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Measures in homogenous spaces
by
A. M. Macbeath (Dundee) and S. Swierczkowski (Wroctaw)

1. Notation. Generally our notation will follow that of Weil [W]
and Halmos [T]. Let & be a locally compact topological group, H a closed
gubgroup. Let G/H be the homogeneous space of cosets xH with the usual
topology so that @ acts, by left translation, as a transitive group of
homeomorphisms of G/H. The natural mapping G—G/H will be denoted
by ¢ but sometimes we shall use the shorter notation Z instead of ¢(z)
for the projection #H of z in G/H. We shall also use T to denote a generic
element of G/H. We use dz, df to denote integration with respect to
the THaar measures in @, H, and 4(z), §(£) to denote the modular
functions in G, H ([W], p. 39).

For any topological space X, L{X) denotes the class of continuous
real-valued functions with compact support and L, (X) denotes the sub-
class consisting of non-negative functions. Similarly B(X) denotes the
class consisting of all extended real-valued Baire functions on X, B, (X)
the non-negative ones. (Extended real numbers include the values oo
as well as the ordinary real numbers.)

A set @ CX will be called an LB-set (locally Baire) it @ ~ E is
a Baire set whenever F is a Baire set. A function which is measurable
with respect to the ring of LB-sets will be called an LB-function. It is
convenient to extend the notion of a set of measure zero to LB-sets as
follows. If @) is an LB -set and x is 2 Baire measure we say that u(@) = 0
provided that u(@ ~ B) = 0 for each Baire set E. If u(@) = 0 then we
say that almost every x in X belongs to X—@. If f, g are LB-functions,
N is the set {2: f(a) # g(2)}, we say.that f = g[u] if u(N)=0. These
definitions do not introduce anything new if X is a o-compact space.

All measures we consider are non-negative Baire measures in the
sense that they are defined on the ring of all Baire sets; our usage of
the term ‘“Baire meagure’” differs thus from that of Halmos [H], where
a Baire measure ig assumed to be finite on compact sets.

2. Definitions and main results. A Baire measure x4 on G/H

is called (following Weil) relatively imvariant with factor h(z) if p(zE)
= h(x)u(H) for each Baire set F and x e Then h(zy)= h(z)h(y)
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and Weil (W], p. 42-45) showed that such a measure can exist
only if
(1) h(E)A(E) = 6(&) for each £¢H.

I ¢ admits no non-trivial homomorphism into the multiplicative
group of positive reals, and H is not unimodular, there can be no relatively
Invariant measure in G/H. This situation occurs when @ is the group of
3 by 38 real matrices with determinant 1 and X is the group of matrices
of the form

el 0 0
0 a b
0 01

Thus if we wish to have a elass of measure which exists for every
homogeneous space G/H, we must weaken our demands about invariance.
In .thJs. Paper we define a class of measure with an invariance property
which is weak enough to guarantee that such measures exist but which
turns to be strong enough to imply a connection with the Haar measure.

» DEFINITION 1. A non-vanishing Baire measure 4 in G/H which ig
finite on compact sets is called pseudo-invariant if, for each pair of compact
sets Oy C &, C,C G/H, there is a finite real number % such that when
BECC, teC, uth) <ku(H). In particular u(F)= 0 if and only if
u(tE) = 0. .

A pseudo-invariant measure is positive on ever '

£ . Y non-empty open set.
For if U is open an@ #(U) =0, then p(tU) = 0. Each compact set ¢
can .be covered by a finite union of sets tU, so 4(0) = 0 and the measure
vanishes contrary to definition.

Iji f<L,(@), then the expression f f(x€)dE, regarded as a funection
;ﬁ s tlzlonlstant on cosets #H and is therefore Teally a funetion F(z)

is well known that G/H). i i )
definen B feL (G/H). The mapping of L,(&) in L (G/H)

@) 1@ = [ fos)as

is linear and monotone. Since (2) is invariant under taking limits of
‘monotone sequences of non-negative functions, we derive that (2) defines
?Jlso & mapping of B (@) in B (G/H). In particular, if 7 ig a Baire set
in @ and xxz denotes the characteristic funetion of B, then 25(%) € B (G/H)‘

Let u be a Baire measure in G/H. For every Baire set T C G‘+defin(;

H(EB) = [ 76(%)du(z) .

It is obvious that % is a Baire measure in @.

Derisrrion 2. The meagure i G i
. ON 2. # will be ealled inherited it 3 i
continuous with respect to the Haar measure, # s absolutely
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If p is inherited, then, by the generalized Radon-Nikodym theorem
(proved in § 3) there is a non-negative LB-function k(z) such that
T k@) m(e)de = [ a(®)dp(E) .
The function & is called the factor function for the inherited measure y.
It is obvious that the above equality implies

[hi@)f (@) de = [ (@) dp(E)
for every fe B, (G).

Our main results are as follows. We follow Halmos in calling two
meagures equivalent if each is absolutely confinuous with respect to
the other.

TaroreM 1. For eny G, H there exists at least one pseudo-invariani
measure in G{H. Awy two pseudo-invariant measures in G[H are equivalent.

THEOREM 2. An LB -function h(x) is the factor function for an inherited
measure if and only if, for each £ H, and for almost all = (in the Haar
measure)

(3) h(2&) A(§) = h(x)5(£).

(This theorem is & generalization of Weil’s formula (1).)

THEOREM 3. 4 measure p in G/H is pseudo-invariant if and only
if w is inherited and the factor function h(w) is. essentially bounded away
from O and oo on each compoct set (i. e. for each compact set C there are
real positive nwumbers ky,ky, such that ky < hi{w) < ko holds for almosi
all zeC).

3. The Radon-Nikodym theorem for ‘@. In this section :we
justify the mse made of the Radon-Nikodym theorem in the last section
to obtain the factor function % (#), even when the usual condition of
total o-finiteness is not satisfied. Our proof is based on a condition of
Oxtoby, as indieated by Halmos ([H], p. vii; p. 132, Bx. 10; p. 256, Ex. 7).

THEOREM A. If v, and v, are Baire measures in G, v, is finite on
compact sels and v, s absolutely continuwous with vespect to vy, then there
exists @ non-negative LB -function h(z) such that, for each fe B(G),

(4) .J. j(@)do(@) = [ f(a)h(w)du(w) .

The function h is unique in the sense that if h* also has the above
property, then A = A%[w,].

We first show that ¢ satisfies Oxtoby’s condition, i.e. that & is
the union of a disjoint class D of Baire sets of finite », measure with the
property that every Baire set can be covered by a countable subclass of D.
To show this consider an open subgroup I’ of & which is o-compact.
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Every I'-coset is a countable union of disjoint bounded sets, let D be
the family of all these bounded sets. Now every compact Baire set is
contained in a finite union of I'- cosets since these are open, and therefore
also in a countable union of sets D e D. Since every Baire set belongs
to a subring generated by countably many compact sets ([H], p. 24,
Theorem D), the family D does what is required.

To prove Theorem 4, apply the Radon-Nikodym theorem (in the
form given in [HJ, p. 131, § 31, Bx. 7) to each space D eD. On each
space D there is a function hpe B (D) sueh that, for every function
fpeB(D)

[ to(@)an(@) = [ o) fp(@)dv(a) ;

or, for every feB(@),
[Hayan(@) = [ holw)f (@) dra) -
D D

The functioﬁ hp with this property is essentially unique. The function
h(z) on G such that, for each D eD, h(z) = hp(x) when x e D, clearly
satisties (4), and any such k is essentially unique.

4. Pseudo-invariant measures on G. In this section we prove
Theorems 1, 3 for groups, i. e., we prove the following theorem.

THEOREM B. Any pseudo-invariant measure on G is equivalent to the
Haar measure. More precisely, any pseudo-invariant measure v is definable
by an equation of the form

[Haydv (@) = [ (@)W (@),

where W is an LB - function essentially bounded away from zero and infinity
on every compact Set.

To prove that » iy equivalent to the Haar measure, we have to show
that, if ¥ is a Baire subset of @, then, on E, » and the Haar measure both
vanish or are both positive. If I'is a ¢-compact open subgroup of G which
contains B ([H1, § 57, Theorem A), the Haar measure carried over from ¢
will be a Haar measure in I, and » will be pseudo-invariant in I. Thus it
is enough to prove the equivalence part of Theorem B for I' ingtead of G.

Having proved the equivalence, the existence of an essentially unique
Radon-Nikodym derivative W (z) follows from Theorem A. The property
of W (2) that we have to establish concerns its values on a compact set C,
which is also contained in an open ¢-compact subgroup I. Thus it is
enough to prove Theorem B for a ¢-compact group, and we shall agsume,
in this section only, that & is o-compact.

Let G*= G x G be the group of ordered pairs (z,y) with Baire
measure »* =y X%, and G* the group of ordered triples (a,y,2) with
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Baire measure . We denote by g the Baire measure in G* which is
determined by the condition

[, 9)do(@,y) = [f(w, ay)dAe,y)  for  feB6).
If f{z,y) € B,(G?), then for each fixed z, by definition 1, the functions

P@) = [fle,n)dy), Q@ =[fl, )y

are both zero or both positive. Therefore the integrals
[jan=[P@av@), [ide=[Q@d)

are both zero or both positive. Thus the measures ¢ and 2 are equivalent,
and by the Radon-Nikodym theorem there is a positive function J (2, y)
such that for each feB(G?)

(5) [ 1@, @@, y) = [ fla, 1) (@, 9)d¥, ).

An analogous argument, carrying out the integration with respect to ¥
first, and then with respect to w¥(x, ), will show that, if f(z, ¥, z) e BL(G®)
and y(x,#) is any continuous mapping G2—@, then the integrals

ff(my iy, 2) a3z, Y, 2), ff(ma y(z, 2)Y, z)dmﬁ(m, Y,%)

both vanish or are both positive. In particular, if T denotes the trans-
formation
(6) T(myy7z) :(w,z"lwy,z),

then »(E) =0 if and ony if »*(TE) =0.

Tevma 2.1. The function J (@,y) may be chosen o be bounded away
from zero amd infinity on every compact set. v

Proof. We can alter J (@, y) on @ set of measure zero, 80 it is enough
to show that J(z,¥) is essentially bounded on every compact Baire
rectangle. Let M, N be compact Baire subsets of &. By deﬁnition. 1,
there are numbers k, %k, > 0 such that, for any f € B.(G%) vanishing
outside M x N,

b [ 1o, n)dr(y) < [ fla, a)dsly) <o [ fl@; 9)80).
Integrate with respect to »(x):
by [ 100 < [ flo, 9)d (@, 9)d* <o [ f003.

Thus &, <J(z,y) <k, almost everywhere in M X ¥, and the lemma
follows. We shall agsume from now on that J is bounded away from zero

and infinity on every compact set.
2*
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Let @(z,¥,2) ¢ L(G%). We shall obtain @ functional equation for .J
by transforming the following integral in fiwo ways:

I(®) = f@(m, Y, myz)dvs(:p, Y, R).
Firstly, we have, by Fubini’s theorem and (5),
) 1(@) = [ (@) [ (e, y, y2) By, 2)
= [@(@) [Ty, ) Plz, y, 22) DAY, 2)
= [ i) [J (@, )T (y, e) D@, ¥, 2) Bz, 2)
= [J(@, ) (y, 2D (@, 9, 2) @, ¥, 7).
On the other hand, if we write g(z, ¥, 2) = J (¥, 2)P(x, x4, 2), we have
(8) 1(@) = [dv(e) [T (@, 1D, ey, y2) (@, ¥)
= [ @ (@) [T (@, 9)T (¥, 2)Pla, &7y, 2) By, 2)
= [ @) [T (@, 9)g(@, ¥, 2) Dz, y)
= [dr() [ gl@, 2y, ) d¥(z, y)
= fJ(wy, 2)®(x, ¥, 2) ¥z, ¥, 2) .

Comparing the two expressions (7), (8), equal for all @ € L(G?), we deduce
the equation

J @y, 2) =J(y, #7)d (2, 2) 7] .
Applying the transformation T defined at (6), we have
() (e, 2) = J (@ ey, 272)d (2, 2)[1*]

I E deno‘Fes the subset of G® for which the equation (9) is false, and if,
_for each fixed y, B, denotes the set of (x, 2) for which it is false, then

W(E) = [HB,)d(y) = 0.

Thus there is at least one value ¥ = a such that »*(F ;
' Y=a 5 hai S == 0. [T J(za,z
is denoted by V(z), then by (9), ’ et #)

(10) V() =V(ee)d (z, 2)[+}].
Now let dmx be the integral on G defined by

[1@)dn(@) = [ @)V (@)@ (a).
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Temma 2.1 shows that V(z) is bounded on every compact set, so that
gvery f e L(G) is m-integrable. Since V(x) > 0, the measures v and = are
equivalent, and Theorem B will follow it we show that = is a Haar measure,
i. e., that, for each fixed feL(G), the function

I(t) = [ f(te) dz(x)

is a constant. Sinee f is uniformly continuous, with compact support,
the function I(¢) iy continuous, and the set N of ¢ for whieh I(f) # I(e)
is open. We shall show that #(N) = 0, and Theorem B wil follow since
the empty set is the only open set with »-meagure zero, as shown in § 2.
Let g ¢ L{¢). Apply the formula (5) with the variables (z, %) replaced
by (¢, ) and the function flx, y) replaced by Fx)V (@ m) g (t). Using (10),
we have

[1wgwar) = [ 1)V (@)g )&, 2)

= [, 2V (T0)f (@) g () D1, 2)

it

[V @i@)gt) &, 2)
= [gW)I{e)dr(t).

Thus, for every g e L(G), we bave [ [I{t)—I(e)lg(t)dr(i)=0. From this
it follows that »(N) =0, N =@, and Theorem B follows with W{z)
= 1/V (x).

5. On the existence of certain functions. Later it will be
necessary to make use of a function F(z) with the properties given in
the following theorem, where 8(f) denotes the minimal support of f,
i. e. 8(f) = {=: f(w) # O}

TaeorREM O. There emisis a continuous non negative function F(x)
defined on @ with the following properties '

(i) For each xe@, F(7) =1;

(i) If ¢ CGIH is compact, then ¢ Q) ~ 8(F) is bounded.

Let V be any bounded neighbourhood of e. A set Y C @ is called
(V, H)-separated if VyH ~ VeH = @ whenever y,2¢ Y, § #2.

Temma 5.1, If Y is (V, H)-separated, and CC G/H is compact, then
the set g~ 0) ~ Y s findle. More generally, if DC G s compact, the set
of ye¥ for which p{C) ~ Dy + O is finite.

Proof. Let U be any neighbourhood of ¢ guch that UvUTiCV.
Now ¢ () can be covered by a finite union of sets UzH (since C is
contained in a finite union of sets e(Ux). ¢ H{O)~ X is thus finite, sinee
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each set UxH contains at most one point y of Y; for, if, on the contrary,
y,2¢ Y ~ UnH, then, ye UU 2HH 'CVeH, and Y is not (V, H)-
separated. : '

The second part of the lemma follows from the first on replacing
the set O by the set B = D™'C; since ¢ (C)~ Dy # @ if and only if
y ep Y(B). This completes the proof of Lemma 5.1.

Since @ is completely regular, there exists a non-negative continuous
funetion g{z), equal to unity within the bounded set V™V, but equal
to zero outside some compact set D. Having chosen g(x), we define another
function f(z) by the relation

fa) = D glay™).

ye¥

The series may contain infinitely (perhaps uncountably) many terms,
but, as we shall now show, only a finite number of them differ from. zero.

Leyva 5.2. Let O be any compact subset of G/H. Then there is a finite
subset Y, of Y such that, if TeC, then,

fla) = Dlglay™).

ye¥y

Further S(f) ~ Y 0) is bounded and the functions f, | are continuous.
Proof. If ZeC, i. e, weg0), and gluxy™) 0, we must have

ayteD, zeDy. Thus Dy ~¢~3C) contains the point » and so is non-

empty. By Lemma 5.1, this can be true only it y belongs to a certain

finite subset ¥, of Y, and the first part of the lemma is proved.
Next,

8{f) ~ng(0) =”L€% Slg(zy™)) ~e™MO)CU {Dy: ye Xy}

The last set is compact because D is compact and Y, is finite.

For the continuity, it is enough to show that f, f are continuous
on compact subsets, since &, G/H are locally compact. On ¢~4{(), ¢ com-
pact, f is a finite sum of functions g,(z)= g(zy). Since g, ¢ L (G),
¢y and 7, are continuous, and the lemma follows.

Proof of Theorem C. Now let ¥ be a mawimal (V, H)-separated
set, and define g(z), f(#) as before. Then f(z)> 0 for every w; for if
JflzE)de =0, then fl@é) =0 for each £¢H, and, for each yeY,
glwty) = 0. Hence 2ty ¢ V', so Vakn~ Vy = @ for each £ e H. Thus
Ve ~VyH =@ and Y u {g} is (V, H)-separated, contradicting the
hypothesis that ¥ is maximal.

Set F(z) = f(#)/f(z). Then F(Z) =1, F is the guotient of two con-
tinuous functions, and, since S(f) = S(¥F), Theorem C follows.

icm

Measures in homogeneous spaces 23

6. Inherited measures. Proof of Theorem 2. Let x4 be an
inherited measure on G/H, with factor function h{z). Thus, for each

fEB—;-(G)a

(1) 1(h = [I@au@ = [ Ho)h@)ds.

Tet o e H. If f{@) = flwo™?), we have 1(F) = 8(0)](E), so that

5() () = [ FA@ap@) = [ flach(@)de = A(0) [#@h(zo)de.

Thus, for each feL(G),
[ @) k(@) 4 () — h(w)d(o)1dz =0,

proving that the equation (3) must be satisfied for almost 23,11 2

Suppose conversely that h(z) is any LB-function satisfying (3)-
Let F(z) be any function which satisfies the conditions of Theorem C.
For each g(%) ¢ B(G/H), we have g(@)F (x) « BL(G). Define a measure u
in G/H by

(12) 1(g) = [ 9@ du(@) = [ 9@ F(@)h(x)do.

Then the measure g is an inherited measure with factor funcltion h since
by Fubini’s theorem, (3), Theorem C (i) and the properties of 4, &
([W], p. 39-40), we have, for feB.(G),

[T@ap@ = [1@F @h(z)de = [ ag [ (@) F (@) h(@)dw
= [ 4™ [ 1) P @ hlwg ™) duds
= [do | 567 F g f (@) (@) a
= [flo)h(@)de [ F(25)dE = [f@)h(@)da.

This completes the proof of Theorem 2. We note tpa.t tl}e @easur.t;
associated with a given factor function must ngcessarﬂy be unique (i
it exists at all) because of (11). Thus we ob'mm the_ same{) measm;;eg
independently of our choice of function F(z) in equation (12}, provi
that F(x) satisties the conditions of -Theorem C.

7. Pseudo-invariant measures. Let p be 8 pseudo-m\.mrlanii;
measure on G/H. Then Ais a pseudo-invariant measure oL @, since,

t ¢ 0; and S(f) C O, (Cy, C, C @), then 8(7) C ¢(0y), and there is & number
% such that

[ tito)diito) = [ T du(@®) <k [ [E)du(E) = 1) dE@) -
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It 1.30110\‘\75 from Theorem B, § 4, that u is inherited, with a factor tunction
which is essentially bounded away from zero and infinity on egch
compact set. l o

Conversely, let k() be any LB -function satisfying (3), and bounded
away from zero and infinity on each compact set. We shall show that
the measure defined by the equation (12) of §6 is pseudo-invarian(f
We have to show that if ¢ is a compact subset of @ and ge L (G/II).
then there is a constant % such that, if te 0, f <y, feB,(G/Hj)L, 1:h91;

SR an@) <k [ 1(z)ap=) .

The set of 4 such that, for some te O, g@BFE ') > 0 is Dounded ax
a 1es111’f of ??eorem C (i). Thus there is a number % guch that, if t’e ¢
:wd q(:t)F(t @) > 0, then h(t™ %) = kh(x). Using this inequality and the
Invariance of the Haar measure, we derive: ' '

ff(t;f) du(T) :f FZ)F(z)h(x)dr = f @ FE ) (1 ) doe

<k [ @ FE0) (@) de = & 1@ duz).

The 'laj.st equation holds because F(t7'%) as well ag F(
CO]ldlfv.IOIlS of Theorem C. Thus Theorem 3 ig proved
and Itl;maﬂy we provg Theoxjem.l. Let u be a pseudo-invariant measure
il Bagﬁ-n& a function satisfying the conditions of Theorem (. Then
{G/H), we have I(j) =ff(o?)F(m)h(w)dw. Since A(x) > 0, 'f(f)’

‘d«nlSheS if and OD.IY if ?(.’L‘)F(J? vanist &8 exce or 3 Hdé I/[[ easure
) g D 3 .
b set ol Haar 2RI
Zero in G. Thls Condltrlon 18 1n i o

dependent of the particular i i
o : pseudo-invariant
meas;‘l;l)e /,}tl chosen, so any two Dseudo-invariant meagures ave equivalent
o ‘st 1cl»W ‘tha:t_ at least one pseudo-invariant measure exigtg . W(;
f.F?;E)A?E)?}]?%t;d measure defined by the factor function ’h(aﬂ)
= &, which is non- i igfi ;
antion 3 idenﬂcaus’, . Zero, continuouns, and satisfies the

@) satisfies the
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Mappings into normed linear spaces
by
V. Klee* (Copenhagen and Seattle)

We contribute a few new fragments to a still fragmentary theory—
that of the topological structure of infinite-dimensional normed linear
spaces. § 1 is concerned with a problem of Fréchef [6] and Banach [1]:
Are all infinite-dimensional separable Banach spaces homeomorphic?
Kaded [7, 8] recently obtained an affirmative answer for the case of
reflexive spaces. With the aid of a mapping theorem of Whyburn [29],
we are able to extend the reasoning of [8] to cover all infinite-dimensional
separable conjugate spaces. §2 beging with some remarks on linear
transformations of spaces Is, extending a result of Banach and Mazur [2].
In conjunction with a theorem of Bartle and Graves [3], this leads to
some interesting corollaries such as an embedding theorem of Dowker [5]
and the fact that every metric space of cardinality < c¢ admits a binnique
continuous map onto some totally bounded metric space (). Ao example
in § 2 substantiates a conjecture in Michael's selection theory [24]. A few
other results are obtained and some ungolved problems are stated.

§ 1. The theorem of Kadeé. A subset X of a metric space will
be called a Tehebycheff set provided each point of the space admits
a unique nearest point in X. An admissible norm for a normed linear
space is one which generates the same topology as the given norm.

Kadet first proved [7] that all infinite-dimensional separable wuni- .
formly convex Banach spaces are homeomorphie, then later observed [8]
that the relevant consequences of uniform convexity can be obtained
in more general spaces. By careful analysis of his reasoning, one arrives
at the following conclusion.

1.1. TumorkEM (Kaded). Two infinite-dimensional normed linear
spaces B, and B, are homeomorphic if (for ¢ =1,2) there exist on ad-
missible norm. || | for Bi, a linear subspace F; of the comjugate space Bf,
and o lineorly independent sequence [, in F; such that the following three
conditions are satisfied:

* Research fellow of the Alfred P. Sloan Foundation.
() Added in proof: A simpler proof of this fact has been communicated to the

author by Professor H. H. Corson.
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