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Convex sets invariant under group representations

by
R. E. EDWARDS (Reading)

§ 1. Introduction and summary. An earlier paper [1] began a study
of convex sets invariant under translation in certain spaces of functions
built over a group, the main emphasis resting on the question of sepa-
ration of such sets. Here the setting is generalized and an attempt made
to discuss the structure of convex sets in a topological vector space E
which are invariant under a given representation s — 4, of the group G
by endomorphisms of E. (Most of our results are eagily modified to deal
with invariant disks rather than convex sets, a disk meaning a closed,
convex and circled set in E: such sets were termed mean-invariant
in [2]).

The group @ is assumed to be locally compact and abelian; it is
additively written. Elements of the dual @ of & are denoted by {2,

Haar measures on G and G are adjusted so that the Fourier inversion
formula holds without exteriial numerical factors. The Fourier transform
of a function f on @ is denoted by F(¢) = [of (s)C(s)ds.

The representation space F is assumed to be separated locally convex.
Elements of ¥ are denoted by z,y,..., and those of the topological
dual B’ by «',y',...; the bilinear form defining the duality is written
<z, @)

Each endomorphism A, is assumed to be continuous, and the
representation is to be bounded and continuous; this entails that
8 —>{Asx, ') = @y (s) is a bounded and continuous function on &
for each fixed (z, z')e EXE'. Certain other restrictions on F will be
imposed later (see §2).

The analysis of closed, convex sets invariant under the given repre-
sentation is attempted in terms of the concept of spectrum applied to
elements of E. This concept is defined in § 3, and Theorem 1 characterizes
the spectrum of x in terms of the familiar L*®-spectra (according to
Beurling and Godement) of the associated functions ¢,,.. The main result
is Theorem 2: this contains the essence in abstract form of summability
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properties of Fourier series and integrals, namely the approximation of
“arbitrary” functions f by functions belonging to the closed translation-
-invariant convex set generated by f and having compact spectra con-
tained in the spectrum of f.

The case in which G is compact, diseussed in §§ 6 and 7, is the easiest,
thanks to the existence of sufficiently many elements with one-point
spectra.

§ 2. Conditions on E. The abstract convolution. For the stronger
form of Theorem 2 we shall need to assume that E is a t-space (espace
tonnelé; [3], p.1). The useful consequences of this assumption are
summarized in

ProprostrioN 1. Suppose that E is a t-space. To each equicontinuous
subset H of E' corresponds a neighbourhood U of 0 in B such that

H‘P:c,ac'”ca = SUDsr W'ac,m' &) <1

for el and a"<H. In particular:

(i) for fized x in E, the functions @, (%' <H) are uniformly bounded
on G; : ’
(ii) the endomorphisms Ag(se @) are equicontinuous on I,

. Proof. For given x in FE, the A,z are bounded (by hypothesis).
Tt follows that N () = Sup{lp..(s): se@, 2'<H} is finite. ¥ is a semi-
norm which, since the representation is assumed to be weakly continuous,
is lower semicontinuous. The set U, defined by N (z) <1, is therefore
a tonneau in K. 8o U is a neighbourhood of 0, which was to be proved.

We denote by M(@) (M, (@) the set of bounded (positive) Radon
meagures on G. An element of M, (@) is said to be normalised if its total
mass iy precisely one.

Let peM(G) and z<F be given. Under very mild restrictions on E
(that it be quasi-complete, for example) the vector-valued integral

(2.1) pre = [ (A_8)dp(s)
G

exists as a member of . The value of this integral is the abstract
convolution of 4 and z. Note that if the hypotheses of Proposition 1 are
tulfilled, the mapping (4, #) - uxw is continuous from M (G)x E into B,
when M(G) is equipped with its customary norm.

It is easily verified that

' (2.2) (U*v) %@ = px(vrx),

where on the left ux» denotes the ordinary convolution of two measures.
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The relevance of the abstract convolution ot the study of invariant
convex sebts is clear from Theorems 1, 2 and 3 of [1].

§ 3. The spectrum. When E is a function-space and 4, means trans-
lation by amount s, the structure of invariant vector subspaces of ¥ is
customarily discussed in terms of synthesis from elements whose
behaviour under translation is especially simple (usually the characters
of @). Even though this cannot be done directly in all cases, due to the
fact that the characters may not belong to E, the Fourier spectrum of
elements of F is almost always crucial. We therefore frame a consistent
extension of this concept to the case in hand.

The space E and the representation s — A4, are assumed fixed.
Given weE, we define the spectrum o(z) of 4 to be the set of <& with
the property that feL(6) and fxx = 0 together imply 7(¢) =0. In
other words, o(x) is the intersection of the zero-sets of Fourier transforms
f of functions feL'(G) satisfying f+x = 0. The latter set of f is an ideal
in L'(@), and o(x) is its co-spectrum. o(x) is therefore always a closed
subset of G. In view of the identity

(3.1) pr(4s3) = Ag(urw),

o(x) is invariant under each 4,: o(4,2) = o(x). Besides this, the identity

(3.2) Puuz e = B* Py

suggests that o(z) is closely related to the L*-spectra of the functions
@z This expectation is borne out by the following result:

THEOREM 1. For any « in B, o(x) is the closure in @ of the union of the
I™-specira o(p,q), a8 @ ranges over E'.-

Proof. Let 8§ denote closure of the set just mentioned.

Suppose first that { does not belong to o(x). The identity

(3.8) ‘PluAsz,z'(O) = f*?’z,z'(s)i

combined with (3.1), shows that if f is chosen such that fsr = 0 and
7(¢) # 0, then f is orthogonal (in the duality between L1(@) and L*(&))
to all translates of @, and this for each &' in E'. Consequently, { lies
outside o(p,,) for each 2’ in E'. It follows that 8 C o(z), since o(z)
is known to be closed.

Conversely suppose that { is not in 8. Since § is closed, there is
a cloged neighbourhood N of { in & such that N is disjoint from o(pye)
for all 2'. Choose feL'(G) such that f(¢) =1 and §=0 outside N.
Reference to Lemma 1 below will show that then f*¢,. = 0 for all o',
hence f+x = 0. Since 7({) # 0, it follows that (¢o(z). Thus o(x) C 8.

Studia Mathematica XIX. u
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The two opposing inclusion relations now available complete the
proof. Tt remains to deal with the lemma.

LemMa 1. Let pel®(G) ancl feL1 ) be such that f =1 (resp. f=0)
on a neighbourhood W of o [’hen fxp = ¢ (resp. fx@ =0). The
analogous assertion, in which (p 7,9 replaced by an wel, is also valid.

Proof. The analogous assertion about elements of E follows from
that about @eL®(G) on taking scalar components. To prove the latter
we use a theorem due independently to Segal and Godement ([4], Theo-
rem 2.2; [5], Théoréme 7), which says that ¢ is the weak limit in L°(@)
of “trigonometric polynomials”

= Dol

LeFy;

where F, is a finite subset of W. For each ¢ we shall have fx0; = 0;
(resp. f¥0; = 0), since in fact
Def ()i

frby(s) =
teFy

Convolution with f being weakly continuous on L% (@), the conelusion
follows.
The use of the concept of spectrum is illustrated by the next
proposition.
PROPOSITION 2. (i)

If xeB and peM (G), and if 8 is the support of i
then ) .

(3.4) o(u*x) = o(x)~ 8.
ii) If weE has spectrum o(@) contained in the union of two disjoint
compact sets A, and A, there is a unique decomposition

(3.5) o=+ m, olw)C4; (I=1,2).

Proof. (i) Let Leo(u*e). It is clear that then {eo(w). If ¢ were not
also in 8, i would be 0 on a neighbourhood ¥ of {, and one could take
an f in I1(@) for which f has the value 1 at { and is 0 outside N. This
would arrange that fxu =0 and hence fx(u*x)=0. However, the
relations Zeo(u*x) and f(¢) % 0 are then in conflict. Thus o(u*x)
Co(®)~8.

Reciprocally, suppose that leo(@)~S. Let fel (@) satisfy fa(u*x)
= 0: we need to show that () = 0. Now, since Aiea( x), (2.2) shqws that
(Fu) (&) = 0, i.e. F({)a(l) = 0. Since {8 and f is continuous, f({)=0
follows. Thus o(z)~8 C o(u*z) and (i) is established.
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(i) Let us first establish the existence of a decomposition (3.5).
Take dls]omt compact neighbourhoods U; of 4; and then fieL*(G) such
that f; = 1 on a neighbourhood of A; and has support contained in U;.
Put z; = f;*2. Reference to Lemma 1 and Proposition 2 shows that (3.5)
holds; notice that (f,-+f,)" is 1 on a neighbourhood of o(z).

To prove umniqueness, it suffices to show that if y; has speetrum
eontained in 4; (i = 1, 2), and if y, = y,, then y, = y, = 0. But, takingif;
ak above, we shall have Ji*fy = 0 4nd Lemma 1 will give (j denoting that
index, 1 or 2, different from 1):

0 = (firfa)*y; =f1i‘(fi"*y¢) = fywy, = fwy; = ¥;,

remembering that y; = y,. This establishes the uniqueness.

§ 4. Elements with compact spectra. Examination of simple
examples shows that it is too much to expect that a ‘general closed
invariant convex set (or disk) shall be generated by the elements with
mmt spectra belonging to it, and this even in the most favourable cake
i which G is compact and such elements exist in abundanee (see §§ 5, 6).
However, we shall show in this' section that each zeX is the hmlt of
elements with compact spectra belonging to the closed invariant convex
set generated by x. As a consequence, every closed invariant convex
set is. generated by elements with compact spectra belonging to it.

The proof of the main result, Theorem 2, depends upon some sxmple
lemmas which show, not only that the approximation is possible, but
that it may be effected by means of a simple operation closely akin to
eath of several standard sumimability methods in harmonic analysis.

LEMMA 2. Let G be a locally. compact space, A a olosed subset of G. Let
(1) be a directed family in M _(G) such that

(4.1) limy, = p

vaguely, and

4.2). limsup [ du; <1, .,
é

u being a normalized measure &uppoﬂed by A. Then, for each open neigh-
bourhood U of A, one has
(1.3)

lim; [dw =0, lm; [du =1,
U [

U’ being the complement of U relative to G.
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Remark. The vague topology of measures is the weak topology
defined by duality with C.(@), the set of continuous functions on ¢ with
compact supports.

Proof. We make use of the following observation: If ¢ is a positive
lower semicontinuous function on @ (positivity may be replaced by major-
ization of some member of C.(G)), then x — [pdu is lower semicontinuons
for the vague topology. This is so because u — [¢du is by definition the
upper envelope of the functions u — f kdu as k ranges over all functions
in C,(G) minorizing . It follows that

(4.4)

[odu < liminf [ pdu;
G ) @

for each such ¢, whenever (4.1) holds vaguely. If further g <1l and ¢ =1
on A, (4.4) and (4.2) and the condition that 4 is concentrated on 4 combine
to yield

(4.5) im [ pdy; = 1.

g
Taking in turn ¢ = 1 and ¢ = gy (the characteristic function of U), and
then subtracting, we are led to (4.3).

LemMa 3. Let (u;) be a directed family in M (G) which converges
vaguely to the Dirac measure placed at a point s, @, and suppose that (4.2)
holds. Then

(4.6) lim, [ f(s)dus(s) = f(s0),
G

uniformly for f ranging over any set C of continuous () functions on G
which is uniformly bounded and equicontinuous at s,.

Proof. Lemma 2 is to be applied, taking 4 = {s,}. Suppose [f(s)
< M (se@,fe0). By equicontinuity, an open neighbourhood U of s,
may be chosen so that

. f(&)—f(so)l <& (seU,fef).
Then
| [ =1 (50) J dpuel < [1F()=F(30) d(s);

splitting the integral into parts taken over U and U’ separately, we see
that there results the majorization

(*) Continuity may be replaced by measurability for each ;.
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| [Flm—F(s0) f ] < e fap(s) 4230 [ uy(s).
¢4

The result therefore follows from (4.2) and (4.3).
LEMMA 4. Let f be positive, continuous, such that [f(s)ds =1, and
@

let € > 0. There exists a function p satisfying the same conditions, together
with the requirement that p shall have a compact support, and such that
If—olh < e

Proof. We may write f= g2, where g is a positive, continuous
funetion in I*(¢). By the Plancherel theory ([9], p. 145), § « L*(#). Choose
Q<L*(@) with a compact support satisfying ||j—@Q|l, < a, Where a > 0
will be chosen later depending upon e Since g is “symmetric’ (i. e.
§(¢) = g(—¢) a. e.), we may assume that the same is true of Q@: if not,
replace @ by its symmetric part }(Q+@), where §(¢) = @Q(—{). Let ¢
be the inverse Fourier transform of @; ¢ is then real and lg—glls = °
= g —Qll: < a. po =g is positive, continunous, belongs to L'(@), and
Po = @x@ has a compact support. Also

If =20l = llg*—a*l = l(9— g) (g+ I
< lg—glle-lg+alle < a(2]lglls+ 2)
= a2|fli+a) = a(2+a).
From this it follows that ¢ ;dfpo(s)ds = [|p,ll, satisfies e—1] < a(2+ a).

It .therefore suffices to take p = ¢~!p, and arrange that 2a(2+a) < e.
The preceding proof is a slight refinement of that given by Loomis ([9],
Section 37A). :

PROPOSITION 3. There exists a directed family (p;) of funmetions on G
with the following properties:

(1) p; is positive, continuous and in L'(Q);

(2) D; has a compact support in @;

3) gfpi(S)ds =1;

(4) for each open neighbourhood U of 0 in G one has lim; [ p;(s)ds = 0;

v
()

5 lim,-afpi(s)f(s)ds = f(0), uniformly as f ranges over any set C

of continuous (or even merely measurable) functions on G which is uniformly
bounded and equicontinuous at 0.

Proof. In view of Lemma 3, it is enough to show that §, the Dirac

_measure placed at 0, is vaguely adherent to the set of measures u defined

symbolically by du(s) = p(s)ds, where p is positive, continuous, belongs
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to L'(&), such that [p(s)ds = 1, and such that p has a compact support.
&3

And, by virtue of Lemma 4, it is enough to prove the same agsertion with
the final restriction deleted. But this is very simple.

Remark. (p;) plays the role of a sort of ‘“‘approximate identity”
for convolution. Unlike the usual approximate identities, however, the
functions of the family have compact spectra rather than compact
supports.

We can now establish without further difficulty the main theorem.

THEOREM 2. Let B be quasi-complete and let %< E, and let the p; be as in
Proposition 3. The elements p;*& each belong to the closed invariant convex
set generated by x, each has a compact spectrum, and

(4.7) Lim; (p;*o) = @

weakly in E. If further E is a t-space, (4.7) holds in the sense of the initial
topology of E.
Proof. We have for each ¢’ in B’

(4.7). pix@, @) = [ pra(—8)pi(s)ds.
G

This shows first that by virtue of (1) and (3) of Proposition 3,
Py ¥@, ') < SuPs{d_s2, 2>

and hence, via the Hahn-Banach Theorem, that p;*2 belongs to the
closed convex set generated by the A,z (se@), i. e. to the closed invariant
convex set generated by z. Moreover, since ¢, is bounded and con-
tinuous, (5) of Proposifion 3.shows that p;*z - 2 weakly in E. The
Hahn-Banach Theorem (in the form asserting that a closed convex
subset of E is weakly closed), together with Proposition 2 (i), now goes
to show that = is adherent in F to the set of elements with compact spectra
belonging to the closed invariant convex set generated by .

Moreover, if E is a t-space, we know from Proposition 1 that the
functions ¢, .-, with 2’ ranging over any equicontinuous subset H of ¥',
are equicontinuous at 0 and uniformly bounded (Proposition 1). Hence,
by (5) of Proposition 3, Lim{p;*x, 2'> = {x,«’> holds uniformly for
o' e H. This means exactly that p;*a& — 2 in the sense of the initial topology
of E. The proof of Theorem 2 is thus complete.

Remarks. (i) Even without the restriction of quasicompleteness
on E, and assuming merely that the representation s - A, is bounded
and weakly continuous, it is still true that (4.7) holds weakly, provided
the integrals defining p;*z exist in a suitable sense. This will certainly
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be the case if B is a separable Fréchet space, or if E is a Fréchet space
and the function s — 4,z is almost separably-valued for each ze¢F. In
such cases, the main conclusion stands: each  is the limit of elements
with compact spectra belonging to the closed invariant convex set
generated by x.

(if) Theorem 2 does not cover all cases of interest, amongst which
there are instances where the representation involved, s — A4, is unboun-
ded. In such a case, u*» will not be defined for all measures pin M(G)
or M, (@), and the preceding considerations call for modification. As
an example, take for @ the additive group of real numbers, for B the
space ¢S’ of temperate distributions [7], and for 4, the translation opera-
tors. In this case E' is the space <5 of indefinitely differentiable functions
on the real axis, each function and each of its derivatives being rapidly
decreasing at infinity. The functions ¢, are now generally unbounded
like some positive power of s. The preceding arguments can be rehabilit-
ated as soon as it is arranged that the functions p; be each rapidly
decreasing. This may be attended to without difficulty, and the theorem
remains valid.

§ 5. Elements with point spectra. For a given representation we
shall say that an element « of E is elementary and is associated with a point
{ of G if o(z) C{{}. The element » = 0 is elementary and is associated
indifferently with all points of @& It seems that for bounded representa-
tions of non-compact groups, elementary elements of E other than 0
are rare.

THEOREM 3. An element z of F is elementary and associated with
te@ if and only if Agw = ((s) - for all se@.

Proof. If A,z = {(s)-, then g, = (z,2'>-{, hence o(p,,)C {(}
and so (Theorem 1) o () C {¢}.

Conversely, if » is elementary and associated with £, then ¢ (x) C{¢].
Hence (Theorem 1 again) o(@,.) C {{}. According to a theorem of Ka-
plansky about primary ideals in L*(@) (see [8]), this implies that Poz
is a scalar multiple of {. Necessarily, therefore, ¢,.(s) = (@, #">-{(s)
for all s, and hence 4,4 = {(s)-« for all s. Thus  is elementary and asso-
ciated with ¢{. This completes the proof.

Let us denote by M, the set of < ¥ which are elementary and asso-
ciated -with {. Plainly, M, is a closed vector subspace of E which is
invariant under the given representation. Further, M,~M, = {0} if
¢ s {'. It is thus natural to investigate when E is the direct sum of
the M,. For reasons already given, this happens but rarely (perhaps
never) when @ is non-compact. The contrary case is discussed in some
detail in the next section.
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§ 6. The case ¢ compact. The functions s - {(s) are now integrable
over &, so that (+x is defined.

THEOREM 4. If G is compact, (eco(x) if and only if {xx 7 0.

Proof. If Zeo(w) and yet {#x = 0 one would have by definition
£(¢) = 0: this would conflict with the orthogonality relations for cha-
racters. Hence (*x must be distinet from 0. Conversely, suppose that
t*x # 0; we wish to show that {eo(x). Now for any FeIM@), fxt =
= ()¢ and so fr(¢*x) = (f*l)*z = f({)-{*m. Thus if C#2 # 0 and
f*(C*x) = 0, then f(£) = 0, showing that £ o (w). The proof of Theorem 4
is complete.

To discuss the poss1b1hty of decomposmg E into some sort of direct
sum of the subspaces M, it is convenient to introduce the operator-
-valued Fourier transform of the operator-valued function s — 4,. This
transform is the funetion ¢ — A, defined by the equation

<4‘i;$, ml> = f(Asw’m»@ds’
é
which is required to hold identically in # and #’. Symbolically:
A, = [A,¢(s)ds.
é
An alternative way of framing this definition amounts to writing Acw

= {#x. The £-th Fourier coefficient of the function ¢, is just (Am, @',
This last remark leads, not only to the representation of F as a type

of direct sum of the M,, but also to the corresponding expansion theorem. -

‘We ghall have in fact
(Agmy o'y = Pz (8) NZ £(s

zel

)< A, 2,

where the series can be rendered uniformly convergent in s by the inser-
tion of suitable summation factors. More precisely, one can find numerous
fixed directed families (S,) of functions on @ such that

D' 8,(2)

26

0<8,<1, < oo, lim,8,(¢) =1,

and such that for each z in F one has

= hn%Z 8p(0)-£(s)- A

=lim, 3'8,(¢)-¢ (s

el

)+ (E*m),
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the series converging weakly in F and uniformly with respect to seG.
In particular, for s = 0, one obtains

oa—l1mp28 ,w_hmz,ZS (D) ({*m)

e [ ¥es

weakly in E. The operator E; appears as a projection of E omnto M,
and we have therefore a direct sum expansion theorem.

Note that the expansion formula, although it shows that each z<E
is the limit of finite linear combinations of elementary elements asso-
ciated with points (eo(x), does mot show that z belongs to the closed
invariant convex disk generated by such elements. As we shall see by
example in the next section, this latter assertion is generally false even
when G is compact. However, we can derive a weaker conclusion.

COROLLARY. Let G be compact, and let D be any closed invariant disk,
D # {0}. Then D contains at least one elementary element other than 0.

Proof. By Theorem 2, D contains some & 75 0 having a finite spec-
trum. Theorem 4 then shows that

o= S
n=1

where , is elementary and associated with Z,, the £, being the distinet
points of o(z). Let d be the distance in L*(§) of ¢, from the vector subspace
generated by ,,...,{x; d > 0. By the Hahn-Banach Theorem, we can
find peM (@) such that

[ tdp =a, 2 <n<N),
G

[tadn =0
G

[alul =1.
G

Then z = u*x = d-x is elementary and associated with {4, and
it belongs to D. This completes the proof.

§7. An example: G compact, E = L?(§). The representation
operators 4, are here to be translation operators. Since ¥ is now a Hilbert
space, the criteria provided by Theorems 2 and 4 of [1] and their analogues
become very simple to handle in conjunction with the Parseval formula.

Theorem 3 of the present paper shows at once that the elementary
elements of F associated with { are precisely the scalar multiples of {
(congidered as a function on G). ‘

THEOREM 5. Let D be a closed translation imvariant disk in L*(G).
Then
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(1) for given Ce@, the elementary elements of L (@) belonging to D and
associated with ¢ are precisely those of the form ¢-¢, where ¢ is a scalar not
greater in modulus than
(< +o0);

(1.1) d(2) = Sup,p|2(Z)]

(2) the closed translation invariant disk in L*(G) generated by the
elementary elements belonging to D comprises those and only those yeL*(G)
such that
(7.2) Dl <1.

G

Remark. In the left hand member of (7.2) we adopt the conven-
tions: a/(+o0) =0 if a >0, ¢/0- = +o0 if ¢ > 0, and 0/0 = 0.

Proof. This follows directly from Theorem 2 of [1], modified so as
to apply to disks rather than to convex sets, together with the Parseval
formula. .

If D, denotes the disk defined in (2), we see that D = D, only in the
extreme case in which D is generated by a single character {. Further,
if D is bounded, D, containg only functions with absolutely convergent
Fourier series.

Theorem 5 also renders it a simple matter to construet examples
of distinet pairs D, D’ of closed translation invariant disks which containg
precisely the same multiples of characters. For example, the pair D = unit
ball in L2(), D’ = the closed translation invariant disk generated by
all characters. This lays to rest any hopes of characterizing completely
invariant disks by multiples of characters they contain — a character-
iiation which is well known to be effective for closed invariant vector
gubspaces.

§ 9. Remarks on the non-commutative case. The preceding sec-
tions have made frequent essential use of the assumption that G is
commutative. It is natural to ask to what extent this assumption may
be dispensed with. The answer would appear to be that the difficulties
become very great when G is both non-commutative and non-compact,
and we shall here confine our remarks to the compact case. Even here
there are defects in the available theory of harmonic analysis for such
groups which are serious enough to upset some of the results proved
above in the commutative case. Some of these defects will be indicated
below.

‘We assume henceforth that G is compact and choose the Haar
measure 80 that G has total mass 1.
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If the representation ¢{— 4, is commutative, nothing essentially
novel appears.’ The set of ¢ for which 4, = I is a closed normal subgroup
G, of G, G|G, is commutative, and there is an obvious induced represen-
tation of G'/@,. This case may, therefore, be dismissed.

It is now better to make a slight change in notation, writing the
abstract convolution -

[Am-du(t)

as x*yu (rather than uxw); we also adopt the multiplicative notation
for @ to stress its non-commutativity. The analogue of (2.2) stands in
the new notation.

As we shall see in due course, a happy definition of spectrum for
functions in L*(G#) and for elements of EF is by no means obvious.
Nevertheless, we can define the meaning of “compact spectrum” in an
entirely satisfactory way, which we shall now explain.

Introduce the sét I' of normalised, elementary, continuous,
positive-definite functions on @: these turn out to be the building-bricks'
for harmonic synthesis, in much the same way as are the characters in
the commutative case. (In the non-commutative case the characters
are adequate only for the synthesis of central functions). I" may be
regarded as a subset of L*(G) and equipped with the topology induced
by the weak topology of L°(@). I' is then locally compact; it is discrete
if and only if @ is commutative. The spectrum of a function in (@),
whatever definition is adopted, will be a subset of I": the meaning of
“compact spectrum’ is thus quite definite. The relationship between
elements of I" and equivalence classes of continuous, irreducible unitary
representations of & will be noted below, and it will appear that 'a subset
of I' is relatively compact if it is associated with (or derived from) only
a finite number of inequivalent such representations of G.

It is convenient at this stage to record that the main result (Theorem 2)
remains valid, even with the widest of several possible definitions of o(x)
described below. The proof of this is basically the same as before, but
the details depend on the use of the {’s in the Fourier expansion of fune-
tions, the basic facts about which will now be set forth.

Select arbitrarily one representative from each equivalence class
of continuous, irreducible unitary representations of @, and denote by R
the set of elected candidates. A member of ‘¥ is thus a representation U:
t— U(t), U(l) being a unitary operator on some Hilbert space 9 (U)
of finite dimension d(U) (=1,2,...). Each function feL'(G) admits
an operator-valued Fourier transform f defined by

(9-1) fO) = [foTma (TeR);
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f(U) is thaus an endomorphism of 9(U). An entirely analogous defim-
tion a.pphes if f is replaced by a bounded measure ,u Note that f(U

— F(T)* (* = adjoint), and that (fxg)" = J(U)g(U)for each Ue<72
The cha,ra,c‘uer 1, of the representation U may be deflned by

(9.2) 2yt = TrU®)%

where Tr signifies the trace defined for endomorphisms of QA(U).
The Peter-Weyl theory of the Fourier expansion in I*(G) (see
Weil [10], Ch. V) may be summarised as follows. The formal Fourier

series of f, namely
~ D

UR

(9:3) U)-Tr[f(U) U (0],

is convergent in L*(@) (according to the increasing directed family of
finite subsets of <) whenever feL*(@), and one has the Parseval for-
mulae

(9.4) Jifora = ¥ aoTef(U)f),
Ue&R

(9.4") jf() a = >0 YIT[f(U 1,
UECXI

whenever f, geL*(G). Note that Tr(TT™) >0 for any endomorphism 7',
so that the series on the right of (9.4) consists of positive terms. Note
also that (9.3) can be written in the equivalent form

o~ 3 am

UetR

(9.3 Ty (@)

involving explicitly the group characters.

Turning to positive-definite functions, it is quite easily shown
(using the Parseval formulae) that a function p L' (@) is positive-definite
(i.e. fxpxf(e) = 0 for arbitrary f, e = neutral element of &) if and
only if p(U) is a positive self-adjoint endomorphism of % (U) for each U;
moreover, if p is continuous, then

(9.4) D A Tr[p(U)] < +oo
Ue“}@

and

(9.5) = Da()Te[p(0) U®*l,

UeR
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the Fourier series of p, is absolutely and uniformly convergent. These
statements are analogues of the“fimous Bochner Theorem for commu-
tative groups, and the correspondence is made even closer when the
right hand side of (9.5) is shown to be expressible as a sum, with positive
coefficients, of elementary, continuous positive-definite functions. We
recall that a continuous positive-definite function p is said to be element-
ary if the only functions p’ of the same category such that p —p’ is also
positive-definite, are scalar multiples of p. p is said to be normalised if
p(e) = 1. This being so, (9.5) shows almost at once that the normalised,
elementary, continuous positive-definite funections & (i. e. the elements
of I') are precisely those of the form

(9.6) £(t) = Tr[PU ()],

where Ue® and P is a one-dimensional projector on Qf(U). This being
50, if we return to (9.5), recall that p(U) is positive self-adjoint and apply
the spectral decomposition to each 7 ( U), we see that (9.5) can be written as

=231"Ci(t)3

(9.5

where {;el’, ¢; >0, and Zci = p(e) < +oo (the series being therefore
. 1

absolutely and uniformly convergent): this is an almost complete analogue
of Bochner’s theorem, ‘“‘almost” because there is in the non-commutative
case an inevitable lack of uniqueness in the expansion, due to the fact
that the {’s lack the independence of the characters in the commutative
case (due there to the orthogonality relations); this uniqueness ean be
restored only for central functions and expansions thereof in terms of
the %;.

If we denote by I'y, the set of I" obtained via (9.6), when U is fixed
and P varies, then I' is partioned into subsets I'y;. Also, as is easily seen,
I'y is both open and compact in I'. Moreover, Iy is discrete if and only
if d(U) = 1. Confirmation of a statement made earlier is now forth-
coming: a subset of I' is relatively compact if and only if it is contained
in finitely many Iy.

The remainder of this section is devoted to remarks concerning the
concept of spectrum. When speaking of functions, we shall for definit-
eness deal with the space L®(@) with its weak topology. But the results
apply to LP(G) (p # oo) with its normed topology. It turns out that
there is little difficulty in defining satisfactorily the spectrum of a normal
function g, i. e. one for which g*¢ = p*¢. The choice of the name results
from the fact that @ is normal if and only if ¢(U) is a normal endomor-
phism of 9 (U) for each U, and the relatively satisfactory spectral theory
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for such funections owes its existence almost entirely to the spectral
decomposition of normal endomorphisms.

We shall define the left (right) spectrum oy (¢)(or(®)) of g, normal
or not, to be the set of {e" which are limits of finite linear combinations
of left (right) translates of p. Both these spectra are closed subsets of I
If ¢ is given by ('9.6), then ¢ eoy(@)(or(g) if and only if P is a left (right)
multiple of ¢(U) (for the particular U ‘R appearing in (9.6)). Let us define
turther oq(p) to be the set of {eoy (@)~ og(p) which satisfy

(9.7) (¢ = const # 0).

Then the spectral resolution theorem for normal endomorphisms shows
that: if ¢ is normal, 4t s the limit of “‘trigonomelric polynomials”

6 =ZOEC@‘

i

Cxg =%l =¢"¢

(9.8) (finite sum),
‘where ¢ eoy(p) and C;x; = 0 whenever © # j.

It is also worth noting that: if ¢ is normal and (eI salisfies [*g
= gkl # 0, then Leoy(p); and that if ¢ is positive-definile, this latter con-
dition is equivalent to {xp = px{ and

S 0.

These results break down completely for non-normal functions.

We now turn to the proof of the cited analogue of Theorem 2, which
hag been delayed until now in order to make clearer the difficulties asso-
ciated with the concept of spectrum in the non-commutative case. It is
natural to proceed in three steps: )

(a) Taking the cue from Theorem 4 for the commutstive case, we
define o(z) to be the closure in I" of the set of { satisfying @x{ 7 0.
(Other definitions might be chosen).

(b) If  is a bounded measure on @, and if § is the closure in I" of the
set of ¢ satistying u*{ # 0, then o(w*u)C 8. The proof is immediate.
Equally clear is the inclusion o(z*u) C o(2), provided 4 is central. These
assertions are weak analogues of Proposition 2 (i).

(c) The construction of functions p; on @ is analogous to those in
Proposition 3. It is enough to show that the p; may be chosen so that p;
is positive, continuous, such that [p;(t)dt =1, p;(U) = 0 for all but

¢

a finite set of U R, whilst lim; p; = é in a suitable sense. Apart from the
penultimate condition, such functions are shown to exist by Weil ([10],
p. 85-86); and to satisfy the remaining restriction, it suffices merely to
approximate each p; sufficiently closely in L*(¢) by a finite partial sum
of its Fourier series. It may be noted that we can further arrange that

icm
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each p; is positive-definite, by replacing p; by p;*p; if necessary. When
this is done the p; act well as summation kernels for Fourier series, this
being in fact the use contemplated by Weil.

There is one further respect in which non-commutativity involves
inevitable complications. In the commutative case we have made essen-
tial use of the fact that one can find functions f ¢L'(@) whose Fourier
transforms f take the value 1 at a given point { and vanish outside any
pre-assigned neighbourhood N of {. If @ is non-commutative, such func-
tions will not exist for general ¢ and ¥, f being now defined as a function
on I' by the equation

foy = [rmtmar,

which is formally identical with the definition in the commutative case.

The source of this difficulty becomes apparent if we restrict attention
(a8 we may) to the behaviour of f on a typical component I'y of I. It U
is fixed, I'y is homeomorphic with the unit sphere in ¥ (U) after identify-
ing points which are scalar multiples of each other. In other words,
I'y is essentially a complex projective space of dimensiond—1 (d = a(Uy)).
Coordinates z; in 9¢(U), relative to some chosen orthonormal base, yield
“homogeneous coordinates” in I'y;, and { is then expressible as a sesqui-
linear form

d

2 ;%%

i5=1

with coefficients a;; depending upon f. It is clear that if d > 1 such
a sesquilinear form cannot vanish outside small neighbourhoods without
vanishing identically. ‘ ’

These considerations make it clear that, in order to salvage results
like Proposition 2 (ii), it would be necessary to define o(¢) in terms, not
of single points of I'y, but of subspaces of I'y; considered as a projective
space.
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STUDIA MATHEMATICA, T. XIX. (1960)

Ergodische Funktionale und individueller ergodischer Satz

von

8. GLADYSZ (Wroctaw)

(8, B, m), m(8) =1, sei ein festgesetzter MalBraum und T eine
meBbare nichtgingulire Transformation von 8 in § (es ist also T7'B B,
wenn BeB, und m(T7'B) =0, wenn m(B) = 0). Der Kérper von mef-
baren und 7T-invarianten Mengen soll mit By oder genauer mit By (m)
bezeichnet sein (BeBy wenn BeB und m (T 'B--B) = 0), und der Raum
von linearéen Kombinationen der charakteristischen Funktionen der.Men-
gen aus B mit X (B).

Es ist bekannt, dal man die Voraussetzung der Invarianz des
MafBes in dem individuellen ergodischen Satze weit schwichen kann
[2], [3]. Fiir die individuelle Konvergenz m-fast iiberall (weiter anch m-f.
il. oder [m] bezeichnet) geniigt es z. B., wenn es ein solches K gibt, da8

n—-1

1 -

h:n—ﬁks m(T*B) < Em(B), BeB.
=0

Ebenso, kann man solche Voraussetzungen durch andere ersetzen, z. B.
durch starke Konvergenz der ergodischen Mitteln .
1 n—1 .

fals) = = ' f(I*9)
. =
in L'(m), r =1 [2].

In dieser Arbeit ist die Bedeutung aufgeklirt, welche bei solchen
Sitzen die hier ergodisch genannten Funktionale, besitzen. Die Existenz
eines solchen Funktionals auf IL(m) ist mit der f. ii.-Konvergenz von
fu —f*eL}(m) gleichbedeutend. Daraus folgt sofort, da die individuelle
f. ii.-Konvergenz nicht nur eine Konsequenz der starken, sondern auch
der schwachen und dabei nach einem einzigen Funktionale [-dm ist.
Wie bekannt [2], umgekehrt verursacht die f. ii. -Konvergenz noch nicht
die starke. Es entsteht die Frage ob dann wenigstens die Konvergenz
der Integrale [ fadm folgt. Dann wire Lim J fadm ein natiirliches ergo-
disches Funktional. Beispiel 3 (in 3) zeigt, daB im allgemeinen dies auch
nicht stattfindet.
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