = {(W.} such that W,<k (k>3) and
the relation -3 closed relative to I, then there exists a finile sequence {MY,
I=1,2,...,7,7r+1, v = k(k+1), of upper semicontinuous decomposttions
of X satisfying:

1° The sets of T° are the same as points of X.

2 MW C W C.. CWC W =1,

=1 B ko1 ke

Proof. A pair I1°= <, o*> e II(W,) is said to be a minimal pair
if 2! 2 «* and the diameter of I7° is equal to the minimum of diameters
(different from zero) of all pairs I7 e II(W.). We shall say that a set
W C W, is minimally connected if for every x, y ¢ W there exists a sequence
rieW, (i=1,2,..,1) such that z =, ¥ = 2; and the pair (&;, 21>
is the minimal one for 4 =1, 2, ..., t—1. We shall say that a set WC W,
is the minimal component of W, if W is minimally eonnected and there
i8 no minimally connected set W == W'C W,. In each W, there exists
at leagt one minimal component and they are all disjoint.

Let BC W denote the family of sets of I consisting of exactly k
points. Let B, denote the subfamily of B consisting of those sets which
Dossesse exactly » minimal pairs.
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‘We shall define the sequence {4 (I=1,2,.., 7 =k(k+1)) of
decompositions of X as follows:

A. For an odd 1 =2a-+1 the sets of 2! are

(a) the first (in the sense of definition 4.2) minimal pairs in the
minimal components of sets of the family 233;_

=

(b) the minimal components of sets of the families %(k)_ " where
2,
0<p<a
(¢) the remaining points of X.

B. For an even | = 2a the sets of W are
(2) the minimal components of sets of the families %(")-p where
2

0<f<a,

(b) the remaining points of X.

To prove the upper semicontinuity of this decomposition let us
take an arbitrary sequence of its sets {W,} convergent to W, By prop-
erty (i), p. 217, we can suppose that W;CV; (i =1, 2,...) where {V;}
is & sequence of sets of the family B convergent to V. Moreover, choosing
again a suitable subsequence we can suppose that W, are given (for
4=1,2,..) by the same definition. In cases A (¢) and B (b) the set W
contains at most one point and then it is contained in a set of the
family TBL

Let us suppose that W; (i =1,2,..) are defined by A(a) If W
contains at most one point it is contained in a set of the family % Let
us suppose that W contains two different points. We shall prove that
V =k (it means that Ve ®B). Indeed, in the opposite case in almost
every V,; there would exist two arbitrarily near points. Then almost
every W;, being the minimal pair, would have an arbitrarily small
diameter, contrary to W = 2. We observe that V e« Bz s where 0 < f < a.

2,
If Ve-ﬁ(k)_ﬂ where 0 << 8 < o, then by WCV and by the point A (b)

of our e(;nstruction, the set W is contained in a set of the family %
Ve QB(k)_a then the minimal components of V are convergent to the cor-

responding minimal eomponents of ¥V, and in view of lemma 4.3 the same
holds for their first minimal pairs. Hence W is a set of thefamily ;.

The cases A (b) and B (a) can be considered together. We suppose
as above that W > 2. Then we shall prove that V = & (it means that
V « B). Indeed, in the opposite case in almost every V; there would exist
two arbitrarily near points. Then in almost every W; each minimal pair
would haive an arbitrarily small diameter. By the definition of the minimal
component we conclude that almost every W; would have an arbitrarily
small diameter, contrary to W > 2. We observe that Ve %(k)_ﬂ where

. 2,
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0<f<e I Ve%(rzc)__p where 0 < f < q, then by WCV and by the

minimal connexity, the set W is contained in a set of the family 8L
If Ve ‘B(k)_a then the minimal components of V; are convergent to the
2

corresponding minimal components of V and the set W belongs to the
family 2082

Defining I® as the upper semicontinnous decomposition consisting

of the points of X and putting W™ = W we easily verifty that
WCWC..CWTCW T w'=9m,
E—1 k-1 k-1 k—1 k—1

Thus the proof is finished.

LEMMA 4.5. Ewery continuous mapping [ of order <k (k> 3) de-
fined on a compact n-dimensional space X is a superposition of s(k,n)
= (2n+1)k(k-1) mappings of order <k—1.

Proof. By the theorem of Menger-N6beling ([10], [11]) we can
guppose that X is a subset of an m-dimensional Euclidean space, where
m=2n-+1. Let & (0 < pu<m) denote the decomposition of X con-
gisting of the intersections of sets §~(p) with the hyperplanes given by
the gystem of equations: @it = Guy1y Bure = Cuyzy ey m = Om. 1N View
of lemma 2.3 the decomposition & is upper semicontinuous for u=0, ..., m.
Bvidently €"C G C...CE™ Using lemma 3.2 we conclude that there

k&

exists a sequellclce of spaces X = X, X,, ..., Xpuy1 = f(X) and continuous
mappings of order <k: f,= identity on X,; f; of X; onto Xy, (i=1,2,...,
s(k, n)) such that the mapping fiefro...ofy (1=10,1,..,m) determines
the decomposition ¢ of X.

In each of the spaces X; (j =1,2, ..., m+1) we define the relation
=, ag follows: p’-3;p”" if and only if the j-th coordinate of the set
(fs10 e 0fo) () is less than the j-th coordinate of the set (fj_1o...0
ofo)(p’"). Tt can easily be verified that the relation <; i=1,2,..,m+1)
is closed relative to the decomposition determined by f;-:. By lemma 4.4
we conclude that the mapping f; (¢=0,1,..,m) i8 a superposition of
r = k(k-+1) mappings of order <k. Hence f is a superpogition of s(k, n)
= (2n+1)(k)(%-+1) mappings of order <k—1.

TazorEM, 1. Every continuous mapping f of order <k (k> 2) defined
on a compact n-dimensional space X is o finite superposition of z(k, n)
simple mappings (*).

Proof. By the lemma 4.5, f is a superposition of s(k, n) mappings
fik-1y wery fop— Of order <k—1. The theorem of Hurewicz [5] states that

T @) Tt omn easily be verified that the following inequality holds:
k i(i—1)
2k, ny< [] {2 [n+(i— 1)k~ —(——2—]+1}.

i=1
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for every continuous mapping » of order <t defined on the compact ¥
we have dimh(Y) < dim(Y)+t—1. Hence the space fix—i, .., fiz—y(X)
is of finite dimension for i =1, 2, ..., s(k, n).

In this manner we can repeat owr reasoning k—2 times, which
completes the proof.

5. Counter-example. Let U denote a continuous mapping of
the sphere §,_, onto itself such that U7, 7% ..., U"™* have no fixed points
but U? = identity.

Definition 5.1. We shall say that the set ZC 8,y has the property
(U) i 1° U(Z) = Z and 2° in every component of Z there is no pair of
points of the form », U’(x) where v = 1,2, ..., p—1.

LeMMA 5.2. Besides the aforesaid suppositions let U be an isometry.
If the closed set Z C 8,1 has the property (U), then there exisis an open set ¥
such that ZC Y and Y has the property (U).

Proof. In the contrary case let ¥, = {weS,|dist(z, Z)< 1/}
where dist(z, Z) = infg(m, z). Then U(Y;) =Y, for i =1,2,... More-

2€Z

over for every i there exist points U'(m;), Ui(m) (0 < o<y < p—1)
and a connected set P; such that U(w), U“(x)e P;C Y. Using the
Bolzano -Weierstrass theorem (usual and generalized) we can suppose
that »i =, ui=pu (v # pu), }im U(x;) = U(w), llm UHa;) = U*(w), lim P;
—>00 -0 00
= P. It is easy to see that P is connected and U’'(x) ¢ P, U"(x) ¢ P. On
the other hand, U'(xz), U(z)« Z contrary to the supposition.
Definition 5.3, For the closed Z C §,-, possessing the property (U)
the set whose existence is asserted by lemma 5.2 will be denoted by [Z7*.
We shall use the following theorem due to Krasnosjelski [6]:

THEOREM OF KRASNOSIELSKL Let U denote a continuous mapping
of the sphere 8, into dtself such that U, U% ..., UP™" have no fized points
but O% = identity. Let the family of closed sets ¥y, Fy, ..., F, cover 8,_; and
let each set By (1=1,2,...,7) possess the property (U). Then r = n.

In the special case p =2, U = identity we obtain the well-known
theorem of K. Borsuk [3].

Definition 5.4. Let n be even. The isometry U,: E,->E, given
by the orthogonal matrix

‘icos:p, —sing
sing, cosp | 0

€osp, —sing
sing, cose
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is said to be a parataciic rolation (see [12], p. 91, 92). In [12] it is proved
that every plane determined by the vectors &, Uy(x) (¢ # 0) is mapped
by U, onto itself. In this manner the mapping U, (p % 0) considered
on the sphere Sn_, divides it into the family of disjoint great circles.

Let » be even and let ¢ = 2x. The paratactic rotation Usnps will
be denoted simply by U. Then U and U? have no fixed points and
1 = identity. We shall write U(z) = #', U%(x) = #". Let the continuous
mapping f be determined by the upper semicontinuous decomposition
consisting of all triads (&, ', 2").

TuporREM 2. If the mapping | defined above is a superposition of 2
simple mappings, then @ = n~+1.

Proof. Let f,, /sy ..., /- denote those simple mappings. By lemma 3.2
there exists a sequence W' (I=1,2,..,2) of upper semicontinuous
decompositions of 8,_; satisfying conditions 1 and 2 of that lemma.

We shall define the sequence of sets G;C 8, (1=1,2,..,2) as
follows:

we @ if and only if there exist m <1 and W ¢ W™ such that {z'} u
u {@} =W and ! is the least of numbers m for which if x ¢ W ¢ 1™
then W = 3.

Roughly speaking &; consists of those points « for which x’ and z”
are matched by a mapping f,, (m < 1) while f; subjeins x to the matched
(out still different from =z) pair 2’ = »".

Let Hi=GuU(G) v U G) (1=1,2,..,2). The sets H, defined
above are subject to the following conditions:

1. H, =0,

2. H; possesses the property (U) for 1=1,2,..,2,

3. LWJHI (1 <m < %) is closed in §,i,
=1

4. zol Hy= 8.

Property 1 is immediate. To prove 2 and 3 let us observe that if z;¢ Gy

(1<1<e; 1=1,2,..) and lims = x,, then w,e@, where 1<<g<1

Hence follows property 3. We shall state that for each I (1 <1< 2) the

sets Gq, U(@) and UG have disjoint closures. Indeed, 1_f ; € Gy for

i=1,2,.., limw =2, e U(G), then also z,e G, for certain 1 <g< L
100

Using the definition of the decomposition W* we infer that g =1 and
U(G) ~ @ % 0 contrary to the definition of . Hence we immediately
obtain property 2. Property 4 is obvious. :

We shall now define a sequence F; (1= 1,2, ..,2) of sets on 8,
satisfying the following conditions:
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1. Fy is clogsed in Sp— (I =1,2,..,2),
9. Fy possesses the property (U) for I =1,2,...,2,

m
3. (JH,CInt(()Fy) (1< m<2).
=1 =1
It will be defined by induction. We put F, = H; = 0. Of course
properties 1-3 are satistied. Let us suppose that the sets ¥, F,, ..., F,.
(0 < m <2 on 8,—, satisfy properties 1, 2 and 3. Let us consider the

m+1

m mn P

set @ = Hp.:— | JF. By the closeness of zU H; we have H, ,C|JH,.
=1 ’ L = =1

Using the set-theoretical rule: A— B C A—Int(B) we infer that

m e m m+1 m
(1) @ =Hpu— IUF,CHMH—I_nt(ZUIFl) CIUIHZ—Int(ZUIF,) .
=1 = = =

Since by assumption

m m
(2) zU H,C Int(HFl) s
=1 =
we have
m1 m m+-1 m
(3) [U H,—Int(pllﬂl) CzLJ1Hl- HHZCH"H-I .
=1 = = =

¥rom (1) and (3) we obtain ® C H,,y. In this manner we have

concluded that @ is contained in a set possessing property (U). Since

Hyy1, Fy, By, ..., By satisfy the first condition of property (U), we have

U(®) = @. Hence & also possesses property (U). Now let Fp.q =[O

By its definition #y,,; is (lzlosed and possesses property (U). In order to
1

+ +

prove that ) H; CInt( | )7y let us observe that
I==1 I=1

€] S CInt(Frps).

Using the set-theoretical rule: 4—TInt(B)C A—B and the definition
of @ we have

{5) Hypy—Int{

Cs

F)CO.

1

T

Combining (4) with (5) we obtain
m
(6) Hm+1—1nt(lU Fy) CInb(Fopyy) .
=1
Adding inclusions (2) and (6) we have

m m m m+1
() U Heo By =Tt 1) CInt(() £) 0 Tt (P, ) C It Ur).
— = o~ =1

. . m+1 M1
In view of (2) we obtain from (7) | H, C Int( UF;), which completes
=3 =1

the construction of the sets ¥, (I=1,2,..,2). By property 3 of the
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sets F; and by property 4 of the sets H; we infer that 8, = CJF;.
151
Tsing the theorem of Kragnosjelski we obtain 2> n. Since F, = 0, we

have # > n+1. Thus the proof of the theorem is finished.
Definition 5.5. The Hilbert space § is a family of real sequences

m e .
5= (@, Ty ) Such that 'z} < co with distance ¢(z,y) =]/Z(mi—yi)2
=1

i=1
where @ = (By, Tay -}y Y = Y1y Yoy --)-
Example 1. Let p,=(1/2,0,0,..) for v=1,2,.. Let Z, =
& = (@, Tyy o) € H| & = 0 for i > 2v; olw, p,) = 1/27%). Tt can easily be
geen that Z, is homeomorphie with the sphere §._,. Let f, denote the
continnous mapping defined on 8,_; considered in theorem 2. Let
7= @Z,upo where p, = (0,0,..). In this compact set we define

p=1

3 continuous mapping f as follows: fiZ,=F (»=1,2,..); f{po) = Po-

If f were a superposition of z simple mappings, then for » = }(2—1)
the mapping f would be a superposition od 2 simple mappings where
2 < 2v+1, contrary to theorem 2.

Definition 5.6. The Hilbert elipsoid € is a subset of the space H

. L R
consisting of those points @ = (2, #a,...) for which ;‘1 2 ki +ak) < L.
Example 2. Let U denote the isometry of $ onto itself given by

the infinite matrix
cosp, —8ing
sing, cosg

0

cosg, —sing
sing, cosg
0

Tt can easily be proved that U(€) = € and U® = identity. We define
in € a decomposition consisting of all triads (w, Ul(x), Uﬁ(m)). and the
point (0, 0,...). In the finite dimensional case we have defmed. such
a decomposition only on the surface of the sphere but here it is not
compact. Let us take a convergent sequence (wi, Ulz;), U“l(w?-)) of setos
of our decomposition. Since € is compact, we can assume that ];ljl;omi = g9,
tim U (z;) = #, lim U*;) = @2 By the continuity of U we obtain 2! = U (2°),
f->00 i—00

T

P U%a®) = U(at), which proves that our decomposition is upper semi-
continuous. The mapping f determined by it is not a finite superpolsmon
of simple mappings because crossing & with the hyperplane of SU#IGIGILﬂy
large dimension (and making an affine mapping) we should obtain a con-
tradiction of theorem 2.

where ¢ = 37.



Artur


228 K. Sieklueki

References

1] P. Alexandroff, Uber stetige Abbildungen kompakier Rdume, Proe. Acad.

Amsterdam 28 (1925), p. 997.

12] — Uber stetige Abbildungen kompakter Edume, Math. Ann. 96 (1926), p. 555.
3] K. Borsuk, Drei Sdtze diber die n-dimensionale euklidische Sphdre, Fund.

Math. 20 (1933), p. 177-190.

{4] K. Borsuk and R. Molski, On a class of continuous mappings, Fund. Math,

45 (1957), p. 84.98.

(5] W. Hurewics, Uber stetige Bilder wvon Punktmengen, Proc. Acad. Amster-

dam 30 (1927), p. 164.

[6] M. A. KpaCHOCeTBCKHN, O CNeyUassHbT NOKPLIMUAT KONEULHOMEPHOT chepm,
TAH 103, No 6 (1955) (in Russan).

[7] C. Kuratowski, Topologie I, Warszawa-Wroclaw 1948.

[8] — Topologie 11, Warszawa 1952.

[91 K. Kuratowski and A. Mostowski, Teoria mnogoéci, Warszawa-Wro-
claw 1952.

[10] K. Menger, U'ber wmfassendste n-dimensionale Mengen, Proe. Acad. Amster-
dam 29 (1926), p. 1125,

[11] G. Nobeling, Uber eine n-dimensionale Universalmenge tm RB,.., Math,
Ann. 104 (1930).

[12] B. A. Posendensy, Heesxaudoss. zeomempuu, MockBa (in Russian).

Regu par la Rédaction le 7. 4. 1959

POLSEKA AKADEMIA NAUK

FUNDAMENTA

MATHEMATICAE

ZALOZYCIELE:

ZYGMUNT JANISZEWSKI, STEFAN MAZURKIEWICZ
i WACLAW SIERPINSKI

KOMITET REDAKCYINTY:

WACLAW SIERPINSKI, REDAKTOR HONOROWTY.
KAZIMIERZ KURATOWSXI REDAKTOR
KAROL BORSTUK, ZASTEPCA REDAKTORK,
BRONISLAW KNASTER, EDWARD MARCZEWSKI,
STANISLAW MAZUR, ANDRZE] MOSTOWSKI

XLVIIL 3

WARSZAWA 1960
PANSTWOWE WYDAWNICTWO NAUKOWE


Artur




