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Some decomposition theorems for certain invariant
continua and their minimal sets

by
M. L. Cartwright (Cambridge)

1.1. Let I denote throughout this paper a (1, 1)-continuous orien-
tation preserving transformation of the » = (£, %) plane into itself which
leaves & certain bounded continuum I invariant. We suppose throughout
that €(I), the complement of I with respeet to the plane, isa single simply
connected domain if the point at infinity is adjoined to the plane, and
we say that a continuum satisfying this condition is one which does not
geparate the plane. The properties of such an I with respect to its fixed
and periodic points have been discussed elsewhere (1), in particular
properties of the points of I considered as belonging to the prime ends
of €(I) and the rotation number of T with respect to €(I). The following
theorem which we shall use repeatedly was proved by Cartwright and
Littlewood (see [5] and [8]):

TemorREM A. If T leaves a bounded comtinwwm I invariant, and if
I does not separate the plane, then I contains a fimed point.

This result is more general than the Brouwer fixed point theorem
in one respect; for I need not be locally connected, but the conditions
on T are more regtrictive.

1.2. A compact set M such that T (M) = M and W is irreducible
with respect to these properties iz a minimal set for T, or simply a minimal
set. If & minimal set is locally connected, it iy a continuous minimal set,
otherwige it is a discomtinuous minimal set. A fixed point, and a set of
periodic points which permute among themselves are finite continuous
minimal sets. All other minimal sets are infinite sets. Birkhoff (see [1],
D. 104, 105) hag shown that an infinite continuous minimal set consists
of “a finite number of closed two-sided curves all outgide of one another®
which undergo a permutation under ¥, each curve is invariant under
2¥ for some N, and its interior domain contains a point fixed under T,
Birkhoff’s definition of a continuous minimal set is somewhat ambiguous,

() See [5], where further references will be found.
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and it is not all together clear what he means by a curve. We shall in
fact show (see theorem 3) that his main results hold for any minimal
set consisting of ¥ continua which permute among themselves under ¥.
These are included among the partially discontinuous minimal sets. Minimal
sets which do not contain any non-degenerate continuum are iotaily
discontinuous minimal sets. (See Addendum.) We shall make repeated
use of the well-known fact (see [7], p. 14), that each point % of an in-
finite minimal set M is a limit point of T(y) as oo and as n—>—co
for every point y in M.

1.3, The main object of this paper is to study the structure of I
in relation to its minimal sets by considering continua in I containing
& given minimal set M, and invariant under T or under TV for some .
Keeping in mind the results mentioned in § 1.2 about periodic points
in the interior domains of continuous minimal sets, we shall investigate
whether any corresponding result holds for suitable confinua invariant
under TV and containing a discontinuous minimal set. On the other
hand the simplest type of continuum I such that I = F(I), the frontier
of I, seems to be a star (see [10]) with the minimal set forming the end
points of the rays, but an I with a branching structure (2) iy also well
known. We shall be concerned with the problem whether subcontinua
of T can be found invariant under IV for some ¥ which have properties
similar to these simple structures, or whether for certain I any set of
continua invariant under TV containing the given minimal set are
necessarily of an extremely complicated type.

1.4. Throughout the paper we shall denote by M 2 minimal set
in I. For any bounded continuum ¢, the complement €(C) consists of
an unhounded simply connected domain which we shall call B(() and
possibly one or more bounded simply connected domains, the union
of which we call B(C). Then

I(C)=Cu B(0)
is a continnum which does not separate the plane, and when Cy is a con-
tinuum such that TV(Cy) = O, it follows from theorem A that there
is a point py in I(Cy) fixed for T™. We first establish some general
results about any continuum O°(}) in I containing M such that T(C°(M))

= C*(M), and about sets of continua I'(C%), »=10,1,2, ..., N1, such
that

(1) TV(CR) = O,
(2) TCWnCy=0, »=1,2,.., N1,

(*) See [10] and also § 2.4.
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and about the periodic points in I(C%) when (% satisfies (1) and (2).
In particular we discuss the case in which there is a sequence of values
of ¥ and continua C%x for which (1) and (2) hold.

The idea of a component of a continuous minimal set is generalised
by considering an irreducible continnum ¢z, TV (#)) containing a point »
of M and TV(«), and obtaining from it a continuum C%(z) satisfying (1)
and containing a subset of I minimal for I¥. The example of a star or
branching fype of continuum suggests the use of an irreducible continuum
C*(z, py) containing a point » of M and some point py in I with period N
to form an apparently star-shaped continuum

®) Ox(z:py) = U TV(C(2, py))

—oa<n<eo
invariant for T and containing a subset of M minimal for %Y. The
relations between the various continua containing M obtainable by these
methods are discussed, and it is shown that if T = §(I) the continua
C%(x) and Ox(m: p~) obtained by all choices of Cle, TV@), Oz, pw)
respectively are the same.

It is not necessarily the case that a suitable choice of ¥ and
O"(w,ZN (z)) or C%(w,pxy) will lead to a continuum €% for which (2)
holds (unless of course » has least period N and C°(z, TV(z)) = ), nor
does the continuum (3) necessarily have any of the features usually
associated with a star. As far as we know at present it is possible for
the irreducible continuum O"'(w,iN (w)) or the irreducible continuum
C“(z, py) to contain all the other points of M, and either of them may
be an indecomposable continuum. The remainder of the paper is con-
cerned with these and other pathological eases, and in particular with
may occur when 7 = §(I).

1.5. The original incentive in writing this paper was to investigate
whether a certain type of second order non-linear differential equation
with positive damping can have uniformly almost periodic solutions.
The most usual type of almost periodic solution of second order dif-
ferential equations iz the type called biperiodic (]) which corresponds
to a continuous minimal set consisting of a single closed Jordan curve.
The hypothesis of positive damping corresponds to the hypothesis I = F(I)
which excludes such minimal sets.

In § 2.4 we show how to construct a continnum I with an infinite
minimal set which is the limit set of sets of periodic points with arbitrarily

() See [3], p. 232 (1). There is a misprint, and it should be x(f, 4/p). See also [1],

p. 119,
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large periods. This suggests the possibility of solutions which are limit
periodic functions, but so far as I know no such solutions are known,

2.1. Tn the following result there is mo restriction on the type of
the minimal set M, and the only restrictions on I and T are those laid
down in § 1.1. For any set § we denote the frontier by F(8) and the
interior by J(8).

THEOREM 1. Suppose that C(M) is o continuwum in I containing M
such that T(C°(M)) = C(M). Then (i) I (0%(M)) contains a fived point,
(ii) either

@) MAJOYM) =M,
or

2 M~ §lB(0Y)) = X,
or

®) M~ F(B(O°(M)) = M,

or both (2) and (3) hold.
COROLLARY 1. If B, is a component of B(C*(M)) such that T(B,) = B,,
then cither M  §(B,) = B, or

@) MAF(B) =M.

In particular if By contains a fized point and M ~ §(B,) # 9 then (4)
holds.

COROLIARY 2. If I= §(I), then (2) holds but not (3), and there is
one and only one continuum C*( M) irreducible with respect to the properties
stated in the hypothesis of the theorem.

‘We shall see later that each of the three possibilities (1), (2), (3) ean
occur even when C°(M) is irreducible.

Since T(CM)) = C°(M), the sets I(C°(M)), E(C*(M)), B(C(M)),
and the frontier of each of these sets is invariant, the existence of the
fized point in I(C°(M)) follows now from theorem A, and each of the sets
(5) MAS(CM), MAFE(CM)), M~FBCW)
are either void or the set M itself. For all three are invariant and are
contained in M and the last two are obviously closed. Hence if either
of the last two is not void it is the set M. For if not M is not minimal.
On the other hand, it the last two sets in (5) are both void, then the first
is closed, and the same argument applies.

The first part of corollary 1 follows from the same argument. Then
since T(B,) is obviously & component of B(C*(M)), if B, contains a fixed
point, T(B,) = B,, and so the rest follows.
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To prove corollary 2 we first observe that since I — §(I), both
3(04M)) = @ and B(C(M)) =@ so that (2) must hold. The remaining
part of the corollary follows from the following lemma which we shall
use repeatedly:

Lenma 1. If I= (), and Cp, C, are any two continua in I, then.
0y~ Cp is & continuum (possibly degenerate) or void.

If 0, 0+ @ and is not eonnected, there exist two points in the
plane separated by €y v C,. But ;v 0,CI, and so I has interior points
which is impossible. Hence the lemma holds.

If 0%(M), OP(M) are two irreducible continua satisfying the hypotheses
of the theorem, C"(M) ~ O°(M)D M + @. Since by lemma C(M) ~ OF( M)
is a continuum and invariant, C*(M) = C%M). For if not they are not
irredueible.

2.2. We need certain general results about sets of ¥ continua which
are invariant under ¥ and permute among themselves under I. Each
continuum must in fact contain a set minimal for ¥, but we make
no assumption about this at present, and the minimal set may consist
of a single point with period N.

TaroREM 2. Suppose that N is an integer greater than
Oy is a continuum in I such that

o) (0% = O,
(2) O~ =0, »=1,2,..,¥N-1.

1 and that

Then (i) T(CN) C E(Cx), »=1,2,..,N—1, (i) I{C%) ~ T(I(CF).
=0,v=1,2,..,N—1, (iii) I(O¥) contains a point py with least period N,
(iv) all periodic points in I(Cy) have periods which are muliiples of N,
(v) if M is any minimal set in I such that My = Oy~ M +# @ then My is
minimal for T, but not for T, v=1,2,.., N—1.

Since (2) holds, for each » such that 1 < v < N—1 we have either
T(0x) CE(CY) or (0% CB(0%). Suppose that T'(Cy)C B(C%) for
gsome » such that 1 < v < N—1, Then since T is (1,1) and continuous

T¥(C) C B(T'(O)) CB(0%),
and, repeating the argument, we have
O = TV(0%) C B(0%),

which is impossible. Hence (i) holds, and (ii) follows from it.
By theorem A with ¥ in place of T the set I(C%) contains a point
Dy With period N and T'(py) C T'(I(C%)). Hence, by (i), ¥ is the least
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period of py. If g is any periodic point in I{C}), then
T gy) CTVT(L(OR) = TI(CR)) -

It follows from (i) that TV (gy) # gy for v=1,2, ..., N—1, and
so the period of gy is a multiple of .

Finally if M is a minimal set in I sueh that My =M ~ %+ G,
then My is closed and, by (1), TN My) = My, but, by (2), T(My)#= My
for v =1, 2,..., V—1. Suppose that a proper subset M} of My is
minimal for T, then

N—-1
a* = T(MUR)
y=0
is a proper subset of M minimal for T which is impossible and so we
have the result required.

2.3. We consider next a minimal set consisting of N disjunct, non-
degenerate continua, that is to say an infinite continuous minimal set
or a partially discontinuous minimal set. If My is one of the N continua
of such an M, then

N—-1
) U = TA),
(2) TV(My) = My,
3) TMyynMy=0, v=1,2,..,¥-1.

THEOREM 3. Suppose that M satisfies (1), (2) and (3) where My is
a continwum. Then (i) T(My)C E(My), v=1,2,.., N1, (i) B(My)
contains @ point py with least period N, (iii) all the periodic points in B(My)
have periods which are multiples of N, (iv) My=F(E(My)) = §(B(Mx)),
(v) if By My) is a component of B(My) such that T¥(By(Mx)) = By My),
then My = F(By(M w)), end in particular this holds for the component
containing the point py with least period N.

CorOLLARY 1. If M is locally connected, then T'(My), »v=10,1,2,.

.
N1, are closed Jordan curves.

CoroLLARY 2. If B(My) has more than one component, then My is
an indecomposable continuwum or the sum of two indecomposable continua.

We may obviously apply theorem 2 with My = (%, and we obtain
parts (i), (ii), (i) at once. For the periodic points in I({My) cannot lie
on My but must lie in B(My). Part (iv) follows from theorem 1 with
¥ in place of T, For My~ FE(Mx)) # 8, My ~ F(B(My)) # 8. Part (v)
follows from corollary 1 of theorem 1.
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Corollary 1 is the theorem of Birkhoff to which reference was made
in §1.2. It follows from (ii). For this is equivalent to saying that My is
an irredueible cutting (see [9], p. 173, theorem 1, and p. 403, theorem 7)
of the plane between px and the point at infinity.

To prove corollary 2 we first observe that if My is an irreducible
cutting (see [9], p. 404, theorem 10) of the plane between each pair of
three points ag, @;, @, then it is an indecomposable continuum or the
sum of two indecomposable continua. Let B{My) be the component
of B(My) containing the point py with least period N, and let B,(My)
denote the union of the remaining components of B(My). Since B{My)
and B,(My) are invariant under TV, so is B,(My), and also F(B(Ux).

Obviously My ~ “{;(BI(M N)) # @, and so by the usual arguments
My = My~ F(BMx)).

Hence My is an irreducible cutting between each pair of three points,
the point at infinity, p, and a point of B,(My), and so we have the result.

2.4. Before proceeding to the consideration of minimal sets in general
we may observe that theorem 2 can be applied with TV in place of T
and I(C%) in place of I, and some continuum % C I(C%) in place
of %, provided that N’ is a multiple of ¥ and O% satisfies hypotheses
corresponding to 2.2 (1) and 2.2 (2). Repeated applications of parts (ii)-(v)
of theorem 2 give

THEOREM 4. Suppose that 1 = N, < N, < N, < ... I8 a finite or in-

finite sequence of integers such that N;/N;; is an integer for 1=1,2, ..,

Suppose further that CF,, ¢ =0,1,2,.., is a continuum such that
1) ID0%20%20.00%D..,
{2) TVHOR) = 0%, i=0,1,2,..,

B) TVNCR)AC% =0, »=1,2,..,(NJNi)—1, i=1,2,.
Then (1) we have

TVI(OF) ~I(0%) =B, »=1,2,.., (N/Nia)~1,

i=1,2,..

(i) I(C%,) contains a point py, with least period N;, (iii) all the periodic
points dn I(O%,) have least periods, which are multiples of N;, (iv) if
My, = M ~ C%,# 9, then My, is minimal for M but not for T,
V= 17 2, seey Ni—l.

ComOLLARY. If the sequence Ny & =1,2, ..., in theorem 4 is infinite,
then I contains periodic points with arbitrarily large periods.
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Levinson [10] hag given an example of a set I such that I = F(I)
for which the hypotheses of theorem 2 are satisfied with ¥ =3 and
O = G, a segment which rotates about its middle point under I3, so
that the end points of the segments T'(C;), » = 0,1, 2, form a set of 6
points ¥'(pe), »=90,1,2,...,5, with period 6. There is a stable fixed
point, p,, and three spirals from p,, winding round T’(Cg), »=0,1,2,
respectively. Bach spiral containg a point of period 3 which is a saddle
point (or col) for I3, and the points with period 6 are stable fixed points
for I8, This I also satisfies the hypotheses of theorem 4 with Ny, =1,
N,=3, N,=6,1=0% 03 =0, and C3 = p,.

It is easy to see that this figure can be modified by replacing each
of the points T(pg), »=0,1,2,...,5, by a small continunm T'(C,) of
the same form as I itself. The end of the segment C; near pg is then
drawn out into a spiral winding round (, and which goes into similar
spirals for the other continua T'(C), » =1, 2, ..., 5. The spiral from p, is
modified to wind round the new (3 which includes the two continua Cs,
T 0,) and spirals from a point p, of period 3 winding round each of them.
The continna T'(Ce), »=10,1, 2, ..., 5, contain a set of points T(ps),
v=0,1,2,..,35, with period 36. The point p,; can be replaced by
a small continuum Cye of the same form as I itself, provided that the
segment Oy in C; is drawn out into a spiral round C,, just as in the case
of the first C,, and corresponding other modifications are made (see

Fig. 1).
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This process can be repeated indefinitely, and so we have

THROREM 5. There ewisi T, I, such that I = F(I) and theorem 4 holds
for an infinite sequence of integers 1,3,6,18, 36, 6™, 3.6, ..., I contains
periodic points with arbitrarily large least periods and an infinite minimal
set M which is the limit set of periodic points.

It follows from theorem 4, (i), that there exist points in I with
arbitrarily large least periods, and the limit set of these points is invariant
under . If the continuum Oy, replacing a point p ~; 18 made sufficiently
small, the limit set will not contain any periodic points. Henee it contains
at least one infinite minimal set M.

2,5. We now seek to obtain a set of N continua containing M and
invariant under TV to which theorems 1 and 2 can be applied so as to
establish the existence of periodic points associated with a given minimal
set. When M contains no continua, we have to use some continuum in I
to connect the points of M, and the first method is baged on a continuum
in I eontaining two points # and TV(z) of M and irreducible with respect
to this property. The set M may contain a continuum, but the result
remains valid for all such continua if they are not contained in M.

THEOREM 6. Let @ € M; let N be a positive integer, and let 0°(w, TV(x))
be o continuum in I containing z and T (@) and irreducible with respect
to these properties. Then

M On(w) =

U (e, 2V@)

—oo< N0
is a continuum in I such that (i) T7(Cx(z)) = Cx(@), (il) Mx(z) = ¥ ~ Cx(2)
is minimal for TV, and

@) o =ngll"(MN(m)) ,

(iii) I(G’?v(w)) contains a point py = px(w, a) with period N.

COROLLARY 1. Let A%(x), Qx(z) denote the limit sets of T (C%(w, TV(m))
as n—>—oco and as n—oco respectively. Then AN{x) and Q5(x) are continua,
and (i), (i) end (iii) of theorem 6 hold with Ax(z), and QN{z) in place
of 03’;(59).

CoROLLARY 2. If I = §(I), then I(O%(x)) = Ox(z) and py Ues on
Cx(z).

CoROLLARY 3. If I == &(I), then there is one and only one continuum
G”(w,ZN(m)) in I containing = and TV(w) and irreducible with respect to
these properties, amd Cyx(z) = ON(y) where y i8 any point of My(z). In
particular C3(x) is independent of the particular point , and Ax(x) = Qn(x)
= Cx{x).
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Tt should be observed that C(w,T"(x)) certainly exists, and so
theorem 6 establishes the existence of a continnum Ci(z) satisfying 2.2 (1)
and results corresponding to (iii) and (v) of theorem 2, but, since Ox{x)

does not necessarily satisfy 2.2 (2) the period of py may be less than N
and M may be minimal for T with 1 < » < . In fact the possibility that

C°(z, T(@)) = Odla) =1
is not ruled out. It should also be observed that if M is a seb of points
of period N, C*(x, TV(2)) = Ok(z) = a.
To prove the theorem we observe that G”(as,%N(w)) and therefore
C%(x) lies in I, and O%{z) is closed by definition. Since
(0w, TV (@)) A T2, TV(@))) 2T ()

(%(#) is connected, and therefore a continuum. Obviously T¥(C%(=))
= (%{x), and (i) follow from this. Part (iii) is obtained by applying
theoremn A with TV in place of T.

In corollary 1 we suppose that O“(az;,itN(w)) is a non degenerate
continuum, and then it is easy to show that A¥(w), 2x{(x) being limit
sets of continua are themselves closed and connected. They are obviously
invariant under T, and since My(x) is minimal for IV every point y
of My{z) is & limit point of as T"¥(z) and a8 n->co. Hence My(x)
C M ~ A%(x) and My(z) C M ~ Q%(x), and so (ii) holds. Part (iii) follows
as nsual from part (i) and theorem A.

Corollary 2 is obvious, and corollary 3 follows from lemma 1. For
if C*(z,TV(e)) and (s, T"(2)) ave irreducible continua in I containing o
and T(z) so is

C°lz, TV@) A CPlo, T (@),

and since both continua are irreducible they must coincide. The rest
of corollary 3 follows from this, and the fact that y is a limit point of
T(z) a8 n—oa.

2.6. Since there is necessarily a point py with period N associated
with the subset My{z) containing # minimal for T , We may use a periodie
point to determine the continunum which we require.

THEOREM 7. Let w ¢ M; let N be a positive integer; let py be any point
in I with period N, and let C%(x, py) be a continuwum in I containing =
and py and irreducible with respect to these properties. Then
(&Y Oxz:py)= U T™(0%(=, pw))

—oCn<loo

8 a continuum in I, and (i), (ii) and (iii) of theorem 6 hold with O%(x: p~)
in place of Cy(2).
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CoROLLARY 1. If Ax(x: px), Q(z: px) are the limit sets of Z"N(G"(w, px))
as n—>—o00 and as n-»oo respectively, then (i), (ii), (iif), of theorem 6 hold
with Ax{m: py) and Qy(x: py) in place of C{z).

CoROLLARY 2. If I =F(I), then I(C%(w: px)) = Cx(x: py), and there

is only one continuum C%x, px) in I containing = and Py and irreducible
with respect to these properties, and CN(2: py) = CN{y: px) where y is any
point of My(x).

CoROLLARY 3. If M consists of N'N points, and

(2)
then

6]

Oz, py) =TV Y(C"(=, pw)) ,

N'—

O%(@: py) = uol TN, ) ;

in particular if M consists of N'N points and I = F(I), then (3) holds.

CoroLLARY 4. If C%x, py) contains a point y belonging to some other
set M%(y) minimal for TV, then Mily) C Cy(z: px).

The proof of the theorem and corollaries 1 and 2 follows similar
lines to that of theorem 6 and its corollaries, except that the connectedness
of Cy(w: px) follows from the fact that all the continua I™(C*(, px))
contain the point py.

The first part of corollary 3 is obvious, and the rest folows from
the fact that, since TV~ (x) = =, the continuum I¥¥((*(w, px)) is a con-
tinuum containing 2 and py, and so by lemma 1 it containg Oz, px).
On the other hand, if 0%z, py) is a proper subeontinunm of I ¥ (CH=, p ¥}
T (0w, pw)) is 2 proper subcontinuum of C°(x, py), and then 0%z, px)
is not irreducible. Hence (2) holds when I = §(I).

Corollary 4 follows from the fact that since M¥{y) ~ Cx{z: px) is
a closed set invariant for T contained in M%(y), it is M¥{y). For if not
M3(y) is not minimal for IV,

2.7. The relationship between theorems 6 and 7 is given by the
following theorems which are easily verified:

TEmorEM 8. If the hypotheses of theorem 6 hold for some G“(a;, ZN(m))
and py = px() is a point with period N in I(Cx(w)), then there is a con-
tinuwum C%(w, py), where B = p(a) in I(U(z)) containing x and px and
irreducible with respect to these properties, and

Ch(: py) CI(CH(@)),

where O%(w: px) is defined by 2.6 (1) with § instead of a.
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TrEoREM 9. If the hypotheses of theorem T hold for some 0%z, py),
then there is a continuwum OF(v, TV(w)), where f = f(a) in Ox(w: py) con-
taining x and ¥ ('5)‘ and irreducible with respect to these properties, and

Oh(@) C Cx(@: pw)

where C%(x) is defined by 2.5 (1) with B inslead of a.

COROLLARY. If I = %(I), C%(z) = Chl: py), where Py is any point
in Oxn(z) with period N, for all a and .

2.8. The question remains whether these results can be improved
when I contains interior points. For instance if C*(M) in theorem 1 is
the continmum Af(z) of () of theorem 7 Corollary 1 can 2.1 (1) hold,
and can 2.1(3) hold without 2.1 (2)? The answers fo these questions
are contained in the following theorems:

THEOREM 10. There ewist ¥, I and M such that for every C%(H)
satisfying the hypotheses of theorem 1 2.1 (1) holds.

THEOREM 11. There exist ¥, I and M such that for every C%(M)
satisfying the hypotheses of theorem 1 2.1(3) holds and not 2.1 (2).

Congider first a (1,1) continuous transformation of the unit dise
which is & rotation about the origin through an irrational multiple of .
For every continuum C%(«, 0) joining the origin to a point 2 on the circum-
ference the limit set of T"(0%(z, 0)) as n——co and as n—>co Wil be the
whole unit dise. For the limit set of any point at a distance r from the
origin is the circle £+ =12 and the continunm C%(w, 0) meets every
circle £--7% = 12 for which 0 < r {1 in at least one point.

Now consider two discs of unit radius with centres (42,0), and
a spiral from the origin winding round each counterclockwise (see Fig. 2).
We may suppose that T leaves the origin fixed, and takes each circle
with its spiral into the other so that the invariant set I consists of the
two dises and their spirals. We may suppose that ¥ moves all points
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of the plane towards I. The essential feature is that T2 rotates each dise
counberclockwise about its centre through an irrational multiple of =;
the points on the spirals in virtue of the continuity of I* must move
along the spirals, either towards or away from the disc. We suppose
that they move towards the discs.

If M is the pair of points (2, 0), any continuum in I joining them
must contain a continuum joining each point to the circumference of
its dise, and as we have seen the limit set of each of these is the whole
of the corresponding dise. Hence if T(C*(M)) = C°(M), C*(M) contains
both dises and M C J(C°(M)) which proves theorem 10.

For theorem 9 we use the same ¥ and T and take M to be the two
circles with centres (-2, 0) and radii equal to }. Any continuum C°%(M)
such that T(CY(M)) = C(M) must, as before, contain the annuli

P<é+2p4p<a,

and fthese with the spirals satisfy the condifions of theorem 1. In this
case B(CO%(M)) consisty of the discs (642 +7%* < 4, and 2.1 (3) holds,
but not 2.1 {2) (nor of ‘course 2.1 (1) which is incompatible with 2.1 (3)).

2.9, It may be asked whether the continnum C5{z) of theorem 6
or the continuum Cy(x: py) of theorem 7 iz likely to be the simplest,
or whether the limit sets of either will give still simpler continua. If My(z)
is & continwum, we may take 0%z, TV(z)) to be a continuum in My(x)
and then Cx(z) = My{w). On the other hand, if we are mainly interested
in the simplest invariant confinuum containing M y(z) and not separating
the plane, the construction of theorem 7 may lead to a simpler result
for some types of minimal set, but in virtue of theorems 10 and 11 unless
I=%(I) it depends on the particular continua OQ(m,iN (@), Oz, pn)
chosen. Some possible effects of various choices are shown in the follow-
ing examples.

Let ¥ be a (1, 1) continuous transformation which leaves the unit
circle and the axes invariant, taking the positive £ and # axes into the
negative and vice versa. Then the points z = (1,0), T(®) = (-1, 0),
y=(0,1), T(y) = (0, —1) have period 2, and the origin is fixed. We
may suppose that all other points move towards the unit circle, and in
particular move towards # or T(x) under T (see Fig. 3). Comnsider the
minimal set @, T(v), and theorem 6 with ¥ = 1. If C"{w, T(s)) is the
semi-cirele &+n2=1, >0, Ofx) is 2+4+2=1, and I{Ci(z)} is the
unit dise. Further A§(w) = Q%(x) = 05(z). I *(z, T(w)) is any continuum
joining # to T () lying in 0 < 4952 < 1, n> 0 except for its end points,
then C3(#) includes AS(x) which is the segment —1 < £<1, #=0 and ~
Qi(«) which is the unit cixcle, and I (C5(e)) is the unit dise, but if ¢*(z, T(z))
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is the segment —1<&<1, n=0 then %z, T(w)) = Ci(z) = AYz)
= 0% (#) = I(C¥@))- o

TUsing the same example with the origin as p, and the segment
0<E<1, n=0 as C%z,0), we obtain the segment —1 < <1, =0
as O%(w: 0) = Al(z: 0) = Q5(w: 0). If (%, 0) Lies in the quadrant aO < g
+pr<1, £> 0, >0, except for the points » and 0 then A%#:0) is
the segment —1<&<1, n=0, but 2i(z:0) i§ the sejgment & —_—.0,
—1< <1, and the pair of arcs of 492 =1 in the first and th.u.'d
quadrants. Of course by suitable choice of O“(m,Z(m)), we can obtain

C3(x) which is also of this form.

\Z/

N4

\

Fig. 3

AN

Other choices of C%x, 0) lead to a Oi(w: 0) consisting of the unit
circle together with the segment —1 < &< 1, 7= 0. We may sum up
the examples discussed above as follows:

THEOREM 12. There is a T such thai I is the unit disc, the pair of
points © = (1,0), T(z) = (=1, 0) is a minimal set M, and the origin i8
a fiwed point. Further this T may be chosen so that for a switable %z, T(@))
the continwum (5(z) defined by 2.5 (1) with N =1 s the wnit circle or so0
that CS(z) 48 the segment —1 < £ <1, =0, and C%z, 0) may be chosen
so0 that Ci(z: 0) defined by 2.6 (1) is the segment —1 <& <1, =0, or 80
that C3(x:0) i3 the segment & = 0, —1 < < 1, together with the arcs of
42 =1 from z to y = (0,1) and from T(x) to T(y) = (0, —1).
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8.1. In connection with theorem 6 it was pointed out that for some

%, I, M, N and a non-degenerate irreducible continunm Oz, T()
we may (so far as we know) have

) Ol TV(@) = C3fa),
and similarly in theorem 7 it is possible that for an irreducible C*(z, py)
2) C%(w, px) = Oylz: py) .

The consequences of these and similar relations will be discussed
in the next group of theorems.

TaeoREM 13. Suppose that the hypotheses of theorem 6 hold, and that
g“(m,xN(w)) is non-degenerate and drreducible and satisfies (1). Then if

On(z) is drreducible between  and T (x), it is an indecomposable continuum.
Since

(02, T(@))) = T(C3(2)) = C3(e) = Cilw, T(a)),

it is irreducible between TV(z) and T¥(z). For it not, it contains a proper
sub-continuum C*(XV(w), T(x)) irreducible between TV(z) and IT*(z),
and TV (Oﬁ(iN (®), Zw(w))) is a proper sub-continuum of 0“(:10,%1v (x))
containing @ and TV(@) which is impossible because C*(z, TV (z)) is ir-
reducible. Hence if Cy(#) is irreducible between z and T*(z), it is ir-
reducible between each pair (see [9], p. 150, theorem 7) of the three
points =, ¥ (@), Z?‘N(w), and is therefore an indecomposable continuum.

TerorEM 14. Suppose that the hypotheses of theorem 7 hold and that
%z, pr) is non-degenerate and drreducible and satisfies (2). Then if
Oxlx: py) is irreducible between » and I (z), 4t is an tndecomposable
continuum.

Since

TV (0w, p)) = TV(O%(w: pav)) = Oz py) = (2, )

by the usual argument; it is irreducible between T (2) and px. It €%z, px)
is irreducible between @ and IV (x), it is irreducible between each pair
of the three points », T™(z), py, and the result follows as before.

3.2. It seems difficult to construct an example for which the hypo-
theses of theorem 13 or theorem 14 hold, but the so-called ‘“‘curves” of
Birkhoff (see [2] and [6]) provide an example of a continuum of measure
zero which separates the plane info two domains and remains invariant
under a certain analytic transformation. These curves have different
external and internal rotation numbers, and are indecomposable continua.
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Yo far as I lmow the minimal sets lying on them have not been studied;
it seems possible that the hypotheses of theorem 13 or 14 might hold
for some minimal set on such a curve.

The invariant continnum F studied by Cartwright and Littlewood
([5], § 7.1) also separates the plane and has no interior points. It containg
two sets of periodic points, one with period 2N —1, the other with period
2N 11 as well as various other minima]l sets (see [10]), but it is not known
whether it is & Birkhoff “curve”, or whether it is indecomposable.

T do not know of an indecomposable continuum I such that I = §(I)
which is invariant under a continuous (1, 1) transformation other than
the identical transformation.

3.3. The remaining theorems concern the special case in which
I = §(I). By theorem 6 corollary 3 and theorem 7 corollary 2 the con-
tinua %z, T(@), O, pn) are uniquely defined when T = §(I), and
so we shall omit the «. In future we shall denote generally by C(a,b)
a conbinuum in I containing the points a and b and irreducible with
respect to these properties. The continna Cx{z), On(2: py) are defined
by 2.5 (1) and 2.6 (1) with « omitted.

TaEorEM 15. Suppose that I = T(I) and ld xe M. Then either
Cla, TV(@)) = Cxlw) for some N, or C (m,ZN (w)) does mot contain ()
for any N >0,

Suppose that for N >0

(@) e Ofw, T¥(@)) -
Then TV(2) € T¥(0lz, ()| = 0(T (@), T()). For it (0 (w, T(=))

is nob irreducible between T(z) and I (x), then T (O(ZN (@), T(2))
is a proper sub-continuum of ¢ (w,i‘iN(m)) which is impossible. Hence

0w, T(@) D0z, TV@)) 2T(C e, 2()) IR
and so

0z, TV(=)) >y TV0 f, T(@))).-

The right-hand side is a continuwm, and, since the limit points of (),
n=1,2,.., include all the points of the set My{z) = Cn(x) ~ M which
is minimal for TV,

Clo, P@)> U (0o, D)) = Onla) -

=L NI

For each continuum I (G(m,ZN(a:))) ig irreducible and therefore
contained in any continnum containing T*¥(z) and T ¥ (), and since

icm

Invariant continug 245

o/, zg(m)) is closed, it contains the closure of the continua. But

0(w, T (@) C On(2), and so O(e, T¥(x)) = Ox{w). This proves the theorem.

. THEOREM 1(.3. Suppose that I = F(I) and let ze M. Then for each

integer N > 0, either there is a point py with period N such that Oz, px)
¥

not contain TV - ) .
zz::odol\f. Y (@), or C(z, pn) = Ox{w: py) for every point py with

Suppose that, for a given N, O(z i of

_ 4 L : px) containg T(z) for e

point py in I with period N. Then G(m’, PN} D 0(1” () ,pl(v)), and ;nez

I = %(I) the usual ar b N

Hencg; ) gument shows that C(ITV(z), pn) = zN(O(m,pN)) .
C(z, pn) D TV(C(z, py)) D TYC (@, px) D ey

and so, as in the proof of theorem 15, we have

Clz,px)D U W(C(m1pN))7
a.nd Isn<oo
C(z, pn) = Onl(2: pw).

3.4. T.heorelxvp 15 may be regarded as a special case of the following
theorem with T in place of T and N =2:

TEEOREM 17, Suppose that I = F(I), and let © € M. Suppose further that

(1) V@) e Ofr, T(w)), N>1.
Then
Oy(w) = KngN . 0, T(@)).

It follows from (1) that TV"(s) ¢ T(C(w, T(v))), and so by lemma 1
@) Oz, T(@) v T(Clz, T(e))) 2 0TV (@), T () =TV(0lo, T(@)) -

For since Cfx,T(x)} and I(O(m,%(m))) both contain I(z) the left
hand side is a continuum containing T¥(z) and T Yz). But, b
Al - But, by (1)
zw(m)ezN(G(m,z(m))), and so by (2) either T™(2)e Ofe, T(w)), or
TV(@) « T(0(w, T(2))). In the latter case T (@) e Clo, T(x).
'N ow applying the method with TN (x), or F™(z), as the case may
be, in place of T¥(x), we have either

N Oz, T(@) v L(Clo, Tw)) D TV 0w, (),
Ole, T(@) v F{(Clz, T(@))) 2T™(0(e, T(2)),

Fundamenta Mathematicae, T. XLVIIL 17
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and so by a similar argument C(z,Z(z)) contains either TN ) or
TV 1(5) or T¥(z). Repeating the process we find that O(z, T(r)) contains
a sequence of points T™(x) such that ny—n <N, N=m << ..., ni—co
as i-»co0. Hence

= U 30z, T(@))

I<n<N—-1

contains I™w) for # =0,1,2,.. For T™(x)e C* and so T™ "(z) e C*
for n=0,1, 2,..., N—1, and this includes Iy for n; < n < Nyyq. Since
all other points of M are limit points of T*x) as n—>oo, and since O* is
closed, M C C* Since C* is obviously conmected, and I = F(I),

Y0, T(@))) = C(T@), T (@) C O

for n = —1, —2, ..., and so, since C* ig cloged, Cy(x) C C*. But C*C C\(z)
and 80 Cy(») = C* which is the required result.

8.5. We now return to the special case in which
(1) Ofe, ¥¥(@)) = Onla) .

TeeoREM 18. Suppose that I =F(I) and that x € M. Suppose further
that (1) holds, and that px has period N and py ¢ Cy(x). Then

2) C(w, px) D Can(w) .
‘We observe first that for all integers »

3)  CTV(@), T V(@) = T(C(x, T@)) = TV(Cxla) = Cla).

Since C(z, px) v I¥(C{z, py)) is obviously a continuum containing =
and TN(x),
C(, pw) v T¥(C(x, px)) D Clo, T¥(a)) = Cxla) .

Hence for all integers » either T¥(z) ¢ 0(z, py) or T(z) € TVC (2, py)-

I, for some n, T)e O(, py) and T™(0) € O(z, py), it follows
from (3) that » Py ) € C(x, Px);

Oxlz) = O[T (@), """ (2)) C C(w, px)

and a fortiori (2) holds.
Suppose that there is no pair of consecutive integers n, » 41 such that

(4) C(@¥ (@), T N(@) C O (z, py) .

icm
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Then, if for some n we have T™¥(x) e ((z, py), it follows that
TN () eV (O, pa)) and T () € O(z, ). For it T (2) eX¥ (C(w, D)),
then T™"Y(2) € O(z, py), and (4) holds. But @ eC(z,py), and so
(@) € O(, px), and TV(@) € O(2, py) for n=1,2,..., and also for
n=—1,—2,.. by a similar argument. Hence

O(z, px)2 _wgmr”"(o(m, T(@))) = Canla) .

8.6. It might be supposed from consideration of simple examples
such as those given by Levinson [10] that if I= §(I) the irredueible
continuum  O(2, T(«)) must contain a fixed point, and similarly the
continuum (2, TV(#)) a point with period N, bub it seems difficult to
prove anything more then the following result:

THEOREM 19. Suppose that I = F(I) and that « « M. Then either

) E= N 0, Ia)) =9

—co<n< oo
or K is an invariant continuum which does not separate the plame, and
therefore contains a fized point.

If K # @ it follows from Lemma 1 that it is a confinuum, and since
it is contained in I it cannot separate the plane. Obviously T(K) = K,
and go by theorem A it contains a fixed point. K may be a single fixed
point. »

From this we obtain a special form of theorem 13:

THEOREM 20. Suppose that I = F(I) and z < M. If for some N such
that © 5= TN ()

Ky= [ (0, 2Na) + @
—00L N0V
and Oz, px) = Cy{a), where py is a point with period N in Ky, then
Cn(z) is an indecomposable continwuwm.

By theorem 19 with TV in place of T the point py exists and lies
on Clz, I¥(w)). By definition C(z, py) is irreducible between & and pa,
and it follows as usual that TV(C(2,pw)) = On(@) = C(z,py) i8 ir-
reducible between T™(x) and py. Hence C(z, py) is irreducible between
each pair of the three points z, T¥(»), py and so it is an indecomposable
continuum.

8.7. We sum up some of the results about the case in whiech
Olw, TV (#)) = Cx(z) and I = F(I) in the following theorem:
17*
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TrEOREM 21. Suppose that I =F(I), z e M and o +# (@) and that
3.5 (1) holds. Then either (i) Oz, TV(a)) is irreducible betweon @ and T (w),
and therefore an indecomposable continwum, or (ii)

) O, T() w T(Cfw, T())) = Onl2)
and Clz, T (@) is an indecomposable continuum, or (iii)
(@) O, T (@) ~ TV(0(2, T (2))) = 9,

and Clw, T (@) = Ox(a) for every positive integer m.

Tn virtue of theorem 13 it is sufficient to suppose that C(z, T*(x))
is a proper subcontinuom of Cx(x) and prove that either (ii) or (iii) hold.
Suppose first that

Olw, T@)) ~ TV (Clz, T (@)} # D
Then by lemma 1 the left hand side of (1) is a continuum containing @
and T¥(z) and therefore C(r, T () = COn(z). Since it is contained in
Ox(@), (1) holds. Hence C(z, T(x)) contains the point py of period ¥
which lies in Cx(2), and so
O(a, px) v (0 (@, p)) C Ofz, T(2)) -

By theorem 18, O(w,py)2 Can(®)D Clz, TM(@)) D 0T (@), o)
= 3%(0(, py)), and s0

T(0(@, pa)) D T (Canl@)) = Canl(@) D Oz, T(w)) .

Hence 0(z, py) = T2(C(2, px)) = Ofe, T(2)) = Cax(x), and, being a con-
tinunm irreducible between each pair of the three points @, py, T2 (x),
it is an indecomposable continuum.
Tt remains to consider the case in which (2) holds. Let » be any
positive integer, and consider
)=\ (0w, T7(@)) v Clo, TV (a)).
0<r<n~-1

It is easy to verify that C(n) is a continuum containing *"¥(z) and

G0N (y), and so by Lemma 1

Ciz) =20 e, TV(2))) = 0(T(w), T V(@) C C(n) .
Hence pye C(n). But, by (2), pn cannot belong to Cfr, T (x) and

therefore cannot belong to T7(C(w, T(x))). Hence py € Ofz, T ¥ (z)),
and it follows from theorem 18 that

Can{) C O (@, pa) C Ola, T ()
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and remembering that Cov(z) = Cwr(T™(2)), we have

V(@) e TV (Canl)) C T (O(zz"N(w), ZJN)) = O[T, )
C COfw, T*¥(g))

for py € Ofz, TV (7)), Hence

Cnlx) = O(m, zN(.x)) cC G("D, z(2n+1)N(w))
which is the required result.
8.8, It should be observed that 3.7 (2) does not imply

ay. Con(@) ~ TV (Conlz)) = B
Even the hypothesis that
Oz, TV@) A TV Clo, T(2))) = @

for all integers #, does mot necessarily imply that (1) holds. However
a slightly different type of result can be obtained by using (1) a8 a eriterion
for distinguishing the different cases.

TeEOREM 22. Suppose that the hypotheses of theorem 21 hold. Then
either (i) Olz, T(w)) is irreducible between & and T™(w) and therefore an
indecomposable continuum, or (i) C(x, py) = Con(z) and

(2% Oan() © TV(Ou()) = On(z)

or (iii) (1) holds and C.x(x) contains a point pay of least period 2N, and
all the periodic points in Con(x) have periods which are mulliples of 2N.

If (1) is false, the left hand side of (2) is obviously a continuum
containing C(w, TV(x)) = Cn(z), and since it is contained in Cx(@), (2) holds.
Hence the point py of period ¥ in Cx(z) is contained in Chy{z), and so
by theorem 18 (ii) holds.

Part (iii) follows from parts (iii) and (iv) of theorem 2 in virtue of (1).
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Addendum, After further consideration I have come to the conclusion that
Birkhoff may have intended the name continuous minimal set to cover all sets con-
sisting of a finite number of continua, whether locally connected or not. As is evident
from theorem 3 minimal sets which consists of a finite number of continua have
many of the properties of the infinite continuous minimal sets defined in § 1.2.

I ought also to have pointed out that partially discontinuous minimal gets include
all minimal sets containing an infinity of non-degenerate continua. Birkhoff wrote
that the existence of partially discontinuouns minimal sets seemed doubtful, bub
Floyd’s example {} of a non-homogeneous minimal set (although for a transformation
which does not satisfy the conditions of §1.1) strongly suggests that there exists
minimal sets with an infinity of non-degenerate continua and also an infinity of points
a8 components.

() E. E. Floyd, Bull. Amer. Math. Soc. 55 (1949), p. 957-960.

Extension of mappings on metric spaces
by

J. de Groot and R.H. McDowell * (Amsterdam)

Introduction. If M is a subset of Hilbert space and ¢ is a topological
map of M onto W, it is, in general, impossible to extend @ topologically
{or even continuously) over the closure M of M. However, is it possible
to find a suitable topological re-embedding M of M in Hilbert space
such that ¢ may be extended over M? The answer to this question is
in the affirmative. Actually, we shall prove far more: If & is a countable
set of continuous mappings of the separable metrizable gpace M into
itself, one can find a compact metric space J in which M is densely
embedded, such that every continuous map of the given set may be
extended continuously over M.

In order to avoid unnecessary repetitions it is useful to introduce
the notion of @-compactification. If I is a separable metrizable space
and @ a set of continuous maps of M into I, the space I is called
a @-compactification of M, if M is a compactum (compact metrie space)
containing M densely, such that every element of @ may be extended
continuously over M.

We shall investigate @-compactifications in § 2 and we shall e. g. find,
for every set & closed under multiplication, necessary and sufficient
conditions under which such a @-compactification exists (Theorem 2.12).
The way in which @ operates on A enters into these conditions. It is
shown by examples and counterexamples that this is essential, and the
authors believe that it is practically impossible to find necessary and
sufficient conditions in terms of M alone. Applications to the case where
9 is a set of autohomeomorphisms of M are obtained as corollaries.

It is of interest to ask for conditions under which every autohomeo-
morphism of M can be extended to a suitable metric compactification 3
of M. We shall give in § 8 sufficient conditions — improving a little
on already known results — which are believed to be rather general.
Also a number of examples is given to clarify the situation.

* During the preparation of this paper, the second anthor was supported, in

part, by a Fulbright Study Grant, under the administration of the United States Edu-
cational Foundation in the Netherlands.
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