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Rates of change and functional relations *
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Wi, S. Mahavier (Chicago, IIL.)

1. Introduction. In [1], Menger defines what he calls the rate
of change of one fluent with respect to another, relative to a subset
of a cartesian product of the domains of these fluents. If 4 denotes
a seb, by a fluent with domain A, Menger means a transformation from A
into the real numbers. In the present note the case of two functions f
and g each having a set B of real numbers as its domain is considered.
The purpose is to determine a relation between the existence of a rate
of change of f with respect to ¢ and the existence of & functional relation
between f and g. Throughout this note the word inferval is nsed to mean
closed interval and the word segment to mean open interval.

2. Rates of change. The rate of change of / with respect to ¢
will be considered relative to the subset of R X R consisting of all
pairs (2, x) for all numbers 2 in R. In this ease Menger’s definition is
equivalent to the following:

The statement that the number ¢ is the derivative of f with respect
to g at the number #, in B means (1) for each number ¢ > 0 there is
a number # in R such that [o—z] < ¢ and g{x) = g(%), and (2) f e >0
there iz & number 8 > 0 such that if z is & number in B for which
le—a| < & and g(@) # g(x), then |[f(z)—7(xe))/[g(®)—g(zo)]—ol <e.

Such a number ¢ will be denoted by D,f(w). In order that this
definition be equivalent to the statement that

f Zg+h) —f (@)

Dufte) = im0
it is necessary and sufﬁcmnt that the number z, have the property that
g(x) % g (@) for each number & in some open subset of B containing .
A number with this property would be called g-discriminating by Menger.
An example is given in [1] of funetions f and g each having the
Cantor ternary set C as its domain and such that (1) each number in

for m+hin R,
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the domain of ¢ is g-discriminating, (2) D,f(z) exists for each & in the
domain of g, and (3) f is not a funection of g on any open subset of the
domain of g. It follows from the theorem of section 4 below that there
do not exist continuous functions f and g on the interval [0, 1] satistying
conditions (2) and (3). Indeed, if g is continuous on [0, 1] then there
js no function f with domain [0, 1] such that f and ¢ satisfy conditions (1),
(2) and (3).

8. Functional relations. Suppose each of f and g is a function
whose domain includes the number set B. The statement that f is a func-
tion of ¢ on R means there is a funetion » with domain g(R) such that
for each z in R, f(z) = h[g(z)]. The statement that f is a function of g
near the number «, in R means there is an open subset § of E contain-
ing ®; such that f is a function of g on 8. Clearly if f is a function of g
near some number in B then the set of all such numbers is an open subset
of R. The following statement is an immediate consequence of these
definitions. In order that f should not be a function of g on R it is
necessary and sufficient that there exist two numbers z and y in E such
that g(@) = g{y) and f(z) #/(y).

The following is a simple example of differentiable functions each
with domain the interval [—2, 2] and such that each is a funection of
the other near every number in [—2, 2] but neither is a funetion of the
other on [—2,2]:

a? for —2<2<l
flo)=2* for —-2<2<2, g(w)z{Zm—-l for 1<m<2r

In this example f and g are functionally related on each of two
overlapping segments but not on the union of these segments.

4, The main theorem. If each of f and g is a continuous function
on the interval [0,1] and D,f exvists on [0, 1] then there is a dense open
subset K of [0,1)] such that f is a function of g near each number in K.

The proof of this theorem will be based on the following two lemmas.

Ievwma 1. If each of | and g is a continuous function whose domain
includes the number interval I, M denotes the subset of the cartesian plane
consisting of all points [g(x), f(2)] for all @ in I, and f is not & function
of g on any open subset of I, then some vertical line contains infinitely
many points of M.

Let T denote the continuous transformation of I onto M such
that for each number » in I, T(x) is [g(#), f(»)], and suppose that no
vertical line contains infinitely many points of M. Let a, and b, denote
numbers in I such that g(a;) = g(b;) and f(a,) % f(b,). Let L, denote
the vertical line containing T(a;,) and 7(b,). The image of [a,, b,] under
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T is a compact continuous curve and thus contains an areca from T(a,)
to T(b,) which contains at most finitely many points of L;. Let T'(e)
denote o point of a not on L, and let L] denote a vertical line between
T(a) and T'(e,). There is a last point 4, of I, on a in the order from
T(a,) to T(c;), and a first point A] of L{ on a in the order from 4; to T'(c).
Similarly there is 2 last point Bj of I; on a in the order from T(c) to
T(b,) and a first point B; of L; on « in the order irom Bj to T'(h,). The
subares 4,47 and B, B of a« have no point in common and they lie,
except for their endpoints, between I, and Ii. Let R, denote a circular
interior intersecting B, By, lying wholly between L, and L; and containing
no point of A;A7. Since I' is continuous, there is a subsegment §; of
the segment (a,, b;) such that T'(S,) is a subset of B, and since f is not
a function of g on §;, there exist numbers a, and b, in §; such that T'{(a,)
and T'(b,) are different points of the same vertical line, L,. By a process
gimilar to that deseribed above it may be established that there exist
a line Ij between L; and L; and different from L,, points 4, and B, on L,,
points A; and B; on Lz, and two mutually exclusive arcs 4,4; and B, B:
such that each is a subset of M and Hes except for its endpoints between. L,
and Lp. This process may be continued to establish the existence of
a sequence of pairs of vertical lines (Ly, L), (Lo, Ls), ... and a sequence
of mutually exclusive arcs 4,4}, 4,4;,.. such that for each positive
integer m, (1) Lp.: and Ly, lie between L, and L and (2) 4,45 has
one endpoint on Ln, the other on I; and lies except for its endpoints
between. L, and L. There is a vertical line L which for each positive
integer » lies between L, and ILj. L must intersect each arc of the
sequence A, A7, A, 45, ... and thus must contain infinitely many points
of M. This completes the proof.

LeMMA 2. If each of f and g is o continuous function whose domain
includes the number interval I and D,f exists on I, then for each number x,
in I there is an open subset 8 of I containing o, such that if © is in § and

g(@) = g (@) then f(z) = f(@).

Let M denote a subset of the cartesian plane and 7' a continuous
transtormation of I onto M as deseribed in the proof of Lemma 1.
Assume there is a number %, in I such that each open subset of I which
eontaing x, also contains a number @ such that g(z) = g(x,) but f(z) # F(a)-
Let L denote the vertical line containing T(z,). Every segment contain-
ing @, contains a number x such that 7(r) is on L and is different from
T(x,). It follows that there is a sequence @, Ty, ... of distinet numbers
in I convergent to ®, such that (1) for each positive integer n, T'(r,) i8
on I, (2) if m and n denote positive integers, T (z,) # T (@m), and (3) the
sequence T (), T (@), ... converges to T'(z,). Let ¢ = Dyf(%,), let 6> 0,
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and let R denote the set of all points (z,y) such that [[y—7f (x9)1/
Jlm— g{wzo)i—ec| < e. No point of L exeept T(x,) is & limit point of B
and thus for each positive integer n there is a circular interior C, con-
taining 7 (z,) but 0o point of R. Furthermore, for each » there is a sub-
segment S, of I such that (1) S, contains @, (2) 8, is of length less
than 1/n, and (3) T(S,) is a subset of Cy,. But T'(8,) is not a subset of L
since D,f exists on I and thus S, contains a number £, such that 7T(t,)
is not on L. Note that T'(Z,) is in O, and not in E. Now there is a number
8> 0 such that if ¢ is in I, [{—x,| < 6, and T'(t) is not on L, then T(z)
is in R. There is, however, an integer n such that S, is a subset of the
segment (2.— 98, #,--0) and this implies that [t,—x,| < § although T'(f,)
is not on L and not in E. This is a contradiction and the lemma follows.

Beginning now with the proof of the main theorem, let f and ¢
denote continuous functions each having [0, 1] as its domain and such
that D,f exists on [0, 1]. Assume that there is a subinterval I of [0, 1]
such that f is not a function of g near any number in I. It follows from
Lemma 1 that if T denotes a transformation as defined above then there
is a vertical line I which contains infinitely many points of T'(I). This
implies that there is a number 4, in 7 and an infinite sequence g, «,, ...
of distinet numbers in I convergent to z, such that (1) for each n > 0,
T(x,) is on L and (2) if m and » are integers, then T'(z,) = T (v,). But
from Lemma 2 it follows that there is an open subset § of 7 containing ,
such that if  is in S and g(x) = g(%,), then f(z) = f(z,). This is a con-
tradiction and thus each subinterval of [0,1] contains a number near
which f is a function of g. The set of all such numbers is an open subset
of [0,1]. This completes the proof.

5. Remarks. It can be shown that if each of f and g is a function
with domain the set R of real numbers, D,f(x) exists for each z in R,
and ¢ is continuous on R, then f is confinuous at each g¢-diseriminating
number in B. From this and the theorem of section 4 it follows easily that:

If each of f and g is o function with domain [0,1], D,f ewists on [0, 1],
g is continuous on [0, 1] and each number 2 in [0, 1] is g- discriminating,
then there is a dense subset K of [0,1] such that f is a function of g near
each number in K.

The theorem of secfion 4 does not hold if ¢ is not continuous, even
if f is increasing. This may be seen with the aid of the following example,
suggested independently by a student, Mr. T. Engelhart.

Let f(x) =@ for each x in [0, 1],

g(x) = { 0 for each rational number z in [0, 1],
1 for each irrational number x in [0, 1].
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In this example D;f(x) = 0 for each » in [0, 1] but { is not a function
of g on any open subset of [0, 1].

Lemma 2 cannot be strengthened by replacing the condition that
D,f exist on I with the condition that D,f(xr,) exist. This may be seen
with the aid of the following example.

Let

(@) _ z-sin(lfr) for O<o<1,
10 for 2=0
and
(@) _J f(x) for each x such that f(z) >0,
g 10 for each z such that f(a) <0

In this example D,;f(0) = 1 but every segment containing 0 contains
g, number # such that g(x) = g(0) =0 and f(z) = 0.

Finally, it will be noted that the theorem of section 4 cannot be
strengthened (even if 7 = 4, the identity function on [0, 1]) by requiring
that the complement of K, if it exists, be countable. That is, there is
a funetion g such that (1) g is continuous on [0, 1], (2) D,j exists on [0, 1],
(3) each number « in [0, 1] is g-discriminating, and (4) the set of numbers
near which j is not & function of ¢ is uncountable. How such a funection
may be defined is indicated below but no proof is given to show that
it has the required properties.

Let ¢ denote the Cantor ternary set on [0, 1] and let H denote
the collection of segments of the complement of C. For each segment s
in H, let R, denote a rhombic disc having s as one axis and whose other
axis is perpendicular to s and of length the square of the length of s.
Furthermore, let G, denote & continuous function with domain § (the
closure of s) such that (1) the graph of &, is a subset of Rs, (2) G5 has
derivative 0 at the endpoints of s, and (3) there exist numbers z <y
in s such that G has vertical cusps at « and y, and the derivative of
@, exists on $-—(r+v), being less than —1 on the segment (x,y) and
positive elsewhere. Liet g denote & function such that for each in C,
g(z) = x, and for each number # in a segment s of H, g{z) = &+ Gy(x).
Tt can be shown that g has the properties stated above.
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