

On superpositions of simple mappings

by

K. Sieklucki (Warszawa)

1. Introduction. K. Borsuk and R. Molski considered in [4] a class of continuous mappings called *simple mappings*. A continuous mapping f of a space X onto the space Y is of order $\leq k$ if for every point $y \in Y$ the set $f^{-1}(y)$ contains at most k points (cf. [8], p. 52). The mappings of order ≤ 2 are said to be *simple mappings*. In [4] the authors raise the following question (p. 92, No 4): does there exist a continuous mapping of a finite order which is not a superposition of a finite number of simple mappings?

The purpose of this paper is to prove that every continuous mapping f of a finite order defined on the compact space X of a finite dimension is a superposition of a finite number of simple mappings. On the other hand, we shall construct a compact infinite dimensional space X and a continuous mapping of a finite order f defined on X which will not be a superposition of a finite number of simple mappings.

2. Auxiliary definitions and notations.

Definition 2.1. A collection of subsets of a space X constitutes a decomposition \mathfrak{W} of X if the sets of \mathfrak{W} are disjoint and non-empty, and if they fill up X. The decomposition \mathfrak{W} is said to be upper semicontinuous if for every closed subset A of X the union of all sets of \mathfrak{W} intersecting A is closed in X (see [8], p. 42).

P. Alexandroff ([1] and [2]; cf. also [8], p. 42) has proved the following theorem: In order that a decomposition $\mathfrak B$ of a compact space X be upper semicontinuous, it is sufficient and necessary that there exist a space Y and a continuous mapping f of X onto Y such that the sets belonging to $\mathfrak B$ are the same as the sets $f^{-1}(y)$ where $y \in Y$.

Let $\{A_i\}$ (i=1,2,...) denote a sequence of subsets of the space X and let $\underset{i\to\infty}{\lim}A_i$ be defined as in [7], p. 241-245. We shall use the following important properties of the notion of this limit:

(i) The generalized Bolzano-Weierstrass theorem. If the space is separable, then from every sequence of its subsets we can choose a convergent subsequence (may be to the empty set) (see [7], p. 246).

(ii) If the space X is compact and sets A, $A_i \subset X$ (i=1,2,...) are non-empty and closed, then the condition $A = \underset{i \to \infty}{\text{Lim}} A_i$ is equivalent to $\underset{i \to \infty}{\text{lim}} \text{dist}(A,A_i) = 0$, where

$$\operatorname{dist}(A,B) = \max \left(\sup_{a \in A} \inf_{b \in B} \varrho(a,b), \sup_{b \in B} \inf_{a \in A} \varrho(a,b) \right)$$

([8], p. 21).

(iii) In order that the decomposition $\mathfrak W$ of the compact space X be upper semicontinuous, it is necessary and sufficient that for every convergent sequence $\{W_i\}$, $W_i \in \mathfrak W$ (i=1,2,...), there exists a set $W_0 \in \mathfrak W$ satisfying $\lim_{i \to \infty} W_i \subset W_0$.

Definition 2.2. Let $\mathfrak{U} = \{U_{\mathbf{x}}\}$ and $\mathfrak{B} = \{V_{\lambda}\}$ be two decompositions of the space X. The decomposition of X consisting of all non-empty intersections $U_{\mathbf{x}} \cap V_{\lambda}$ will be denoted by $\mathfrak{U} \cap \mathfrak{B}$.

LEMMA 2.3. If the decompositions $\mathfrak{U} = \{U_x\}$ and $\mathfrak{B} = \{V_\lambda\}$ of the compact space X are upper semicontinuous, then the decomposition $\mathfrak{B} = \mathfrak{U} \cap \mathfrak{B}$ is also upper semicontinuous.

Proof. Let $\{W_{\tau_i}\}$ be a convergent sequence of sets belonging to \mathfrak{B} . For every $i=1,2,\ldots$ there exist $U_{\varkappa_i}\in\mathfrak{U}$ and $V_{\lambda_i}\in\mathfrak{B}$ such that $W_{\tau_i}=U_{\varkappa_i}\cap V_{\lambda_i}$. By property (i) we can assume that the sequence U_{\varkappa_i} converges to U_0' and V_{λ_i} converges to V_0' . Using property (iii) we can find $U_0'\subset U_0\in\mathfrak{U},\ V_0'\subset V_0\in\mathfrak{B}$. Since X is compact and since $U_{\varkappa_i}\cap V_{\lambda_i}\neq 0$ for $i=1,2,\ldots$, we obtain $U_0\cap V_0\neq 0$. Then there exists $W_0=U_0\cap V_0\in\mathfrak{B}$ and $\lim_{i\to\infty}W_{\tau_i}\subset W_0$. By property (iii) this proves the lemma.

Definition 2.4. Let $\mathfrak U$ and $\mathfrak B$ be upper semicontinuous decompositions of X and let m be a natural number. If for each set of $\mathfrak U$ there exists a set of $\mathfrak B$ containing it and for each set of $\mathfrak B$ there exist at most m sets of $\mathfrak U$ contained in it, then we shall write $\mathfrak U \subset \mathfrak B$.

3. Expressing the problem in terms of semicontinuous decompositions. We now prove

LEMMA 3.1. Let us consider the mappings: f_1 of $X = X_1$ onto X_2 , f_2 of X_2 onto X_3 , ..., f_r of X_r onto $X_{r+1} = Y$, where X is a compact space and let $\varphi_l = f_1 \circ f_{l-1} \circ ... \circ f_2 \circ f_1$ $(l \leq r)$. Then in order that all the functions $f_1, f_2, ..., f_r$ be continuous it is necessary and sufficient that all the functions $\varphi_1, \varphi_2, ..., \varphi_r$ be continuous.

Proof. It is obvious that the condition is necessary. To prove its sufficiency suppose that $\varphi_1, \varphi_2, ..., \varphi_r$ are continuous and f_{l_0} is the first non-continuous function in the sequence $f_1, f_2, ..., f_r$. Of course $l_0 > 1$.

Then there exists a sequence $\{x_i\}$, $x_i \in X_{l_0}$, $\lim_{i \to \infty} x_i = x_0 \in X_{l_0}$, such that $\lim_{i \to \infty} f_{l_0}(x_i)$, if it exists, differs from $f_{l_0}(x_0)$. Since X_{l_0+1} , as the continuous image of a compact space, is also compact, we can assume that

$$(1) x_i \in X_{l_0}, \quad \lim_{i \to \infty} x_i = x_0,$$

and there exists $\lim_{i\to\infty} f_{l_0}(x_i) \neq f_{l_0}(x_0)$.

Let ξ_i denote an arbitrary point of the (non-empty) set $\varphi_{l_0-1}^{-1}(x_i)\subset X$. Then

$$\varphi_{l_0-1}(\xi_i) = x_i.$$

Let us choose a convergent subsequence

$$\lim_{i\to\infty}\xi_{i_i}=\xi_0.$$

With regard to the continuity of φ_{l_0-1} and from (2) we obtain $\varphi_{l_0-1}(\xi_0) = \lim_{i \to \infty} \varphi_{l_0-1}(\xi_{j_i}) = \lim_{i \to \infty} x_{j_i}$. Hence by (1) we obtain

$$\varphi_{l_0-1}(\xi_0) = x_0.$$

Since $\varphi_{l_0} = f_{l_0} \circ \varphi_{l_0-1}$, it follows from (2) that

(5)
$$\lim_{i \to \infty} \varphi_{l_0}(\xi_{j_i}) = \lim_{i \to \infty} f_{l_0}(x_{j_i})$$

and from (4)

(6)
$$\varphi_{l_0}(\xi_0) = f_{l_0}(x_0).$$

Combining (5), (6) and (3) in view of the continuity of φ_{l_0} we obtain $\lim_{t\to\infty} f_{l_0}(x_{j_i}) = f_{l_0}(x_0)$ contrary to (1). This proves the sufficiency.

LEMMA 3.2. In order that the continuous mapping f of order $\leqslant k$ defined on the compact X and determining the upper semicontinuous decomposition $\mathfrak B$ be a superposition of r mappings of order $\leqslant m$ $(2 \leqslant m \leqslant k)$ it is necessary and sufficient that there exists a sequence $\mathfrak B^l$ (l=0,1,...,r) of upper semicontinuous decompositions of X such that

1°
$$\mathfrak{W}^{0}$$
 consists of the points of X , 2° $\mathfrak{W}^{0} \subseteq \mathfrak{W}^{1} \subseteq ... \subseteq \mathfrak{W}^{r-1} \subseteq \mathfrak{W}^{r} = \mathfrak{W}$.

Proof. To prove necessity let us suppose that $f = f_r \circ f_{r-1} \circ \ldots \circ f_2 \circ f_1$ where f_l $(l=1,2,\ldots,r)$ is the continuous mapping of order $\leqslant m$ defined on X_l onto X_{l+1} . The functions $\varphi_0 = \text{identity on } X = X_1, \, \varphi_l = f_l \circ f_{l-1} \circ \ldots \circ f_2 \circ f_1 \quad (l=1,2,\ldots,r)$ are obviously continuous. Denoting by \mathfrak{W}^l the upper semicontinuous decomposition of X corresponding to φ_l $(l=0,1,\ldots,r)$ we obtain the sequence of upper semicontinuous decompositions satisfying 1° and 2° . To prove sufficiency let us suppose

that the sequence \mathfrak{W}^l (l=0,1,...,r) of upper semicontinuous decompositions of X satisfies conditions 1^o and 2^o . By Alexandroff's theorem there exists a sequence of continuous functions φ_l mapping X_l onto X_{l+1} (l=0,1,...,r) and such that $\varphi_0=$ identity on $X=X_l$. Condition 2^o implies that for every l=1,2,...,r there exists a function f_l of X_l onto X_{l+1} such that $\varphi_l=f_l\circ\varphi_{l-1}$. In view of lemma 3.1 the functions $f_1,f_2,...,f_r$ are continuous. By condition 2^o they are also of order $\leqslant m$. Since $f=\varphi_r=f_r\circ f_{r-1}\circ...\circ f_2\circ f_1$, the proof is complete.

4. Main theorem. We have the following

Definition 4.1. Let $\mathfrak{W} = \{W_{\tau}\}$ denote an upper semicontinuous decomposition of the space X. Moreover let us suppose that in X there exists a binary relation \prec . The relation \prec is said to be *closed relative* to \mathfrak{W} if

- $1^{\circ} X$ is partially ordered by \prec . This means that
- (a) If $x^1 \prec x^2$, then not $x^2 \prec x^1$;
- (b) if $x^1 \prec x^2$ and $x^2 \prec x^3$, then $x^1 \prec x^3$.
- 2° Each set $W_{\tau} \in \mathfrak{W}$ is completely ordered by \prec . This means that (besides 1°) for each x^1 , $x^2 \in W_{\tau}$ such that $x^1 \neq x^2$ either $x^1 \prec x^2$ or $x^2 \prec x^1$ holds.
- 3° Let $\{W_{\tau_i}\}$ be an arbitrary convergent sequence of sets of \mathfrak{W} . By property (iii) (p. 218) there exists $W_{\tau_0} \in \mathfrak{W}$ such that $\lim_{i \to \infty} W_{\tau_i} \subset W_{\tau_0}$. We require that if $x_i^1, x_i^2 \in W_{\tau_i}, x_i^1 \prec x_i^2$ for $i = 1, 2, ..., \lim_{i \to \infty} x_i^1 = x_0^1 \in W_{\tau_0}$, $\lim_{i \to \infty} x_i^1 = x_0^2 \in W_{\tau_0}$ then either $x_0^1 \prec x_0^2$ or $x_0^1 = x_0^2$.

Definition 4.2. Let $\mathfrak{B} = \{W_{\tau}\}$ be an upper semicontinuous decomposition of X and let \prec be a relation closed relative to \mathfrak{B} . Writing $H(W_{\tau}) = W_{\tau} \times W_{\tau}$ we can introduce in $\bigcup_{\tau} H(W_{\tau})$ a topology induced by the imbedding in the Cartesian product $X \times X$ and a relation < defined by the method of first differences (see for example [9], p. 159).

Lemma 4.3. Let there exist in the compact metric space X an upper semicontinuous decomposition $\mathfrak{W} = \{W_{\tau}\}$ and a relation \prec closed relative to \mathfrak{W} . Let us suppose that the convergent sequence $\{W_{\tau_i}\}$ satisfies

- 1. $\overline{W_{\tau_i}} = p \ (i = 1, 2, ...)$ where p is a natural number;
- 2. there exists $\delta > 0$ such that if $W_{\tau_i} = (x_i^1, x_i^2, ..., x_i^p)$, then, for every i, $\min_{1 \le r < u \le n} \varrho(x_i^r, x_i^u) \ge \delta$ holds.

Then

1.
$$\overline{\lim_{i\to\infty}W_{\tau_i}}=p$$
.

2. For every two sequences $\{\Pi_{i}^{1}\}, \{\Pi_{i}^{2}\}$ such that $\Pi_{i}^{1}, \Pi_{i}^{2} \in \Pi(W_{\tau_{i}}), \Pi_{i}^{1} < \Pi_{i}^{2} \in \Pi(W_{\tau_{0}}), (\nu = 1, 2), we have the relation <math>\Pi_{0}^{1} < \Pi_{0}^{2}$.

Proof. By property (ii), p. 218, we conclude that $\lim_{i\to\infty} \operatorname{dist} (\lim_{i\to\infty} W_0, W_{\tau_i})$ = 0. Hence in each sphere $K(x,\varepsilon)$, where $x\in \lim_{i\to\infty} W_{\tau_i}$, for almost all i there exist $x_i\in W_{\tau_i}$. So $\overline{\lim_{i\to\infty} W_{\tau_i}} < \overline{W_{\tau_i}} = p$ holds. If $\overline{\lim_{i\to\infty} W_{\tau_i}} < \overline{W_{\tau_i}}$, then for almost all i at least two points $x_i^1, x_i^2\in W_{\tau_i}$ would belong to a sphere $K(x,\varepsilon)$ where $x\in \lim_{i\to\infty} W_{\tau_i}$. Hence we should have $\varrho(x_i^1,x_i^2)<\varepsilon$ contrary to the suppositions. By the above remarks and in view of our suppositions we can assume that $W_{\tau_i}=(x_i^1,x_i^2,...,x_i^p)$ for i=0,1,... where $\lim_{i\to\infty} x_i^\nu=x_0^\nu$ for $\nu=1,2,...,p$.

By assumption 2 we infer that for almost all i the pair Π_i^1 can be written as $\langle x_i^{r_1}, x_i^{r_1} \rangle$ where r_1 , μ_1 do not depend on i. Similarly $\Pi_i^2 = \langle x_i^{r_1}, x_i^{r_2} \rangle$ where r_2 , μ_2 do not depend on i. Then $\Pi_0^1 = \langle x_0^{r_1}, x_0^{r_1} \rangle$, $\Pi_0^2 = \langle x_0^{r_1}, x_0^{r_2} \rangle$. In view of assumption 2 we conclude that either $x_i^{r_1} \to x_i^{r_2}$ or $x_i^{r_1} = x_i^{r_2}$ and $x_i^{r_1} \to x_i^{r_2}$ for i = 1, 2, ... In the first case by the closeness of \prec we have $x_0^{r_1} \to x_0^{r_2}$. In the second case $r_1 = r_2$, $\mu_1 \neq \mu_2$ and we have $x_0^{r_1} = x_0^{r_2}$, $x_0^{r_1} \to x_0^{r_2}$, which proves that $\Pi_0^1 < \Pi_0^2$.

LEMMA 4.4. If in the metric compact space X there exist an upper semicontinuous decomposition $\mathfrak{B}=\{W_{\tau}\}$ such that $\overline{W}_{\tau}\leqslant k$ $(k\geqslant 3)$ and the relation \prec closed relative to \mathfrak{B} , then there exists a finite sequence $\{\mathfrak{B}^l\}$, $l=1,2,...,r,r+1,\ r=k(k+1)$, of upper semicontinuous decompositions of X satisfying:

1° The sets of \mathfrak{W}^0 are the same as points of X.

$$2^0 \ \mathfrak{W}^0 \underset{k-1}{\subset} \mathfrak{W}^1 \underset{k-1}{\subset} \dots \underset{k-1}{\subset} \mathfrak{W}^r \underset{k-1}{\subset} \mathfrak{W}^{r+1} = \mathfrak{W}.$$

Proof. A pair $\Pi^0 = \langle x^1, x^2 \rangle \in \Pi(W_\tau)$ is said to be a minimal pair if $x^1 \prec x^2$ and the diameter of Π^0 is equal to the minimum of diameters (different from zero) of all pairs $\Pi \in \Pi(W_\tau)$. We shall say that a set $W \subset W_\tau$ is minimally connected if for every $x, y \in W$ there exists a sequence $x_i \in W_\tau$ (i=1,2,...,t) such that $x=x_1, y=x_t$ and the pair $\langle x_i, x_{t+1} \rangle$ is the minimal one for i=1,2,...,t-1. We shall say that a set $W \subset W_\tau$ is the minimal component of W_τ if W is minimally connected and there is no minimally connected set $W \neq W' \subset W_\tau$. In each W_τ there exists at least one minimal component and they are all disjoint.

Let $\mathfrak{V} \subset \mathfrak{W}$ denote the family of sets of \mathfrak{W} consisting of exactly k points. Let \mathfrak{V}_r denote the subfamily of \mathfrak{V} consisting of those sets which possesse exactly ν minimal pairs.

icm

We shall define the sequence $\{\mathfrak{W}^l\}$ $(l=1,2,...,\ r=k(k+1))$ of decompositions of X as follows:

- A. For an odd l = 2a + 1 the sets of \mathfrak{W}^{l} are
- (a) the first (in the sense of definition 4.2) minimal pairs in the minimal components of sets of the family $\mathfrak{D}_{[k]-a}$,
- (b) the minimal components of sets of the families $\mathfrak{V}_{\binom{k}{2}-\beta}$ where $0 \leqslant \beta < \alpha$,
 - (c) the remaining points of X.
 - B. For an even l=2a the sets of \mathfrak{W}^l are
- (a) the minimal components of sets of the families $\mathfrak{D}_{\binom{k}{2}-\beta}$ where $0 \le \beta < \alpha$,
 - (b) the remaining points of X.

To prove the upper semicontinuity of this decomposition let us take an arbitrary sequence of its sets $\{W_i\}$ convergent to W. By property (i), p. 217, we can suppose that $W_i \subset V_i$ (i=1,2,...) where $\{V_i\}$ is a sequence of sets of the family $\mathfrak B$ convergent to V. Moreover, choosing again a suitable subsequence we can suppose that W_i are given (for i=1,2,...) by the same definition. In cases A (c) and B (b) the set W contains at most one point and then it is contained in a set of the family $\mathfrak W^i$.

Let us suppose that W_i (i=1,2,...) are defined by A (a). If W contains at most one point it is contained in a set of the family \mathfrak{W}^l . Let us suppose that W contains two different points. We shall prove that $\overline{V} = k$ (it means that $V \in \mathfrak{B}$). Indeed, in the opposite case in almost every V_i there would exist two arbitrarily near points. Then almost every W_i , being the minimal pair, would have an arbitrarily small diameter, contrary to $\overline{W} = 2$. We observe that $V \in \mathfrak{B}_{\binom{k}{2}-\beta}$ where $0 \leq \beta \leq \alpha$. If $V \in \mathfrak{B}_{\binom{k}{2}-\beta}$ where $0 \leq \beta < \alpha$, then by $W \subset V$ and by the point A (b) of our construction, the set W is contained in a set of the family \mathfrak{W}^l . If $V \in \mathfrak{B}_{\binom{k}{2}-\alpha}$ then the minimal components of V are convergent to the corresponding minimal components of V, and in view of lemma 4.3 the same holds for their first minimal pairs. Hence W is a set of thefamily \mathfrak{W}_l .

The cases \underline{A} (b) and \underline{B} (a) can be considered together. We suppose as above that $\overline{W} \geqslant 2$. Then we shall prove that $\overline{V} = k$ (it means that $V \in \mathfrak{B}$). Indeed, in the opposite case in almost every V_i there would exist two arbitrarily near points. Then in almost every W_i each minimal pair would have an arbitrarily small diameter. By the definition of the minimal component we conclude that almost every W_i would have an arbitrarily small diameter, contrary to $\overline{W} \geqslant 2$. We observe that $V \in \mathfrak{D}_{\binom{k}{2}-\beta}$ where

 $0 \le \beta \le \alpha$. If $V \in \mathfrak{B}_{\binom{k}{2}-\beta}$ where $0 \le \beta < \alpha$, then by $W \subset V$ and by the minimal connexity, the set W is contained in a set of the family \mathfrak{W}^l . If $V \in \mathfrak{B}_{\binom{k}{2}-\alpha}$ then the minimal components of V_i are convergent to the corresponding minimal components of V and the set W belongs to the family \mathfrak{W}^l .

Defining \mathfrak{W}^0 as the upper semicontinuous decomposition consisting of the points of X and putting $\mathfrak{W}^{r+1} = \mathfrak{W}$ we easily verify that

$$\mathfrak{W}^0 \underset{k-1}{\subset} \mathfrak{W}^1 \underset{k-1}{\subset} \dots \underset{k-1}{\subset} \mathfrak{W}^{r-1} \underset{k-1}{\subset} \mathfrak{W}^r \underset{k-1}{\subset} \mathfrak{W}^{r+1} = \mathfrak{W} .$$

Thus the proof is finished.

LEMMA 4.5. Every continuous mapping f of order $\leqslant k$ $(k \geqslant 3)$ defined on a compact n-dimensional space X is a superposition of s(k, n) = (2n+1)k(k+1) mappings of order $\leqslant k-1$.

Proof. By the theorem of Menger-Nöbeling ([10], [11]) we can suppose that X is a subset of an m-dimensional Euclidean space, where m=2n+1. Let \mathfrak{E}^{μ} ($0\leqslant \mu\leqslant m$) denote the decomposition of X consisting of the intersections of sets $f^{-1}(p)$ with the hyperplanes given by the system of equations: $x_{\mu+1}=c_{\mu+1},\,x_{\mu+2}=c_{\mu+2},\,...,\,x_m=c_m$. In view of lemma 2.3 the decomposition \mathfrak{E}^{μ} is upper semicontinuous for $\mu=0,\,...,\,m$. Evidently $\mathfrak{E}^0\subset \mathfrak{E}^1\subset ...\subset \mathfrak{E}^m$. Using lemma 3.2 we conclude that there exists a sequence of spaces $X=X_1,\,X_2,\,...,\,X_{m+1}=f(X)$ and continuous mappings of order $\leqslant k\colon f_0=$ identity on $X_1;\,f_i$ of X_i onto X_{i+1} ($i=1,2,...,\,s(k,n)$) such that the mapping $f_1\circ f_{l-1}\circ ...\circ f_0$ (l=0,1,...,m) determines the decomposition \mathfrak{E}^l of X.

In each of the spaces X_j (j=1,2,...,m+1) we define the relation \prec_j as follows: $p' \prec_j p''$ if and only if the j-th coordinate of the set $(f_{j-1} \circ ... \circ f_0)^{-1}(p')$ is less than the j-th coordinate of the set $(f_{j-1} \circ ... \circ f_0)^{-1}(p'')$. It can easily be verified that the relation $\prec_j (j=1,2,...,m+1)$ is closed relative to the decomposition determined by f_{j-1} . By lemma 4.4 we conclude that the mapping f_i (i=0,1,...,m) is a superposition of r=k(k+1) mappings of order $\leqslant k$. Hence f is a superposition of s(k,n)=(2n+1)(k)(k+1) mappings of order $\leqslant k-1$.

Theorem 1. Every continuous mapping f of order $\leqslant k$ $(k \geqslant 2)$ defined on a compact n-dimensional space X is a finite superposition of z(k, n) simple mappings (1).

Proof. By the lemma 4.5, f is a superposition of s(k, n) mappings $f_{1,k-1}, \ldots, f_{s,k-1}$ of order $\leq k-1$. The theorem of Hurewicz [5] states that

$$z(k, n) \le \prod_{i=1}^{k} \left\{ 2\left[n + (i-1)k - \frac{i(i-1)}{2}\right] + 1 \right\}.$$

⁽¹⁾ It can easily be verified that the following inequality holds:

for every continuous mapping h of order $\leq t$ defined on the compact Y we have $\dim h(Y) \leq \dim(Y) + t - 1$. Hence the space $f_{i,k-1}, \ldots, f_{1,k-1}(X)$ is of finite dimension for $i = 1, 2, \ldots, s(k, n)$.

In this manner we can repeat our reasoning k-2 times, which completes the proof.

5. Counter-example. Let U denote a continuous mapping of the sphere S_{n-1} onto itself such that U, U^2 , ..., U^{p-1} have no fixed points but $U^p = \text{identity}$.

Definition 5.1. We shall say that the set $Z \subset S_{n-1}$ has the property (U) if 1° U(Z) = Z and 2° in every component of Z there is no pair of points of the form x, U'(x) where v = 1, 2, ..., p-1.

LEMMA 5.2. Besides the aforesaid suppositions let U be an isometry. If the closed set $Z \subset S_{n-1}$ has the property (U), then there exists an open set Y such that $Z \subset Y$ and \overline{Y} has the property (U).

Proof. In the contrary case let $Y_i = \{x \in S_{n-1} | \operatorname{dist}(x, Z) < 1/i\}$ where $\operatorname{dist}(x, Z) = \inf_{z \in Z} \varrho(x, z)$. Then $U(Y_i) = Y_i$ for $i = 1, 2, \ldots$ Moreover for every i there exist points $U^{\imath_i}(x_i)$, $U^{\mu_i}(x_i)$ $(0 \le \imath_i < \mu_i \le p-1)$ and a connected set P_i such that $U^{\imath_i}(x_i)$, $U^{\mu_i}(x_i) \in P_i \subset Y$. Using the Bolzano-Weierstrass theorem (usual and generalized) we can suppose that $v^i = v$, $\mu^i = \mu$ $(v \ne \mu)$, $\lim_{i \to \infty} U^r(x_i) = U^r(x)$, $\lim_{i \to \infty} U^\mu(x_i) = U^\mu(x)$, $\lim_{i \to \infty} P_i$ = P. It is easy to see that P is connected and $U^r(x) \in P$, $U^\mu(x) \in P$. On the other hand, $U^r(x)$, $U^\mu(x) \in Z$ contrary to the supposition.

Definition 5.3. For the closed $Z \subset S_{n-1}$ possessing the property (U) the set whose existence is asserted by lemma 5.2 will be denoted by $[Z]^*$. We shall use the following theorem due to Krasnosjelski [6]:

THEOREM OF KRASNOSJELSKI. Let U denote a continuous mapping of the sphere S_{n-1} into itself such that $U, U^2, ..., U^{p-1}$ have no fixed points but U^p = identity. Let the family of closed sets $F_1, F_2, ..., F_r$ cover S_{n-1} and let each set F_l (l=1, 2, ..., r) possess the property (U). Then $r \ge n$.

In the special case p=2, U= identity we obtain the well-known theorem of K. Borsuk [3].

Definition 5.4. Let n be even. The isometry $U_{\varphi} \colon\thinspace E_n \to E_n$ given by the orthogonal matrix

$$\begin{bmatrix} \cos\varphi, & -\sin\varphi \\ \sin\varphi, & \cos\varphi \end{bmatrix} = 0$$

$$0$$

$$\vdots$$

$$\cos\varphi, & -\sin\varphi \\ \sin\varphi, & \cos\varphi \end{bmatrix}$$

is said to be a paratactic rotation (see [12], p. 91, 92). In [12] it is proved that every plane determined by the vectors x, $U_{\varphi}(x)$ ($\varphi \neq 0$) is mapped by U_{φ} onto itself. In this manner the mapping U_{φ} ($\varphi \neq 0$) considered on the sphere S_{n-1} divides it into the family of disjoint great circles.

Let n be even and let $\varphi = \frac{2}{3}\pi$. The paratactic rotation $U_{2\pi/3}$ will be denoted simply by U. Then U and U^2 have no fixed points and U^3 = identity. We shall write U(x) = x', $U^2(x) = x''$. Let the continuous mapping f be determined by the upper semicontinuous decomposition consisting of all triads (x, x', x'').

THEOREM 2. If the mapping f defined above is a superposition of z simple mappings, then $z \ge n+1$.

Proof. Let f_1, f_2, \ldots, f_z denote those simple mappings. By lemma 3.2 there exists a sequence \mathfrak{W}^l $(l=1,2,\ldots,z)$ of upper semicontinuous decompositions of S_{n-1} satisfying conditions 1 and 2 of that lemma.

We shall define the sequence of sets $G_l \subset S_{n-1}$ $(l=1\,,\,2\,,\,\ldots\,,\,z)$ as follows:

 $x \in G_l$ if and only if there exist m < l and $W \in \mathfrak{M}^m$ such that $\{x'\} \cup \{x''\} = W$ and l is the least of numbers m for which if $x \in W \in \mathfrak{M}^m$ then $\overline{W} = 3$.

Roughly speaking G_l consists of those points x for which x' and x'' are matched by a mapping f_m (m < l) while f_l subjoins x to the matched (but still different from x) pair x' = x''.

Let $H_l = G_l \cup U(G_l) \cup U^2(G_l)$ (l = 1, 2, ..., z). The sets H_l defined above are subject to the following conditions:

- 1. $H_1 = 0$,
- 2. H_l possesses the property (U) for l = 1, 2, ..., z,
- 3. $\bigcup_{l=1}^{m} H_l$ $(1 \leq m \leq z)$ is closed in S_{n-1} ,

4.
$$\bigcup_{l=1}^{z} H_{l} = S_{n-1}$$
.

Property 1 is immediate. To prove 2 and 3 let us observe that if $x_i \in G_l$ $(1 \leqslant l \leqslant z; i = 1, 2, ...)$ and $\lim_{i \to \infty} x_i = x_0$, then $x_0 \in G_q$ where $1 \leqslant q \leqslant l$.

Hence follows property 3. We shall state that for each l $(1 \le l \le z)$ the sets G_l , $U(G_l)$ and $U^2(G_l)$ have disjoint closures. Indeed, if $x_i \in G_l$ for $i = 1, 2, ..., \lim_{i \to \infty} x_i = x_0 \in U(G_l)$, then also $x_0 \in G_q$ for certain $1 \le q \le l$.

Using the definition of the decomposition \mathfrak{W}^q we infer that q=l and $U(G_l) \cap G_l \neq 0$ contrary to the definition of G_l . Hence we immediately obtain property 2. Property 4 is obvious.

We shall now define a sequence F_l (l = 1, 2, ..., z) of sets on S_{n-1} satisfying the following conditions:

- 1. F_l is closed in S_{n-1} (l = 1, 2, ..., z),
- 2. F_l possesses the property (U) for l = 1, 2, ..., z,

3.
$$\bigcup_{l=1}^{m} H_{l} \subset \operatorname{Int}(\bigcup_{l=1}^{m} F_{l}) \ (1 \leqslant m \leqslant z).$$

It will be defined by induction. We put $F_1 = H_1 = 0$. Of course properties 1-3 are satisfied. Let us suppose that the sets $F_1, F_2, ..., F_m$ $(0 \le m \le z)$ on S_{n-1} satisfy properties 1, 2 and 3. Let us consider the set $\Phi = \overline{H_{m+1}} - \bigcup_{l=1}^m F_l$. By the closeness of $\bigcup_{l=1}^m H_l$ we have $\overline{H_{m+1}} \subset \bigcup_{l=1}^{m+1} H_l$. Using the set-theoretical rule: $\overline{A-B} \subset \overline{A} - \operatorname{Int}(B)$ we infer that

$$(1) \Phi = \overline{H_{m+1} - \bigcup_{l=1}^{m} F_l} \subset \overline{H_{m+1}} - \operatorname{Int}(\bigcup_{l=1}^{m} F_l) \subset \bigcup_{l=1}^{m+1} H_l - \operatorname{Int}(\bigcup_{l=1}^{m} F_l).$$

Since by assumption

(2)
$$\bigcup_{l=1}^{m} H_{l} \subset \operatorname{Int}\left(\bigcup_{l=1}^{m} F_{l}\right),$$

we have

(3)
$$\bigcup_{l=1}^{m+1} H_l - \operatorname{Int}(\bigcup_{l=1}^m F_l) \subset \bigcup_{l=1}^{m+1} H_l - \bigcup_{l=1}^m H_l \subset H_{m+1}.$$

From (1) and (3) we obtain $\Phi \subset H_{m+1}$. In this manner we have concluded that Φ is contained in a set possessing property (U). Since $H_{m+1}, F_1, F_2, ..., F_m$ satisfy the first condition of property (U), we have $U(\Phi) = \Phi$. Hence Φ also possesses property (U). Now let $F_{m+1} = [\Phi]^*$. By its definition F_{m+1} is closed and possesses property (U). In order to prove that $\bigcup_{l=1}^{m+1} H_l \subset \operatorname{Int}(\bigcup_{l=1}^{m+1} F_l)$ let us observe that

$$\Phi \subset \operatorname{Int}(F_{m+1}).$$

Using the set-theoretical rule: $A-\operatorname{Int}(B)\subset\overline{A-B}$ and the definition of Φ we have

(5)
$$H_{m+1}-\operatorname{Int}(\bigcup_{l=1}^{m}F_{l})\subset\Phi.$$

Combining (4) with (5) we obtain

(6)
$$H_{m+1} - \operatorname{Int}(\bigcup_{l=1}^{m} F_{l}) \subset \operatorname{Int}(F_{m+1}).$$

Adding inclusions (2) and (6) we have

$$(7) \quad \bigcup_{l=1}^{m} H_l \cup H_{m+1} - \operatorname{Int}(\bigcup_{l=1}^{m} F_l) \subset \operatorname{Int}(\bigcup_{l=1}^{m} F_l) \cup \operatorname{Int}(F_{m+1}) \subset \operatorname{Int}(\bigcup_{l=1}^{m+1} F_l).$$

In view of (2) we obtain from (7) $\bigcup_{l=1}^{m+1} H_l \subset \operatorname{Int}(\bigcup_{l=1}^{m+1} F_l)$, which completes the construction of the sets F_l (l=1,2,...,z). By property 3 of the

have $z \ge n+1$. Thus the proof of the theorem is finished.

Definition 5.5. The Hilbert space \mathfrak{H} is a family of real sequences $x = (x_1, x_2, ...)$ such that $\sum_{i=1}^{m} x_i^2 < \infty$ with distance $\varrho(x, y) = \sqrt{\sum_{i=1}^{\infty} (x_i - y_i)^2}$ where $x = (x_1, x_2, ...), y = (y_1, y_2, ...)$.

Example 1. Let $p_r = (1/2^r, 0, 0, ...)$ for v = 1, 2, ... Let $Z_r = \{x = (x_1, x_2, ...) \in \mathfrak{H} \mid x_i = 0 \text{ for } i > 2^p; \varrho(x, p_r) = 1/2^{r+2}\}$. It can easily be seen that Z_r is homeomorphic with the sphere S_{2r-1} . Let f_r denote the continuous mapping defined on S_{2r-1} considered in theorem 2. Let $Z = \bigcup_{r=1}^{\infty} Z_r \cup p_0$ where $p_0 = (0, 0, ...)$. In this compact set we define a continuous mapping f as follows: $f|Z_r = f_r$ (r = 1, 2, ...); $f(p_0) = p_0$. If f were a superposition of z simple mappings, then for $r = \frac{1}{2}(z-1)$

the mapping f would be a superposition of z simple mappings, then $tor v = \frac{1}{2}(x - 1)$, the mapping f would be a superposition of z simple mappings where $z < 2\nu + 1$, contrary to theorem 2.

Definition 5.6. The Hilbert elipsoid $\mathfrak E$ is a subset of the space $\mathfrak S$ consisting of those points $x=(x_1,x_2,...)$ for which $\sum_{i=1}^{\infty}2^{i-1}(x_{2i-1}^2+x_{2i}^2)\leqslant 1$.

Example 2. Let U denote the isometry of $\mathfrak H$ onto itself given by the infinite matrix

$$\begin{vmatrix} \cos \varphi, & -\sin \varphi \\ \sin \varphi, & \cos \varphi \end{vmatrix} = \begin{vmatrix} \cos \varphi, & -\sin \varphi \\ \sin \varphi, & \cos \varphi \end{vmatrix}.$$
 where $\varphi = \frac{2}{3}\pi$.

It can easily be proved that $U(\mathfrak{E})=\mathfrak{E}$ and $U^3=$ identity. We define in \mathfrak{E} a decomposition consisting of all triads $(x,U(x),U^2(x))$ and the point (0,0,...). In the finite dimensional case we have defined such a decomposition only on the surface of the sphere but here it is not compact. Let us take a convergent sequence $(x_i,U(x_i),U^2(x_i))$ of sets of our decomposition. Since \mathfrak{E} is compact, we can assume that $\lim_{i\to\infty}x_i=x^0$, $\lim_{i\to\infty}U(x_i)=x^1$, $\lim_{i\to\infty}U^2(x_i)=x^2$. By the continuity of U we obtain $x^1=U(x^0)$, $x^2=U^2(x^0)=U(x^1)$, which proves that our decomposition is upper semicontinuous. The mapping f determined by it is not a finite superposition of simple mappings because crossing \mathfrak{E} with the hyperplane of sufficiently large dimension (and making an affine mapping) we should obtain a contradiction of theorem 2.

References

- [1] P. Alexandroff, Über stetige Abbildungen kompakter Räume, Proc. Acad. Amsterdam 28 (1925), p. 997.
 - [2] Über stetige Abbildungen kompakter Räume, Math. Ann. 96 (1926), p. 555.
- [3] K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), p. 177-190.
- [4] K. Borsuk and R. Molski, On a class of continuous mappings, Fund. Math. 45 (1957), p. 84-98.
- [5] W. Hurewicz, Über stetige Bilder von Punktmengen, Proc. Acad. Amsterdam 30 (1927), p. 164.
- [6] М. А. Красносельский, О специальных покрытиях конечномерной сферы, ДАН 103, No 6 (1955) (in Russian).
 - [7] C. Kuratowski, Topologie I, Warszawa-Wrocław 1948.
 - [8] Topologie II, Warszawa 1952.
- [9] K. Kuratowski and A. Mostowski, Teoria mnogości, Warszawa-Wro-cław 1952.
- [10] K. Menger, Uber umfassendste n-dimensionale Mengen, Proc. Acad. Amsterdam 29 (1926), p. 1125.
- [11] G. Nöbeling, Über eine n-dimensionale Universalmenge im R_{2n+1} , Math. Ann. 104 (1930).
 - [12] Б. А. Розенфельд, Несеклидовы геометрии, Москва (in Russian).

Recu par la Rédaction le 7.4.1959

POLSKA AKADEMIA NAUK

FUNDAMENTA MATHEMATICAE

ZAŁOŻYCIELE:

ZYGMUNT JANISZEWSKI, STEFAN MAZURKIEWICZ i WACŁAW SIERPIŃSKI

KOMITET REDAKCYJNY:

WACŁAW SIERPIŃSKI, REDAKTOR HONOROWY, KAZIMIERZ KURATOWSKI, REDAKTOR, KAROL BORSUK, ZASTEPCA REDAKTORA, BRONISŁAW KNASTER, EDWARD MARCZEWSKI, STANISŁAW MAZUR, ANDRZEJ MOSTOWSKI

XLVIII. 3

WARSZAWA 1960 PAŃSTWOWE WYDAWNICTWO NAUKOWE