icm

Extension of the set on which mappings into S" are
homotopic

by
M. K. Fort, Jr. * (Georgia)

§ 1. Introduction. The following question has been raised by
A, Granas [see ,,The New Scoftish Book”, Wroctaw, 1946-1958, problem
179]:

“The function f(x) is defined on a compact space X and its values
lie on the n-dimensional sphere 8" If X, C X denotes 2 set on which
f(z) is homotopic to a constant, does there exist an open set G which
containg X, and on which f(x) is also homotopic to a constant?”

In this paper we answer the above question affirmatively for X
a metric spaece (compactness is not used in the proof of our theorem).

If H is 2 homotopy connecting f and ¢ on X,, f and ¢ being mappings
on X into 8", one might hope to find an open set G containing X, and
3 homotopy connecting f and g on G which is an extension of H. However,
there is an example which shows that such an extension may not exist.
In the proof of our theorem, we make use of H and an averaging process
to construct a homotopy M which conneets f and ¢ on an open set @
which contains X,. It is seen that we may make M be as close as we
please to H on X, (within any preassigned positive distance), although
we cannot require M and H to agree on X,.

§ 2. Main results. Let (X, d) be a metric space, and let f and g
be mappings on X into the n-sphere 8" We assume that d is a bounded
metric for X, and that f is homotopic to g on a subset X, of X. We let I
be the closed unit interval [0, 1], and we embed S™ as the unit sphere
in Fuclidean (n-+1)-space B**, It v e B**, we let [v] denote the norm of v.

LEMMA. If p, Uy, Uy, Us, ... are members of 87, |uy—p| < 0 <12 for

o0 o0

each i, A= 0 for each i, D J; converges, A = 2 Ay, and >0 for
=1 =1

some 14, then:

(1—0) D A<IAl <A+ X4,

{1 i=1
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and
I(A/|4])—pl < 40.
Proof.
it <] Xt pm|+] X ran
i=1 i=
<6 Yat Yh=+0) Yi.
=i i in1
Also,
27~i=| Ziz‘/i'é; Zﬁi(#‘““i) +|27-iui .
i=1 =1 =1 1=
Thus,

(1—0) D h< 4]

-

i=1 =

This proves our first conclusion.

Now,

(A/lAn—yg(; Zai(u —p) \ + ( ;}Jlm—lAlul)/{Al
<(e§zi+1§al 41|}/ 141
<(0§’&+6§&)/(1 6)21

9/21 6) < 4_

TueoreM. If H: X, xI-+8" is a homotopy such that H(x, 0) = f(x}

and H(x,1) = g(x) for z ¢ X,, and ¢ > 0, then there ewisis an open set G

containing X, and & homotopy M: G xI—8" such that M (z, 0) = f(z)
and M(x,1)=g(®) for ve@, and |M(z,t)—H(z,t)]<e for welX,
and teT,

Proof. We may assume without loss of generality that &< 1.
We define 7 = /42,

Sinee I is compact, for each p ¢ X, there exists d(p) > 0 such that
if U(p) is the &(p)-neighborhood of p in X,, then the diameter of
H(U(p), 1) is less than % for each f¢I. me define V(p) to be the
&(p)/2-neighborhood of p in X. me assume that §(p) has been chosen
small enough so that X—V(p) # @, and f(V(p)) and g(V (p)) each have
diameter less than 7.

If peXy, geX, and V(p) ~
q¢U(p), and hence |H(p,t)—H(q,

V(g) # @, then either peU(g) or
t)| <7 for each fel.
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We define & = V(p). For each p e X, we define a mapping dp

peXo
on G into the set of non negative numbers by

ap(2) = inf {d(z, y)|y e X~V (p)}.
It is easy to verify that
ap(2,) — anl2y)] <

for all pe Xy, 2 €@,y myel.
We let F' be the set of all mappings of I into 87, and metrize F by

o(uy v) = sup {{u(t)—v(®)|jt e I}.

The space (¥, p) is separable, and contains a countable dense subset D.
Now, for each p ¢ X,, we choose a member ap of D such that

H(p, t)—pp(t) <7

for each t eI, The set of all members of D which are chosen can be
arranged in a sequence .y, Us, 4, ... We define a sequence 8, B, fay -
of real valued functions on G by letting

Ay, 2,)

= {p| gp = 1w}
and

pi(z) = sup {ay(®)| p € By} .
It is a simple matter to verify that

1Bi(2) — Bilea)| < sup {|ap(wy)— apl(me)| | p € Bi} < dllay, 22) .

Thus, each # is continuous.
Since we have assumed that 4 is a bounded metrie, the functions
ap, p € Xy, are uniformly bounded. Thus, we may define k: @ x I-E"* by

k@, t) = 2 Bulm) 2 ui(t) .

If z e @, then there exists ¢ such that fi() = 0. Suppose fi(z) # 0
5= fa() for some « ¢ V. Then there exist points p and g in X, such that
() # 0 % a(z) and @, = 4;, gy = 4. It follows that & ¢ Vp A V,. This
implies that |H (p, t)—H (g, t)] < 7 for each ¢ ¢ I, and hence p(u;, uy) < 37.

If we now apply our Lemma to the series yﬂ, (2)27 "u4(t), letting p

1=1

be one of the u(t) for which (=) # 0, we see that |k(z, )] > 0.
Thus, we may define K: Gx I—+8" by

K(2,1) = k(z, t)f[k(z, )| -,
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It algo follows from our Lemmsa that if fi(x) # 0, then
|E (@, t)—ut)] <129.
‘We now obtain for e G:

|f(@)—f(p)] <7 for some peXy,
fp) = H(p, 0),
H(p, 0)—@p(0)] <774
25(0) = u,(0) for some ¢ suech that i) =0,
and finally !
[0y — K (2, 0)} < 127.

Thus, it follows that [f(z)—K(z,0)] <14y = ¢/3. Likewise, lg(x)~—
— K (=, 1)] < £f3.

It 2eX,, Hiz,t)~eft)]<n for all tel. We have ¢, =u; for
some 4 such that By(x) 5 0, and hence |u;(t)— K (z, t)| < 127. It follows that

B (2, )— Kz, )] <187 < &3
for z e X, and tel.
We now define m: ¢ x [-E" by

m(z, 1) = K(z, 1)+ (1~ ) [f(2)— K(z, 0)] +i[g () — K (2, 1)].

It follows that |m{xz,t)—K(z,?)] < &3 for all 2¢@, i eI, and m(x, 0)
= f(@), m(x,1) = g(x). Thus, we may define M: @ x I->8" by letting
Mz, t) = m(w, 1) |m(z, t)|. We obtain M (z, 0) = f(z) and M (=, 1) = g(2)-
Since M (s, ) is the point on 8" nearest m(w,t), we have {M(z,1)—
—K(z, D] < | Mz, )—m(z, 1) +m(z, )~ K (s, 1) < 2/3.
Finally, for v e X, and tel,

M (@, 1)~ H (@, )| < | (2, t)— Kz, )| +|K (0, 1) — H (, 1)}
< 2ef3+¢f3=5s.

This coneludes the proof that M has the desired properties.

CoroLLARY. If f and g are homoiopic on a subset X, of X, then there
is an open set W on which | and g are homotopic such that W O X, and W
is demse in X.

Proof. By our Theorem, there exists an open set @D X, and
a homotopy M: @ x I—S8" such that M(z, 0) = f(zx) and M (z, 1) = g(@)-

We let = be the set of all homotopies N: G(N) x I—8" for which:
G{X) is open and G(N)D G, N is an extension of M, and N (z, 0) = f(z),
N(z,1) = g(x) for we G(H).
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It is possible to partially order » by defining N, < X, if and only
if G(N,)CG(N,) and N, is an extension of X,. Every chain in the
partially ordered system (x, <) has an upper bound, so by Zorn’s lemma,
there is a maximal element N* It is easy to see that, because N* is
maximal, G(N*) is dense in X. Hence, we obtain the desired set by
letting W = G{N*).

Example. We define F to be the mapping of the real number
system into S* (thought of as the group of complex numbers of unit
moduius) which is defined by H () = . We let X be the cloged interval
[0,1], and define f = F|X.

Next, we let 4, be the open interval (27", 27"), and let X, = {0}
o UJ An. We define 7, to be the mid point of A,.

n=0

A homotopy H: X, x I+8! can be defined by

Bltre+¢[xs— :
H(z, t) =__{1 (7'1;:; [J?m =’l"n(])) for z<d,,

Clearly, H(z,1) = f(z) and H(z,0) =1 for all z¢X,.

Now suppose that there exists an open (relative to X) set @D X,
and an extension M of H such that M: G x I8 It is easy to see that
27" e G for all large m, since 0 ¢ @, and hence M (27" %) is defined for
large m and all teI. Moreover, we must have E(tr,+1[2 "—r])
= M(27" 1) = B(try—1+1*[27"—#,-,]). This implies that

Uy (27— 1] = g 2 — 1]

and hence ({— ) (r,—7p—1) = 0. This is impossible for 0 < ¢ < 1.
Our example shows that, in general, the homotopy M of our
Theorem cannot be obtained by extending the homotopy H.

Remark. In the proof of our Theorem, the fact that 8™ is the
unit sphere in B! is used in the following way: Given a set of points
on 8™ having sufficiently small diameter, the number of points in the
set being finite or emumerable, and a positive weight for each point
of the cluster, we take a weighted average of the points in B and
project; this weighted average radially from the origin onto 8" This
procedure is used in defining K, and & similar technique is employed
in defining M,

Now, if 8" is replaced by any finite »-dimensional polyhedron P
we can employ a similar technique. First of all, P” can be embedded
in E*™*!, Then, since every finite polyhedron ig an absolute neighborhood
retract, there exists an open set W (in B*"*') containing P™ and a re-
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traction R of W onto P™ Hence, for all sufficiently small (in diameter)
countable sets of points on P", we can take weighted averages in B
and then, each such weighted average being in W, retract it by B onto P*,
Thus, it is possible to replace the hypothesis in the statement of
our Theorem that f and g are mappings into the n-sphere by the more
general hypothesis that they are mappings into a finite polyhedron.
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Résolution d’un probléeme de M. Z. Zahorski sur les
limites approximatives

par
L. Belowska (L4d2)

Du théoréme de Young sur la symétrie de la structure d’une fonction
résulte la conséquence suivante:

Pour chagune fonction f(x) de la variable réelle, définie dans un
certain intervalle fermé, ’ensemble de toutes les valeurs #, pour lesquelles
1a limite supérieure & droite est inférieure & la limite supérieure & gauche,
est tout au plus dénombrable.

M. Zahorski a demandé si ce théoréme reste vrai quand on y remplace
les limites supérieures par les limites supérienres approximatives.

Ce travail a pour objet de résoudre le probléme de M. Zahorski.
Nous y monfrons, en effet, quo’il est possible de trouver une fonction
de 1a variable réelle f(z), définie pour chague @, pour laquelle 'ensemble
des points, dont la limite approximative supérieure & droite est inférieure
4 la limite approximative supérienre &4 gauche, a la puissance du continu.

La construction de cette fonction se composera de 2 parties. Dans
la premiére, on construit dans P’intervalle [—1, 2] Pimage géométrique
d'une fonction f(z) non décroissante et bornée, qui admet, en tout point
d’un ensemble non dense ¢ ayant la puissance du continu, une dérivée
4 droite nulle et un nombre dérivé de Dini & gaunche positif. Bn outre,
cette fonetion remplit 1la condition de Lipschitz dans lintervalle de
définition. Dans la seconde partie de la consfruction on détermine,
4 Daide de la dérivée de la fonction f(z), la fonction caractéristique F (x)
d’un certain ensemble, qui représentera la fonction cherchée.

1™ partie de la construction

Construisons 1’image de la fonction f(z) comme le produit d’une
suite déscendante d’ensembles fermés, bornés et mon vides A.. Les
ensembles A, sont connexes, se composent d’un nombre fini de segments
rectilignes et de certains quadrilatéres concaves. Nous définissons les
ensembles A, par induction de la fagon snivante

Fundamenta Mathematicae, T. XLVIIL, 19
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