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Extension of mappings on metric spaces
by
J. de Groot and R.H. McDowell * (Amsterdam)

Introduction. If M is a subset of Hilbert space and ¢ is a topological
map of M onto M, it is, in general, impggsible to extend ¢ topologically
{or even continuously) over the closure M of M. However, is it possible
to find a suitable topological re-embedding M of M in Hilbert space
such that ¢ may be extended over M? The answer to this question is
in the affirmative. Actually, we shall prove far more: If & is a countable
set of continuous mappings of the separable metrizable gpace M into
itself, one can find a compact metric space J in which M is densely
embedded, such that every continuous map of the given set may be
extended continuously over M.

In order to avoid unnecessary repetitions it is useful to introduce
the notion of @-compactification. If I is a separable metrizable space
and @ a set of continuous maps of M into I, the space I is called
a @-compactification of M, if M is a compactum (compact metrie space)
containing M densely, such that every element of @ may be extended
continuously over 7.

We shall investigate @-compactifications in § 2 and we shall e. g. find,
for every set & closed under multiplication, necessary and sufficient
conditions under which such a @-compactification exists (Theorem 2.12).
The way in which @ operates on A enters into these conditions. It is
shown by examples and counterexamples that this is essential, and the
authors believe that it is practically impossible to find necessary and
sufficient conditions in terms of M alone. Applications to the case where
9 is a set of autohomeomorphisms of M are obtained as corollaries.

It is of interest to ask for conditions under which every autohomeo-
morphism of M can be extended to a suitable metric compactification 3
of M. We shall give in § 8 sufficient conditions — improving a little
on already known results — which are believed to be rather general.
Also a number of examples is given to clarify the situation.

* During the preparation of this paper, the second anthor was supported, in
part, by a Fulbright Study Grant, under the administration of the United States Edu-
cational Foundation in the Netherlands.
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Another problem of a somewhat different nature is the following,
The (not necessarily separable) metric space M may be embedded in
its completion il. To what extent can we extend an autohomeomorphism
of M over a part of 2 In analogy to & well-known theorem of Lavrentioft
we show in § 1 that there iy a Gs-set in i , containing M, over which
homeomorphic extension is possible. Our proof does not make uge of
Lavrentieff’s result. R. Engelking — who made several useful remarks
which have led to improvements of the present paper — has given a nice
proof of this theorem based on Lavrentieff’s theorem.

Since the G;s-sets in complete metric spaces are precisely the topo-
logically complete spaces, the theorem in § 1 actually says that if M
is any metrizable space, and @ a countable set of homeomorphisms
from M on M, then there is a complete metric space ar containing 7
densely over which all the funetions in @ can be extended to homeo-
morphigms.

The results in § 2 can be thought of as theorems on completely
regular spaces. Thus a separable metrizable space may be thought of
as a completely regular space having a base of cardinal s, In 2.3 we
show that if @ is a set of », continuous maps from such a space into
itgelf, then there is a compactification having a base of cardinal s, over
which all the functions in @ can be extended continuously. Here, and
in other places in § 2 (suitably modified) s, can be replaced by an
arbitrary infinite cardinal. The details lie outside the scope of this paper;
they will appear in a later publication.

§ 1. TeworEM. Let A be o subspace of a complete metric space (M, o),
and let @ be a countable set of homeomorphisms of A on A. Then there
is a Gyset 4 in M, containing A densely, such that every fumection in &
can be extended to a homeomorphism of A onto 4.

Proof. We assume, without loss of generality, that 4 is dense in M,
and that the functions ) in @ form a group under multiplication. For
each k&, let V(%) be the set of all points of M over which ¢, can
be extended continuously. This set is well-known to be a G5. We denote
by ¥V the @ obtained by taking QV(k), and by g the continuous

extension of g; over V. Now for each g ¢ i and each g, let o(pr, q) be
either oo or the infimum of the set of real numbers & with the property
that there is a neighbourhood U of g such that for z and yin Un4,
oo, pry) < &, and define

- 1
Vrgn= {P Ve a(pe, pip) < %},
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where k, 7, n run over all the positive integers. For fixed k,1, n, we shall
show that Viz. is & G5. Suppose p e Vian; then there is a neighbourhood
U of g;p such that

(1) for all z,y in Un 4, oloem, gry) < 1/n.

Since p ¢V, there is a neighbourhood W of p such that p(W)C U.
Suppose ge WAV. Then @ge U, hence U is g neighbourhood of g,q
with the property given by (1); that is, qe Viin- 1t follows that Vi, is
open in ¥, and is therefore itself a @, in .

Now set

L= Tisn.
A is a @s. For each k, we set
P =l
Then ¢% is & one to one continuous map from A onto 4 for each k, and
therefore (since the {g;} form a group) a homeomorphism for each Z%.

§ 2. #-Compactification.

2.1. LemwvA. Let (M, p) be a totally bounded metric space, and let
@ = {pn}, n running over the non-negative integers, be a set of continuous
mappings of M in M, where @, is the identity map. Define a real-valued
function 9 on M x M by
(a) ¢ (@, y) = max2 "o (g, gny) .

n
Then:

(1) @ s a metric on M,

(2) o and g induce the same topology on M,

(8) (M,Q) s totally bounded.

Proof. (1) g is clearly non-negative, and g(z,y) = 0 if and only
if o(x,y)=0; i e., if and only if @ =y. The symmetry of ¢ likewise
follows from that of ¢. It remains to show that for all z,y,ze¢ M,
0(2,y) <Q(z,2)+8(2,9)

First determine % so that

Max 2" (gnt, uy) = 270 (940, i) -
n
For this %,
(@, y) < 27o(pu, ga) + o{pe2, 71y}
< max 2" {o(pn®, pn2) -+ 0 (Pn?; ay)} <@, 2)+ (7, ) -
n

(2) For every r> 0, S C 8,z for each <M. Hence ¢ induces
a finer topology than p. Conversely, consider S, for any . Choose & > 0
such that D.27% < 7, where D is the g-diameter of M. Since each g, is
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continuous, there is 9 -neighbourhood U of % sueh that for every y ¢ U
and for each n <%, 2 "p(pn®, gny) < 7. Then glw,yy<r for all yeT.

(8) Here we again ma,ke use of the following: to show that gz, y) < s,
it suffices to show that 2 %o (e, ¢ry) < ¢ for the finite set of all % such
that 2% is no greater than the o-diameter of M.

Suppose that (M,g) is not totally bounded. Then for some s> 0,
we can find a sequence {x;} such thab for § & m, g(2;, @m) > & (M, @) is
totally bounded, hence every sequence in M containg & o-fundamental
subsequence. By successive refinement, we find a subsequence {y;} of {z;}
such that {pz¥:} is a o-fundamental sequence for each % for which 2%
is no grea.ter than the p-diameter of M. Then for sufficiently large j
and m, 2 %o (Pry;, Prlm) < & for each such %, contradicting our assumption
on {m}.

2.2, Luwwa, If the class of mappings @ used to define g is closed
under multiplication, then each ¢ € D is uniformly continuous with respect to g

Proof. Suppose the contrary. Then there exists an ¢ > 0 such that
for each n we can find x,, y, with

Sy, yn) < 1jn  and  g(phn, ¥a) > €.

Hence, for each n there is a k such that

0 (PrpTn, Prgyn) > 2%
Since such an inequality is only possible for a finite number of values
of k, it follows that the same % is associated with infinitely many values
of n. But gyp = g is also in @, and by the definition of g,

0 (PrPn, PrPYn) < 2k’fev(wm Yn)

for every n; a contradiction.

2.3. TEEOREM. Let M be a separable, metrizable space, and let @ be
a countable set of continuous mappings from B into diself. Then M possesses
a D-compactification 3,

Proof. We may assume without loss of generality that the set @ is
closed under products and containg the identity. Write @ as {p,}, where
n runs over the non-negative integers and ¢, is the identity. Since M is
separable, we may intreduce a totally bounded metric p into M so that
M and (M, ) are homeomorphic, Then, if g’ is the totally bounded metric
defined by (a), M and (M,p) are homeomorphic (Lemma 2.1). Denote
the completion of the metric space (M,d) by M. Clearly, 3 is a compact
Imetric space containing M densely. Finally, each ¢ e ®, being uniformly

continuous with respect to ¢ (Lemma 2.2), can be continuously extended
to M.
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2.4. Example. The metric (a), Lemma 2.1, depends on the class
of funetions @. In Lemma 2.2, we assumed this class to be closed under
multiplication. If this is not done, the functions in & may fail to carry
fundamental sequences to fundamental sequences (in (M ,0)). For instance,
let M be the countable discrete space, congidered as the subspace of the
unit interval consisting of all points with coordinate 1 /n or 1—1/n, where
n runs through the natural numbers > 2. Let ¢, be the identity map,
let @, interchange, for each k, the points 1/4%k and 1-1/4k, and let ¢,
move each point x to the point with largest coordinate less than that
of . Further, for # > 3, let gu = ¢, and form § as in Lemma 2.1. Now ¢
and ¢ agree on the sequence {1/(2n-+1)}, hence this sequence is also
fundamental in (1,p’). The sequence

{Sﬂz (_,nl-,-l) } = {2 nl+ 2-} !

however, is not fundamental in (J/,§), sin

1 1 1
e\ik’ w1271
2.5. CoroLLarY. If the space AL in Theorem 2.3 is 0-dimensional,
then M possesses a 0-dimensional @ -compactification.
Proof. A space I iz separable, metrizable and 0-dimensional if

and only i M admits a non-archimedian totally bounded metric o, that
is, & metric satisfying, for all x, ¥, 2,

ce for every %,

ez, y) <max{p(z,z2), 0z, ¥)}.

(For a discussion and references, see [4].) If the metric p is non-
archimedian and totally bounded, then so is the mefric g introduced
in Lemma 2.1, For
for some fixed %,

ez, y) = 2_k9 (e, gnY)

‘hence

2'(@,y) <max {2 % (g7, x2), 2 "0 (@r2, ga)}

< max {g'(z,2),8 (2,9)} -

That ﬂ, the completion of M in g, is also 0-dimensional follows
at once from the fact that M is dense in ; the extension of § over
If is easily seen to be non-archimedian.

PrOBLEM. The results in [5] suggest & method by which the above
result might be extended to arbitrary dimension, but we have no proof
of this conjecture ().

(* Added in proof: R. Engelking has given an affirmative solution to this
problem, without using the results of [5].
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Another question that suggests itsell is the following. Let M be
a separable metrizable 0- dimensional space, and let @ be a (not necessarily
countable) set of continuous mappings from M into M. If M possesses
a @-compactification, does it follow that M possesses a 0-dimensional
@-compactification? Theorem 2.12 below tells us that M possesses
3 @-compactification if and only if & is separable in the topology of
uniform convergence with respect to some totally bounded metric ,
on M. In view of Corollary 2.5, what we ave asking is this: If M is
0-dimensional can a mon-archimedian p be found with the desired pro-
perties?

2.6. COorROLLARY. Let ¢ ve a retraction on the separable metrizable
space M. Then there is a meiric compactification M of M such that ¢ can
be extended to a retraction of M on M.

Proof. Apply Theorem 2.3, with @ = {g"}. The extension of ¢
to Jf is evidently a retraction.

2.7. THEOREM. If ¥ is a finite or denumerable set of homeomorphisms
of the separable, metrizable space M onto itself, then a ¥-compactification
If can be constructed so that each extended map @ is a homeomorphism of
3 onto 3.

Proof. Let @ be the group generated by ¥, and apply Theorem 2.3.
Then each function in @, and its inverse, can be extended over M, which
yields the desired result, as can easily be seerm.

2.8. COoROLLARY. Hvery countable metrizable topological group G can
be embedded in a compact metric space M in such a way that all left
and right translations in G can be extended to homeomorphisms of M onto
itself.

Proof. Under the hypotheses, the space of G is separable and
metrizable, so Theorem 2.7 applies. Note that in general M cannot be
chosen to be a compact group; the additive group ox the integers, in the
discrete topology, for example, cannot be embedded in any compact
topological group.

2.9. CoroLLARY. Fuvery countable, non-discrete melrizable topological
group G is a one-to-one conlinuous image of a group of homeomorphisms
of the discontinuum D of Cantor, this last group furnished with the topology
of uniform convergence (see below).

Proof. The space M of @, being countable, non-discrete, homo-
geneous and metrizable, must be homeomorphic to the gpace of rationals.
Hence, we may introduce a non-archimedian totally bounded metric
in M ([4], [5]). & may be considered as a topological fransformation
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group over M, the transformations being left mult
isin G, and = in M, f(») is defined to be f-a.
We now apply Theorem 2.7, and obtain a compact 3 over which
every element of G can be extended. 3f ig compact, separable, dense
in jtself and 0-dimensional (2.5) and is therefore horsneomorphit; to D
So the elements of G can be considered ag homeomorphisms of D onto _D.
Now suppose that {f;} is a sequence of such homeomorphisms converging:
uniformly to 7. Then for every > 0, there is an N such thai; for n > N
and all @, 5(fum, fz) < &. Hence, this inequality holds for £ = e thé
identity of ¢. But this means that g(f,, ) < &, which implies tha’t {1
converges to f in the original topology on @. ’

2.10. Example. Given any metric compactification ¥ of the space
of rational numbers M, thgre is a homeomorphism of M onto itgelf which
cannot be extended over If. For, since M is not locally compact, H\2
must contain at least two points, p, and P.- Since the rationals are totally
disconnected, we can find in M mutually disjoint sets 4,, 4, and B
each of them hoth open and closed in M, such that P, is a limit poilft;
in M of 4, but not of A, or B,, and p, is a Hmit point of 4, and B, but
nob of 4;. Now any open set in M, being countable, metrizable and
dense in itself, is homeomorphic to M, hence we can define p so that
A, and A, are mapped homeomeorphieally on one another, and all other
points of M remain fizxed. Clearly, such a @ cannot be extended con-
tinuously over p,.

As Example 2.10 shows, Theorems 2.3 and 2.7 are in general false
if the cardinality of the class of fundiions to be extended is uncountable.
‘We shall see below (Theorems 2.12 and 2.14) to what extent generalization
in this direction is possible.

Let (M, g) be a totally bounded metric space, and let ¥ be a set
of continuous mappings from M into M. We now consider ¥ as a metric
space, under two distinct well-known metrics. The first and most im-
portant is defined as follows:

iplications: i.e. if f

alfry o) = sup o(fi3, fom) .
zeM

That d i3 indeed a metric is easily verified. The topology induced
on ¥ by this metric is ealled the fopology of uniform convergence with
respect o g.

We proceed to define a second metric on . Firgt, we recall the
definition of the Hausdorff metric on the class of bounded closed subsets
of & metric space X. The distance between the closed sets F and G in X
ig defined to be the infimum of the set of positive real numbers ¢ such
that: F lies in an ¢-neighbourhood of & and G lies in an s-neighbourhood
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of F; i. e. each point in either set is closer than ¢ to some point in the
other. It is well-known that this “distance’ is indeed a metric. Further,
we have the following crueial property: If X is a compact metnc
space, then so is the set of all closed subsets of X, under the Hausdorff
metric.

Now we apply the foregoing to the set ¥. Hach f e ¥ is a continuous
mapping from M x M into M, hence the graph of f is a closed subset
of M x M. We can consider M X M as a metric space under the ‘“‘product

metric”® g,, Where
ol(@s, Y1), (2, 92)] = max {p(ay, 25), 0(Y1,¥2)} -

We then define the distance dy between f, and f, to be the Hausddrif
distance between the graphs of 7, and f, in (M X M, g,). Thus Au(fr, fo) < &
means that for every z in M, there exist points #; and @, in M such that
oz, ), (L2, 2), olfimy, foz) and olf17, fo2,) are all legs than e This
formulation will be needed in the following lemma.

2.11. LuMyA. Let ¥ be a set of continuous mappings from the compact
metric space (M, g) into iiself. Then the topology of uniform convergence
with respect to o is equivalent to the topology given by the Hausdorff met-
rie on V.

A proof of this lemma can by found in Kuratowski [8], § 15, VIIL

9.12. TaEoREM. Let ¥ be a set of continuous mappings from the
separable metrizable space M into itself; assume ¥ to be closed under
multiplication. Then the following two statements are equivalent:

(i) For some totally bounded metric g on M, there is a topology on 4
finer than the topology of wniform cowvergence with respect to o, under
which ¥ is a separable topological semigroup.

(ii) M possesses a ¥-compactification (3,3

Proof. (i) implies (ii). Let {p;} be a countable dense set in ¥, closed
under multiplieation and containing the identity g,, and let g be the
metrie determined by {g;} and ¢ as in (a), Lemma 2.1. Now condition (i)
says that for every f e P, and every e > 0, there is a @ in {g;} such that
olfer, px) < & for all x; that is, {p;} is dense in ¥ if ¥ is given the topology
of uniform convergence with respect to g. We ghow that {pJ is also
dense in ¥ in the topology of uniform convergence with respect to g-

Let fin ¥, and £ > 0 be given. We must find a ¢ in {g;} such that

(f,q: < g; 1. €., such that, for all z, §'(fz, pz) < e. Choose % so that okg
is greater than the o- dla,meter of M, and for each n < %, define a function
Fp: Y-Y¥ by Fpg = gp-g. Since multiplication in Yf (in its original
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topology) is continuous in its second variable, each F, is a continuous
map from ¥ to ¥. Now for each n, let

Vo= {g: d(g’ Fu ) < 2n3} .
By (i), each ¥, is open in ¥, hence so is

U= ﬂFJIVn-
n<k

Therefore, U contains an element ¢ of {;}. For this ¢,

2-—n9 (an‘p'z"y onfz) < &
for all » and «; that is, ﬁ(q),]‘) <e

We now show that each f in ¥ is uniformly continnouns with respect
to . Let £ > 0 be given, and choose n 50 that §(fz, guz) < {e for all .
¥or any two points » and y in M,

glfz, fy) < o(fz, pa) + 0 (P, @uy) £ o(eny, )
<jiet 5(¢nwy PnY) -

Since ¢, is uniformly continuous with respect to 7 (Lemma 2.2), we can
find a 6> 0 such that g{wx,y) < 6 implies 3'(fz, fy) < e

It follows (as in Theorem 2.3) that each f in ¥ can be extended
continuously over the compact completion of M in the metric 3.

(ii) nnphes (i). View the functions in ¥ as continuous maps from
B to M. In view of Lemma 2. 11, ¥ in the topology of uniform con-
vergence determined by g is a subspace of a compact metric space, and
is therefore separable.

We show that ¥ is a topological semigroup in this topology. Suppose
that f and g are in ¥, and let e > 0 be given. Select 6 > 0 so that if
0(@y, m) < 8, then g(fay, f2s) < }&; let U; be a te-neighbourhood of f,
and U, a d6-neighbourhood of g. Then for f, in U, ¢, in U,, we have,
for each =z,

g (1103, for) < & (frg:2, foa )+ 8 (fth2, fgx) < 3ot }e=¢.

2.13. CororrarY. Let (M, Q) be a totally bounded metric space, and
let ¥ be a set of continuous mappings from M to M, closed under multi-
plication, and separable in the topology of uniform convergence with respect
to g. Then if the mapping taking (f, g) to fg is continuous in its second
variable, it is continuous in both variables simultaneously. (Note that this
mapping is automatically continuous in s first variable).

Proof. The proof that (i) implies (i) in Theorem 2.7 shows that M
possesses a Y- compactification (I,%). The set U there counstructed is
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in this case an open neighbourhood of f in the topology of uniform
convergence with respect to g, which lies in an e-sphere with respect
to 9. This is the only non-trivial argument needed to show that the
topologies of uniform convergence with respect to o and o are equivalent.
But ¥ is a topological semigroup in the latter topology, as the proof
that (ii) implies (i) showed. This completes the proof.

Tt also follows from the proof of Theorem 2.12 that if (i) is satisfied,
then ¥ is also a separable topological semigroup in the topology of
uniform convergence with respect to o. Notice thab Theorem 2.12 con-
tains Theorem 2.3; in the case of a countable number of mappings, the
diserete topology has the necessary properties.

Just as in the countable case, the foregoing results can be applied
to the problem of extending homeomorphisms.

2.14. TEmorEM. Let M be a separable metrizable space, and la ¥
be a group of homeomorphisms from M onto M. Then condition (i), Theo-
rem 2.12, is equivalent Jo

(iii) There exists a compact meiric space (# ,0) containing M densely,
such that every f in ¥ can be emtended to o homeomorphism from AT omto M.

Proof. If (i) holds, then every f in ¥ and its inverse can be extended
over M by Theorem 2.12, which gives us (iii).

Conversely, (iii) imples (i), which in turn implies (i) by the same
theorem.

2.15. COROLLARY. Let (M, o) be a totally bounded metric space, and
let ¥ be a group of homeomorphisms from M onto M, separable in the
topology of uniform convergence with respect to g. Then if the mapping
taking (7, g) to fg is continuous in its second variable, ¥ is a topological group.

Proof. We proceed just as in Corollary 2.13, and then observe that
the group of all homeomorphisms of a compact metric space onbo itself,
in the topology under consideration, is well-known to be a topological
group.

2.16. ProBLEM. Suppose that the separable metrizable space M is
homotopie to a point, i. e., there is a continuous mapping F: M x I =M,
where I is the closed unit interval, such that, for all z in M, F(z, 0) =2
and F(z,1) =a (o 2 fixed element of M). Does there exist a metrie
compactification M of M which is also homotopic to a point? Here we
must extend F to a mapping B fxI1-31 , which means that we must
extend continuously many functions from M into M. However, we are
dealing with & special type space, and the functions are related. Never-
theless, we have not been able to prove the result, even under the
additional hypothesis that as »; converges to » in I, F, converges to
P, uniformly.
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§ 8. Ga-Compactification. Let I/ denote, again, some separable
metrizable space, and let G denote the group of all “a,utohomeo-’
morphisms” of M; that is, homeomorphisms of M onto itself. It is
natural to try to characterize those spaces A possessing a Gy-com-
pactification. An important but restricted class of such spaces is the
class of locally compact M. Indeed, for these spaces the one-point com-
pactification is & Gr-compactification. Another, more general class has
been studied by H. Freudenthal [1] and the first author [2]. They
introduce an “endpoint™ or “ideal’ compactification which is in a certain
sense ‘‘maximal” (while the one-point compactification is ‘“minimal’).
Let us briefly mention one of their main results, which we shall require
in the sequel.

First, two definitions. A space M is called semicompact if every
point in B contains arbitrarily small neighbourhoods with compa,(:t-
boundaries. Further, for each space M, we define the space of quasi-
components Q(M). The points of Q (M) are the quasicomponents of I;
the topology is given by taking as a base those sets O C @ (M) for which
qg) {g} is open and closed in M. In this topology, @ () is & 0-dimensional,
regular topological space.

The result we shall need is the following ([1], [2]) (using compact
in the sense of bicompact):

(«) Every semicompact separable metrizable space I, such that
Q(M) is compact, possesses a Gy - compactification. ’

The proof of («) is rather elaborate. The main purpose of this section
is to extend this result to locally compact @ (M).

3.1. THEOREM. Every semicompact, separable metrizable space M with
a locally compact space of gquasicomponents Q(M) possesses a Gyr-com-
pactification M; <. e., there exists a compact metrizable space M containing
M densely, such that every homeomorphism from M onto iiself can be
extended homeomorphically over M.

Proof. Consider the map
T M—=Q M)

which maps each s in I on its quasicomponent g¢,. r is continuous.
If U is a compact open set in Q(M), then =Y U) is (open and) closed
in M, and is hence semicompact (as a subspace of M). If the space of
quasicomponents of a semicompact separable metrizable space is compact,
it is separable and metrizable ([2], p. 63); it follows that U is separable
(and metrizable). Using the Lindelsf covering theorem on M, we see
that Q(M) may be covered by a countable number of such U. From
this it follows that Q(M) is separable and metrizable.

Fundamenta Mathematicae, T. XLVIIL 18
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Sinece @ (M) is also locally compact and, we may assume, not compagct,
it may be compactified by a point ¢* to a (0-dimensional) compactum @*,

=0 {g.

Let {W;} = {Wi(g*)} be a countable base at ¢* in Q*. We now adjoin
a point m* to M, obtaining M* = M o {m*}, which we topologize as
follows. Extend 7 to M* by setting t*m* =¢*. A set open in ¥ will
also be open in M*, and a base for the open neighbourhoods of m* is
given by all sefs of the form 7*—1(W,). It can easily be seen that M* ig
semicompact (M* is 0-dimensional at m*), separable and metrizable,
and that its space of quasicomponents is Q*.

Smee Q* is compact, we can apply («) to obtain a G- compactifica-
tion 7% of M* Now every autohomeomorphlsm @ over M can first be
extended to an autohomeomorphism ¢* over M* by taking o*m* = m*.
This iz clear, since every ¢* induces a topological map t*g*z*~! of Q*
onto itself, under which ¢* is apparently invariant. Now by («), ¢* can
be extended over M* = A

3.2. Remarks. We note that if Q(M) is locally compact but not
compact, the Gy-compactification M here constiucted contains a point
m* such that for every fin Gy, the extension of f over I leaves m* fived.

It is of interest to observe that the case of a locally compact M is
not included in this theorem. Indeed, in [3] an example is given (Ex-
ample 1, p. 111) of a locally compact subspace M of the plane such that
Q(M) is neither Jocally compact nor separable (though it is countable).

The condition that M be semicompact is crucial. Jf M denotes the
interior of a circle in the plane, together with one point of its circum-
ference, then M is not semicompact, and possesses no Gar-compactifica-
tion. (In this case, @(M) consists of a single point). Semicompactness
is not sufficient, however. If 3f is the space of the rationals, M is semi-
compact and has no @y -compactification (Example 2.10). It is natural
to try to arrive at a satisfactory sufficient condition by imposing con-
ditions on @ (M); we have seen that local compactness is such a con-
dition. It seems unlikely that one can find necessary and sufficient
conditions in terms of “standard” topological properties of M. We have
already seen in § 2 that the way in which G4 operates on M plays an
important réle; Examples 3.3 and 3.4 below emphasize this point. It is,
indeed, often advisable to consider the autohomeomorphism group when
topological properties of a space are being considered. This is by no
means a new idea; von Neumann, for example, showed that certain
properties of Huclidean n-space (e.g. the existence or mnon-existence

of a “measure” for subsets) are reflected in the structure of its group
of isometries.
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3.3. Bxample. If ¥ is a rigid space, i. e. if Gy contains only the
identity map, then every metric compactification of M is evidently
a Gy-compactification. Such spaces are to be found among the 0-di-
mensional subsets of the line, or the connected, locally connected subsets
of the plane [7]. The conditions of our theorems are satisfied in neither
of these cases; in the first, M is semicompact, but Q (M) is not locally
compact, and in the second, A is not semicompact, though Q(M)
consists of a single point. Hence our sufficient conditions are by no
means Iecessary.

3.4. Example. In the preceding example @y was trivial. Similar
examples can be constructed, however, for which Gy is large. One may
consider, for example, a discrete union M = | JM; of countably many

i

mutually homeomorphic non-compact connected rigid subsets of the
plane. Here Q3 is isomorphic to the full symmetric group on the natural
numbers; that is, a group of continuous order. Nevertheless, M possesses
numerous G- compactifications.

3.5. Example. Every countable group is the group Gy for a suitable
one-dimensional separable totally bounded metrizable (M, o) such that
Gy can be extended over the completion M of M. The metric ¢ ean be
even chosen in such a way that M has any chosen dimension. We shall
not give details here, but refer to [6], [7], from which the results easily
follow.
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