

Extension of the set on which mappings into Sⁿ are homotopic

by

M. K. Fort, Jr. * (Georgia)

§ 1. Introduction. The following question has been raised by A. Granas [see "The New Scottish Book", Wrocław, 1946-1958, problem 179]:

"The function f(x) is defined on a compact space X and its values lie on the n-dimensional sphere S^n . If $X_0 \subset X$ denotes a set on which f(x) is homotopic to a constant, does there exist an open set G which contains X_0 and on which f(x) is also homotopic to a constant?"

In this paper we answer the above question affirmatively for X a metric space (compactness is not used in the proof of our theorem).

If H is a homotopy connecting f and g on X_0 , f and g being mappings on X into S^n , one might hope to find an open set G containing X_0 and a homotopy connecting f and g on G which is an extension of H. However, there is an example which shows that such an extension may not exist. In the proof of our theorem, we make use of H and an averaging process to construct a homotopy M which connects f and g on an open set G which contains X_0 . It is seen that we may make M be as close as we please to H on X_0 (within any preassigned positive distance), although we cannot require M and H to agree on X_0 .

§ 2. Main results. Let (X, d) be a metric space, and let f and g be mappings on X into the n-sphere S^n . We assume that d is a bounded metric for X, and that f is homotopic to g on a subset X_0 of X. We let I be the closed unit interval [0,1], and we embed S^n as the unit sphere in Euclidean (n+1)-space E^{n+1} . If $v \in E^{n+1}$, we let |v| denote the norm of v.

LEMMA. If μ , u_1 , u_2 , u_3 , ... are members of S^n , $|u_i - \mu| < \theta < 1/2$ for each i, $\lambda_i \geqslant 0$ for each i, $\sum_{i=1}^{\infty} \lambda_i$ converges, $A = \sum_{i=1}^{\infty} \lambda_i u_i$, and $\lambda_i > 0$ for some i, then:

$$(1-\theta)\sum_{i=1}^{\infty}\lambda_i \leqslant |A| \leqslant (1+\theta)\sum_{i=1}^{\infty}\lambda_i,$$

^{*} The author is an Alfred P. Sloan Research Fellow.

and

$$|(A/|A|)-\mu|<4\theta.$$

Proof.

$$\begin{split} |A| &\leqslant \Big| \sum_{i=1}^{\infty} \lambda_i (u_i - \mu) \Big| + \Big| \sum_{i=1}^{\infty} \lambda_i \mu \Big| \\ &\leqslant \theta \sum_{i=1}^{\infty} \lambda_i + \sum_{i=1}^{\infty} \lambda_i = (1+\theta) \sum_{i=1}^{\infty} \lambda_i \,. \end{split}$$

Also,

$$\sum_{i=1}^{\infty} \lambda_i = \Big| \sum_{i=1}^{\infty} \lambda_i \mu \, \Big| \leqslant \Big| \sum_{i=1}^{\infty} \lambda_i (\mu - u_i) \, \Big| + \Big| \sum_{i=1}^{\infty} \lambda_i u_i \, \Big|.$$

Thus,

$$\sum_{i=1}^\infty \lambda_i \leqslant \theta \, \sum_{i=1}^\infty \lambda_i + |A| \,, \quad \text{ and } \quad (1-\theta) \sum_{i=1}^\infty \lambda_i \leqslant |A| \;.$$

This proves our first conclusion.

Now,

$$\begin{split} (A/|A|) - \mu &\leqslant \Big(\Big| \sum_{i=1}^{\infty} \lambda_i (u_i - \mu) \Big| + \Big| \sum_{i=1}^{\infty} \lambda_i \mu - |A| \mu \Big| \Big) / |A| \\ &\leqslant \Big(\theta \sum_{i=1}^{\infty} \lambda_i + \Big| \sum_{i=1}^{\infty} \lambda_i - |A| \Big| \Big) / |A| \\ &\leqslant \Big(\theta \sum_{i=1}^{\infty} \lambda_i + \theta \sum_{i=1}^{\infty} \lambda_i \Big) / (1 - \theta) \sum_{i=1}^{\infty} \lambda_i \\ &\leqslant 2\theta / (1 - \theta) < 4\theta \;. \end{split}$$

THEOREM. If $H: X_0 \times I \to S^n$ is a homotopy such that H(x, 0) = f(x) and H(x, 1) = g(x) for $x \in X_0$, and $\varepsilon > 0$, then there exists an open set G containing X_0 and a homotopy $M: G \times I \to S^n$ such that M(x, 0) = f(x) and M(x, 1) = g(x) for $x \in G$, and $|M(x, t) - H(x, t)| < \varepsilon$ for $x \in X_0$ and $t \in I$.

Proof. We may assume without loss of generality that $\varepsilon < 1$. We define $\eta = \varepsilon/42$.

Since I is compact, for each $p \in X_0$ there exists $\delta(p) > 0$ such that if U(p) is the $\delta(p)$ -neighborhood of p in X_0 , then the diameter of H(U(p),t) is less than η for each $t \in I$. me define V(p) to be the $\delta(p)/2$ -neighborhood of p in X. me assume that $\delta(p)$ has been chosen small enough so that $X-V(p) \neq \emptyset$, and f(V(p)) and g(V(p)) each have diameter less than η .

If $p \in X_0$, $q \in X_0$ and $V(p) \cap V(q) \neq \emptyset$, then either $p \in U(q)$ or $q \in U(p)$, and hence $|H(p,t) - H(q,t)| < \eta$ for each $t \in I$.

We define $G = \bigcup_{p \in X_0} V(p)$. For each $p \in X_0$ we define a mapping a_p on G into the set of non negative numbers by

$$a_p(x) = \inf \{ d(x, y) | y \in X - V(p) \}.$$

It is easy to verify that

$$|a_p(x_1) - a_p(x_2)| \leq d(x_1, x_2)$$

for all $p \in X_0$, $x_1 \in G$, $x_2 \in G$.

We let F be the set of all mappings of I into S^n , and metrize F by

$$\varrho(u,v) = \sup\{|u(t)-v(t)| | t \in I\}.$$

The space (F, ϱ) is separable, and contains a countable dense subset D. Now, for each $p \in X_0$, we choose a member a_p of D such that

$$|H(p,t)-\varphi_p(t)|<\eta$$

for each $t \in I$. The set of all members of D which are chosen can be arranged in a sequence u_1, u_2, u_3, \dots We define a sequence $\beta_1, \beta_2, \beta_3, \dots$ of real valued functions on G by letting

$$E_i = \{ p \mid \varphi_p = u_i \}$$

and

$$\beta_i(x) = \sup \{a_p(x) | p \in E_i\}.$$

It is a simple matter to verify that

$$|\beta_i(x_1) - \beta_i(x_2)| \leq \sup\{|a_p(x_1) - a_p(x_2)| | p \in E_i\} \leq d(x_1, x_2).$$

Thus, each β is continuous.

Since we have assumed that d is a bounded metric, the functions a_p , $p \in X_0$, are uniformly bounded. Thus, we may define $k \colon G \times I \to E^{n+1}$ by

$$k(x, t) = \sum_{i=1}^{\infty} \beta_i(x) 2^{-i} u_i(t)$$
.

If $x \in G$, then there exists i such that $\beta_i(x) \neq 0$. Suppose $\beta_j(x) \neq 0 \neq \beta_k(x)$ for some $x \in V$. Then there exist points p and q in X_0 such that $a_p(x) \neq 0 \neq a_q(x)$ and $\varphi_p = u_j$, $\varphi_q = u_k$. It follows that $x \in V_p \cap V_q$. This implies that $|H(p, t) - H(q, t)| < \eta$ for each $t \in I$, and hence $\varrho(u_i, u_j) < 3\eta$.

If we now apply our Lemma to the series $\sum_{i=1}^{\infty} \beta_i(x) 2^{-i} u_i(t)$, letting μ be one of the $u_i(t)$ for which $\beta_i(x) \neq 0$, we see that |k(x,t)| > 0.

Thus, we may define $K: G \times I \rightarrow S^n$ by

$$K(x,t) = k(x,t)/|k(x,t)|.$$

It also follows from our Lemma that if $\beta_i(x) \neq 0$, then

$$|K(x,t)-u_i(t)|<12\eta.$$

We now obtain for $x \in G$:

$$\begin{split} |f(x)-f(p)| &< \eta \text{ for some } p \in X_0\,, \\ f(p) &= H(p\,,0)\,, \\ |H(p\,,0)-\varphi_p(0)| &< \eta\,, \end{split}$$

$$\varphi_{v}(0) = u_{i}(0)$$
 for some i such that $\beta_{i}(x) \neq 0$,

and finally

$$|u_i(0) - K(x, 0)| < 12\eta$$
.

Thus, it follows that $|f(x) - K(x, 0)| < 14\eta = \varepsilon/3$. Likewise, $|g(x) - K(x, 1)| < \varepsilon/3$.

If $x \in X_0$, $|H(x,t) - \varphi_x(t)| < \eta$ for all $t \in I$. We have $\varphi_x = u_i$ for some i such that $\beta_i(x) \neq 0$, and hence $|u_i(t) - K(x,t)| < 12\eta$. It follows that

$$|H(x,t)-K(x,t)|<13\eta<\varepsilon/3$$

for $x \in X_0$ and $t \in I$.

We now define $m: G \times I \rightarrow E^{n+1}$ by

$$m(x, t) = K(x, t) + (1-t)[f(x) - K(x, 0)] + t[g(x) - K(x, 1)].$$

It follows that $|m(x,t)-K(x,t)| < \varepsilon/3$ for all $x \in G$, $t \in I$, and m(x,0) = f(x), m(x,1) = g(x). Thus, we may define $M: G \times I \to S^n$ by letting M(x,t) = m(x,t)/|m(x,t)|. We obtain M(x,0) = f(x) and M(x,1) = g(x). Since M(x,t) is the point on S^n nearest m(x,t), we have $|M(x,t)-K(x,t)| \le |M(x,t)-m(x,t)| + |m(x,t)-K(x,t)| < 2\varepsilon/3$.

Finally, for $x \in X_0$ and $t \in I$,

$$|M(x,t)-H(x,t)| \leq |M(x,t)-K(x,t)|+|K(x,t)-H(x,t)|$$
$$< 2\varepsilon/3+\varepsilon/3 = \varepsilon.$$

This concludes the proof that M has the desired properties.

COROLLARY. If f and g are homotopic on a subset X_0 of X, then there is an open set W on which f and g are homotopic such that $W \supset X_0$ and W is dense in X.

Proof. By our Theorem, there exists an open set $G \supset X_0$ and a homotopy $M: G \times I \to S^n$ such that M(x, 0) = f(x) and M(x, 1) = g(x).

We let π be the set of all homotopies $N: G(N) \times I \to S^n$ for which: G(N) is open and $G(N) \supset G$, N is an extension of M, and N(x, 0) = f(x), N(x, 1) = g(x) for $x \in G(N)$.

It is possible to partially order π by defining $N_1 < N_2$ if and only if $G(N_1) \subset G(N_2)$ and N_2 is an extension of N_1 . Every chain in the partially ordered system $(\pi, <)$ has an upper bound, so by Zorn's lemma, there is a maximal element N^* . It is easy to see that, because N^* is maximal, $G(N^*)$ is dense in X. Hence, we obtain the desired set by letting $W = G(N^*)$.

Example. We define E to be the mapping of the real number system into S^1 (thought of as the group of complex numbers of unit modulus) which is defined by $E(x) = e^{ix}$. We let X be the closed interval [0, 1], and define f = E|X.

Next, we let A_n be the open interval $(2^{-n-1}, 2^{-n})$, and let $X_0 = \{0\}$ $\bigcup_{n=0}^{\infty} A_n$. We define r_n to be the mid point of A_n .

A homotopy $H: X_0 \times I \rightarrow S^1$ can be defined by

$$H(x,t) = \begin{cases} E(tr_n + t^2[x - r_n]) & \text{for } x \in A_n, \\ 1 & \text{for } x = 0. \end{cases}$$

Clearly, H(x, 1) = f(x) and H(x, 0) = 1 for all $x \in X_0$.

Now suppose that there exists an open (relative to X) set $G \supset X_0$ and an extension M of H such that $M: G \times I \to S^1$. It is easy to see that $2^{-n} \in G$ for all large n, since $0 \in G$, and hence $M(2^{-n}, t)$ is defined for large n and all $t \in I$. Moreover, we must have $E(tr_n + t^2[2^{-n} - r_n]) = M(2^{-n}, t) = E(tr_{n-1} + t^2[2^{-n} - r_{n-1}])$. This implies that

$$tr_n + t^2[2^{-n} - r_n] = tr_{n-1} + t^2[2^{-n} - r_{n-1}]$$

and hence $(t-t^2)(r_n-r_{n-1}) = 0$. This is impossible for 0 < t < 1.

Our example shows that, in general, the homotopy M of our Theorem cannot be obtained by extending the homotopy H.

Remark. In the proof of our Theorem, the fact that S^n is the unit sphere in E^{n+1} is used in the following way: Given a set of points on S^n having sufficiently small diameter, the number of points in the set being finite or enumerable, and a positive weight for each point of the cluster, we take a weighted average of the points in E^{n+1} and project this weighted average radially from the origin onto S^n . This procedure is used in defining K, and a similar technique is employed in defining M.

Now, if S^n is replaced by any finite n-dimensional polyhedron P^n , we can employ a similar technique. First of all, P^n can be embedded in E^{2n+1} . Then, since every finite polyhedron is an absolute neighborhood retract, there exists an open set W (in E^{2n+1}) containing P^n and a re-

traction R of W onto P^n . Hence, for all sufficiently small (in diameter) countable sets of points on P^n , we can take weighted averages in E^{2n+1} , and then, each such weighted average being in W, retract it by R onto P^n .

Thus, it is possible to replace the hypothesis in the statement of our Theorem that f and g are mappings into the n-sphere by the more general hypothesis that they are mappings into a finite polyhedron.

THE UNIVERSITY OF GEORGIA

Reçu par la Rédaction le 8.4.1959

Résolution d'un problème de M. Z. Zahorski sur les limites approximatives

par

L. Belowska (Łódź)

Du théorème de Young sur la symétrie de la structure d'une fonction résulte la conséquence suivante:

Pour chaque fonction f(x) de la variable réelle, définie dans un certain intervalle fermé, l'ensemble de toutes les valeurs x, pour lesquelles la limite supérieure à droite est inférieure à la limite supérieure à gauche, est tout au plus dénombrable.

M. Zahorski a demandé si ce théorème reste vrai quand on y remplace les limites supérieures par les limites supérieures approximatives,

Ce travail a pour objet de résoudre le problème de M. Zahorski. Nous y montrons, en effet, qu'il est possible de trouver une fonction de la variable réelle f(x), définie pour chaque x, pour laquelle l'ensemble des points, dont la limite approximative supérieure à droite est inférieure à la limite approximative supérieure à gauche, a la puissance du continu.

La construction de cette fonction se composera de 2 parties. Dans la première, on construit dans l'intervalle [-1,2] l'image géométrique d'une fonction f(x) non décroissante et bornée, qui admet, en tout point d'un ensemble non dense C ayant la puissance du continu, une dérivée à droite nulle et un nombre dérivée de Dini à gauche positif. En outre, cette fonction remplit la condition de Lipschitz dans l'intervalle de définition. Dans la seconde partie de la construction on détermine, à l'aide de la dérivée de la fonction f(x), la fonction caractéristique F(x) d'un certain ensemble, qui représentera la fonction cherchée.

l'e partie de la construction

Construisons l'image de la fonction f(x) comme le produit d'une suite déscendante d'ensembles fermés, bornés et non vides A_n . Les ensembles A_n sont connexes, se composent d'un nombre fini de segments rectilignes et de certains quadrilatères concaves. Nous définissons les ensembles A_n par induction de la façon suivante