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On some functional equations in Banach spaces

. by
8. KUREPA (Zagreb)

Throughout this paper R = {t,s,u,...} denotes the set of all real
numbers, X = {,y,2,...} a complete Banach space, X* the adjoint
of X and L(X) the set of all linear and continuous mappings of X into X
endowed with the usual structure of a Banach space.

In §1 we consider operator-valued mappings ¥ and ¢ of R into
L(X) such that

1)

holds for all ¢, seR. In the case FF = G we have a cosine functional equa-
tion for which we have proved [6] that a weak meagurability of F on
one interval implies a weak continuity of ' on R in the case of X being
a separable Hilbert space. Theorem 1 of this paper extends this result
to the case of a reflexive and separable Banach space. If X is a Hilbert
space, F'(f) = N () is a normal operator and the function N (1) is weakly
continuous, then ¥ (f) = costN for all teR, where the normal operator N
does not depend on t [6]. In this paper we generalise this result to the
functional equation (1).

In §2 we consider continuous complex-valued functionals f and g
defined on X and such that

{2) f@+y)+fl@—y) = 2f()g(y)

for all @, y «X. We prove that the functionals f and g can be expressed as
functions of an additive and continuous functional. Some other functional
equations which can be reduced to (2) are also treated.

We note that St. Kaczmarz [3] has congidered real-valued funec-
tions f, ¢ defined on R and such that

J@)+f(z+y) = o) f(=+y/2).

Replacing here # by 2+ y/2 and setting ¢(y) = 2¢(y/2) we find that f
and g satisfy (2) and conversely. Kaczmarz has proved that the measurabil-
ity of f implies the continuity of functions f,p and he has found all

I«’(i+ §)+F (1—s) = 2F ()G (s)
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solutions of that equation. It seems to us that his method (lemma 2,
p. 144) cannot be generalised to the general case of functional equation (1).

§ 1. THEOREM 1. Let t — F(t) be a mapping of R into L(X) such that:
(3) F(t+s)+ F(t—s) = 2F({)F(s), F(0)=E
for all t, seR, where B is the identity operator.

Suppose that: a) There is an interval I << B such that the restriction
of F on I is weakly measurable, and b) X is a separable and reflexive Banach

space.
Then F is a weakly continuous function on R.
Proof. In the same way as in [6], theorem 1, we find that F (1) is
weakly measurable on R and that |[F(t)]} is a bounded function on every

finite interval. Hence a function
Y F(H)r]  (zeX, yteXY)

is summable in every finite interval. This implies that the equation
b

(4) ymle] = [ y* [P ()2)at

a

defines a linear functional yj, for any a,beR and y*<X*. By X we
denote the set of all functionals yj,«X* which can be written in the

form (4). We assert that X7 is dense in X*, i. e. X7 = X*. Suppose that
this is not true. Then a functional 2*¢X* exists such that z*¢X’ and
#* % 0. But then a functional w™*<X* can be found ([2], p.64-65)
such that

(8) w1 =1 and w™[y*] =0

for all y*ef{‘. Since X is a reflexive space ([2], p. 66) one can find an
element weX such that

W™ [y*] = y* [w]
for every y*e X*. This and (5) lead to
(6) Yap[w] =0
for all yy,eXY. Now (6) and (4) imply

b
M [y IF@widt =0

for every couple a,beR and for any y*<X*. From (7) we find
(8) VIFHw] =0
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for every 1¢8(y*) where mS(y*) = 0 (the Lebesgue measure of S(y*)).
Since X* is a separable space there is a set 4 — Wl usy oy, ..}
o0

which is countable and dense on X*. We set § — U S(¥5). Then
k=1

m8 =0 and y,[F(H)w]=0 for every ¢¢8.
Since 4 is dense on X* we find

(9) Fltyw =0

for every i¢S. Obviously m§ = 0 implies the existence of a number
wek such that 4¢8 and 2u¢S. From (9) we find F(2u)w = F(u)w = 0,
which together with the functional equation (3) leads to

w = F(0)w = [F(2u)— 2F*(u)]w — 0,
which contradicts (5). Thus X7 iy dense on X*. Replacing z by 2F(s)w
in (4) and using (3) we get

b
2a [F(s)2] = [ y*[2F(s) F(t)2]ds

b bys b-s
= [Vt +Fla—s)olat = [ y' (Poymla+ [ v*1F@0a)a,
a a4-8 a—8

from which we see that 2*[F ()2] is a continuous function for any
#*eX7. Since X} is dense on X* and IF(t)|| is locally bounded, we find
that y*[F(t)z] is continuous for any pair <X and Y eX* e F(1) is
a weakly continuous function on R, q.e. d.

THEOREM 2. Let X be o Hilbert space (separable or mot), t-> N (t)
& mapping of R into the set of all bounded normal operators defined on X
and ¢t — F(t) a mapping of R into L(X). Suppose that:

a) 1 is mot an eigenvalue of N (s) for all s,

b) there is at least one tyeR such that F (1) is a bounded and every-

where defined operator,
¢) F(t) is a weakly continuous function on R,

d) F(t) and N(s) satisfy the functional equation
(10) B+ 8)+F(t—s) = 2F (1) N (s).
Lhen,

F(t) = A costN+BsintN

and N (t) = costN

Jor every teR, where N is a normal operator which does not depend on
and A, B are bounded Vnear operators.

Proof. Setting s =0 and ¢ = ¢, in (10) we get F(f,) = F (1) N (0),
which implies N (0) = B. Further (11) leads to

(11) N(s)=3F7 (1) [F (ty+8)+F (ty—s)],
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from which we immediatelly deduce
(12) N@+8)+N(t—s) = 2N(t)N(s)

for all ¢, seR. The weak continuity of F(¢) and (11) imply that N (¢) is
a weakly continuous function. This, N(0) = B and theorem 2 of [6]
imply the existence of a normal operator N such that

(13) N(t) = costN
for every t{<R. In such a way (10) is reduced to
(14) F(t+8)+ F(t—s) = 2F (t)cossN .

If F,(t) and F,(t) denote the even and the odd part of ¥ (¢) respect-
ively, then (14) leads to
(15) Fi(t+s8)+Fi(t—s) = 2F,(t)cossN,

(16) Fo(t+8) 4 Fy(t—s) = 2F,(t)cossN.

For t = 0, (15) gives F,(s) = AcossN with 4 = F,(0) = F(0). If
we interchange ¢ and s in (16) and add the result obtained to (16), we get
(17) Fy(t+s) = Fy(t)cossN - F,(s)costN .

Using the identity
(18) Fylty+ (ta+15)] = Fal(fa-h-2a) + 1]
and (17) we find

Py(ty)sinty Nsint, N — B, (t5)sint, N sint, V.
For §, =1, t, =1, = 8/2 we get
Fy(t)- (B—N(s)) = 2F,(s/2)sins /2N sint¥,
from which follows F,(¢) = BsintN. Thus F(t) = F,(t)--F,(¢) = AcostN

+BsintN and N (f) = costN. It is easily seen that these functions satisfy
functional equation (10).

§2. TumorEM 3. Let X be a Bamach space and x — f(x) a complex-
-valued functional defined on X and such that

(19) fla+y)+fl@—y) = 2f(2)f(y),
for all z,yeX.

If the functional f is continuous, then an additive and continuous fune-
tional a(x) ewists such that

(20) f(z) = cosa(x)
for all z<X.

fl=1
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Proof. We divide the proof in four steps.
I. For a given we¢X, © £ 0 and a real number ¢ set

fa(t) = ft2).
Then
(21) Fo(b+8)+fult—8) = 2 (D)fu(s), fu(0) =1

for all ¢, seR. Since a complex-valued function f,(¢) of a real wariable ¢
ig continuous, we have ([7], p. 172, lemma 4) f,(f) = costb(x) for every
teR, where the complex number b(x) is determined up to the sign by
f=(f). Thus

(22) fltz) = costh ().
The continuity of the functional f implies the continuity of the

functional b%(z). By a(x) we denote one of two possible continuous
functionals such that a?(z) = b%(x). Then (22) implies

(23) f(tx) = costa(x)

for all zeX, teR, where a(2) is a continuous and obviously a(ix) = ta(x).
It remains to prove that

(24) a(w+y) = a(@)+aly).
II. Suppose that X is a real Hilbert space. Setting (23) in (19) we get
(25) costa(x+y)+ costa(z—y) = 2cosa(w)cosa(y).

If we take the second derivative of (25) with respect to ¢ we find
(26)  a?(a+y)costa(w+y)+ a*(z—y) costa(w—y)

= 2[a?(z)+ a*(y)]- costa(x)- costa(y)— 4a(x)a(y)sinta(r)sinta(y).
For t = 0 (26) implies

(27) at(@+y)+ ot (@—y) = 20*(x) 4 2a*(y).
Since a®(x) is a continuous functional we have ([5], theorem 3)
(28) a?(2) = (4=, )+ (Bx, )

where A and B are symmetrical and bounded linear operators. Formula
(21) implies

(29) a?(wty) = a*(v)+ o?(y) £ 2[4 (w, )+ 4(Bz, ¥)].
Now (29), (28), (26) and (25) lead to

(30)  [(d=,y)+ (B, y)]-[costa(w+y)— costa({zr—y)]
= —2a(x)a(y)sinta(x)sinta(y).
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If we take the second derivative of (30) and if we set ¢ = 0 we get
(31) (A, y)+i(Be, y) = £a()aly),

from which it follows that a(x) is a linear functional.

III. X is a complex n-dimensional space. Obviously we can ‘“‘repre-
sent” X by use of a 2n-dimensional unitary (Hilbert) space X = 1@,y ...}
in such a way that this representation is one-one, additive and con-
tinuous. If » and # are corresponding elements we set f () = F=). Then}
is a continuous functional on X and it satisfies (19). Since X is a unitary
space (by use of IT) we have f (t#) = costa(x), where a(Z) is a continuous
and linear functional on X. Thus

(32) costa (L) = costa(x)
for all teR, xeX and ze x. Obviously (32) implies
(33) a(z) = ea(x)

for all # and &, where ¢ does not depend on #, # and ¢ = 1 or & = —1.
This and (33) imply that a(®) is an additive funectional on X.

IV. The general case: X is a complex Banach space. In order to
prove (24) for given z,y¢X we consider a two-dimensional Banach
subspace X, whose elements are # and y. The restriction of f on X 3 We
denote by f,. Then f, is a continuous functional on X, and it satisfies (19).
Using III we have f,(tz) = cosia,(z) for every teR and for each zeX,,
where g,(2) is a continuous and additive functional. On the other hand,
fa is the restriction of f. Thus costas(2) = costa(z), which implies a(z)
= &y (2) for all ze X,, where ¢ does not depend on zand e = 1, or & == —1.
Therefore we have a(zx-+y) = ear(@+y) = eay(®)+ say(y) = a{x)+ a(y).
Since 4 and y are arbitrary vectors of X, (24) is proved. In such a way
theorem 3 is completely proved.

THEEOREM 4. Let M = {a} be the set of all real square matrices of the
order n, and x — f(x) a complex-valued functional defined on M and such that :

a) for all @, yeM

(34) fe+y)+fla—y) = 2f(@)fy),

b) f(x) s a continuous functional;
) f(s™'ws) = f() for each xeM and for every non-singular matric s M.
Then f(z) = cos(aTrax) for all weM, where the complex number a does
not depend on x and
n
Tra = Zwk,,
k=1

FO) =1;

is the trace of the matriz .
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Proof. Asin theorem 3, we have f(iz) = costa(x) for all te R, where
a(z) is a continuous functional such that
a*(z+y)+ a2 (z—y) = 202 (2) + 20%(y).

Since f is invariant we find a%(s~'xs) = a2(s), which leads to

Ty Xy
(35) a*(x) = a;- (Tra)?+a,- v ] i B
I @ |

for every @M, where the complex numbers @, and a, do not depend on
([4], theorem 9). Now (35) implies
g Yig
N {5 e }
<n W Tii Yii

Igi<ig

Yii L5

VY5 Zij

a(zLy) = a?(x)+ a®(y)22a, Tra-Try+ b,

from which in the same way as in theorem 3 we get
| Ysi Zig |

| Tz Yag
|
Yii Ty ‘

(36)  2a, Tra-Try-+ a,- Z{ }=i2a(w)a(y)-

1<i<i<n 25 4

If a(y) = 0 for every yeM, then theorem 4 is satisfied with a = 0.
If one can find y,eM for whick a(y,) # 0, then from (36) after dividing
by 2a(y,) one easily concludes that a(x) is an additive functional, i. e.
a(@z+y) = a{x)+aly) for all z,yeM. Sinece a(x) is continuous and
a(s™'ws) = a(xz), we find a(r) = aTrz ([4], theorem 3). Thus f(z) =
= cosa(z) = cos(aTrz) for all zeM, q.e.d.

THEOREM 5. Let X be a Banach space, and let x — f(x) and z — g(x)
be complex-valued functionals defined on X and such that

(37) ' fla+y)+fl@—y) = 2f(@)g(y)
holds for all x,yeX.
If the functional f is not identically zero and if it is continuous, then

f(#) =a@)+B, g(z)=
or

f(@) = Acosa(x)+Bsina(z), ¢ = cosa(w')

for all xeX, where A, B are constants and a(x) is a bounded and additive
functional on X,

"Proof. Since fs=0, there is at least one vector m,eX such that
f(®o) # 0. From (37) we find

9(y) = [f(@o+y)+F(@0— y)1/2f (%),
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which implies that the functional ¢ satisfies all conditions of theorem 3.
Thus g(x) = cosa(s) for all zeX, where a(z) is a bounded and additive
functional. If a(®) = 0 for all z then (37) reads
fe+p+fla—y) = 2f(@),

from which one easily finds that h(x) = f(z)—f(0) is an additive func-
tional. Since it is eontinuous, we have f(x) = f(0)--h(z) and g(m) =1,
i. e. we have the first case of theorem 5. If a(z) 5= 0, then writing f as
a sum of a symmetrical and an antisymmetrical functionals, in the same
way as in theorem 2, we prove the rest of theorem 5.

TaeoreM 6. Let X be a Banach space, and let @ — f(x), ©— g(x)
be complex-valued functionals defined on X, not identicaly zero and such thai

(38) flo—y) = flo)g(y)—f(¥)g(®)
for all z,yeX.

If the functional f is continuous, then

a) f(a) = a(), g(2) = 1+4-a(2)
or

b) f(z) = Asina(w), ¢(z).= cosa(w)+Bsina(z),
where A, B are constants and a(z) is a continuous and additive functional
on X.

Proof. If we interchange x and y in (38) we find f(zx—y) = —f(y—2)
which implies f(—#) = —f{») for all z¢X. Replacing —y by y in (38)
we get
(39) fle+y) = f@)g(—y)+ 1) g (@)
If we add (38) and (39) we get

fa+y)+flo—y) = 2f(@)h{y), h(y) = lg¥)+9(—1]/2.

Since f is a continuous and antisymmetrical functional, theorem 5
and (40) lead to

a’) hix) =1, [f(z) =a(@)
or .

b') h(z) = cosa(z), f(x)= Asina(z),
where a(x) is a bounded and additive functional on X and 4 is a constant.
In order to find g we set —x, —y in (38) instead of &, y respectively and
add the result obtained to (38). We find

f@lg@)—g(—n] =FWg@)—g(—»)].

(40)

Thus
(41) g(@)+ g(—x) = 2h(x) g(@)—g(—) = 2¢f (2)
with some constant ¢. Now a’), b’) and (41) imply theorem 6.

and
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THEOREM 1. Let X be a Banach space, and let x — f(z) and & — g(x)
be complex-valued functionals defined on X and such that

(42) fla—9) = f@)f(y)+9(@) g@)
for all x,yeX.
If f and g are not consiants and if f is a continuous functional, then

f(@) = cosa(x) and g(x) = sina(w)

for all weX, where a(x) is an additive and bounded functional on X.
Proof. Obviously

(43) F(—a) = f(z).

Setting —z and —y in (42) instead of x and y respectively and

using (43) we find

9(@)9(y) = g(—x)g(—y),
from which follows g(—x) = g(z) for all  or g(—x) = —g (). The first
possibility leads to the conclusion that f and g are constants. Since this
trivial case is excluded by the conditions of theorem 7, we have g(—ux)
= —g(z). Replacing —y by v in (42) and adding the result obtained
to (42) we find that f satisfies all the conditions of theorem 3. Thus
(44) f(®) = cosa(z),
where a(x) is a bounded and additive functional on X. Setting (44) in (42)
we get g(x) = sina(2) for all zeX or g(z) = sin(—a(x)) for all zeX,
q.e. d.

Remark 1. Functional equation (42) has been considered by
H. V. Vaughan [8] in a completely different way, under the assumption
that f and g are real-valued functions of a real variable x and that
lim (g(z)/z) = 1, as @ > 0™.

Remark 2. If X is the set of all real numbers, then in theorem 3
continuity may be replaced by measurability in the sense of Lebesgue
(theorem 1). This implies that in theorems 5, 6 and 7 continuity can be
replaced by measurability. Obviously in this case a(z) = aw, where a is
a complex number.

Remark 3. Theorems 5, 6 and 7 can be suitably generalized to the
corresponding invariant functionals, which are defined on the set M
of matrices introduced in theorem 4. In this case a(z) = a-Trz with some
complex constant a.

Remark 4. In some real Banach spaces the general form of an
additive and continuous functional is well known ([9], p. 137-142). Thus
for those spaces theorems 3,5,6 and 7 give the general form of the
functionals treated there.
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Convex sets invariant under group representations

by
R. E. EDWARDS (Reading)

§ 1. Introduction and summary. An earlier paper [1] began a study
of convex sets invariant under translation in certain spaces of functions
built over a group, the main emphasis resting on the question of sepa-
ration of such sets. Here the setting is generalized and an attempt made
to discuss the structure of convex sets in a topological vector space E
which are invariant under a given representation s — 4, of the group G
by endomorphisms of E. (Most of our results are eagily modified to deal
with invariant disks rather than convex sets, a disk meaning a closed,
convex and circled set in E: such sets were termed mean-invariant
in [2]).

The group @ is assumed to be locally compact and abelian; it is
additively written. Elements of the dual @ of & are denoted by {2,

Haar measures on G and G are adjusted so that the Fourier inversion
formula holds without exteriial numerical factors. The Fourier transform
of a function f on @ is denoted by F(¢) = [of (s)C(s)ds.

The representation space F is assumed to be separated locally convex.
Elements of ¥ are denoted by z,y,..., and those of the topological
dual B’ by «',y',...; the bilinear form defining the duality is written
<z, @)

Each endomorphism A, is assumed to be continuous, and the
representation is to be bounded and continuous; this entails that
8 —>{Asx, ') = @y (s) is a bounded and continuous function on &
for each fixed (z, z')e EXE'. Certain other restrictions on F will be
imposed later (see §2).

The analysis of closed, convex sets invariant under the given repre-
sentation is attempted in terms of the concept of spectrum applied to
elements of E. This concept is defined in § 3, and Theorem 1 characterizes
the spectrum of x in terms of the familiar L*®-spectra (according to
Beurling and Godement) of the associated functions ¢,,.. The main result
is Theorem 2: this contains the essence in abstract form of summability
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