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STUDIA MATHEMATICA, T. XIX. (1960)

Remarks on the algebraic derivative in the Operational Calculus
by
J. MIKUSINSKI (Katowice)

1. Let C be the ring of continuous complex-valued functions in
0 <t < oo with ordinary addition and convolution as multiplication.
The formal quotients p/q, where p, geC, ¢ 5 0, will be called operators.
The theory of those operators is widely developed in my book Operational
Caleulus (1). |
The algebraic derivative is defined as follows:

Df = D{f(t)} = {—if(t)} for fe€,
Dp-g—p-D
D(g) _ Dpa—p Dy

q q
This derivative has the following properties (see op. eit., p. 261-263):
D(a+b) = DaxDb), D(a-b) = Da-b+a Db,
Da-b—a-Db
D( a) _ Da a

for p,q¢C, ¢ #0.

o] =——F—— (@ #0), D(ia)=iDe,

b2

where a, b are operators and A a number. Moreover we have

(1) Doy, +...+ a5+ ap) = N, s" T+ Fay,

which suggests that the operation D be considered as derivation with
respect to the differential operator s:

d.

D=—.
ds

The purpose of this paper is to prove some further fundamental
properties of D.

2. A particular case of (1) is Da = 0, where « is a number. We ghall
prove the converse.

(1) See J. Mikusinski, Operational calculus, Pergamon Press 1959.
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ProPERTY 1. Dz = 0 implies x = number.
Proof. Put = p/q, where p, ge@, ¢ # 0. From Dz = 0 we obtain

2) Dp-q—p-Dg =0,
and hence
(3) D¥p-q—p-D*q = 0.

Since ¢ % 0, we can eliminate p and ¢ from (2) and (3):

D*p-Dg—Dp-D?*q=0.
Differentiating (3), we get by the last equality
(4) Dép-q—p-D*q = 0.
Eliminating p and q from (2) and (4) we have

D3p-Dg—Dp-D3*q = 0.
Thus we obtain on differentiating (4)

D“p"r_r~p‘D"‘q =0.
Generally we have
D'pgq—pD'¢g=0 (m=1,2,..).
which can be written in ordinary symbols as
12 14

[ (=" (@) qt=m)dr—[p(t—7)(—7)"g(r)dr = O
or !
i

[T @et—0)—pt—vg(@)ldr =0 (n=1,2,...).

[

Hence by Lerch’s theorem on moments

pEQE—1)—p(t—7)g(z) =0 for O<Lr<t< o0

or
p(r)q(o)—p(o)g(r) =0 for 720 and ¢>0.
Since g # 0, there is a value of ¢ such that g(o) % 0. Thus
p(r) = aq(z) for O <7< oo,
[
where o = 1;((0)) , and the theorem is proved.

The theorem can also be formulated in the following form:
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The condition
t
(5) [u-20)f(t—m)g(r)dz =0 for 0<t< oo
0

is sufficient and necessary for the functions f and g to be linearly dependent
in 0 <1< oo,
In fact, it suffices to remark that (5) is a non-operational form of (2).

3. An operational function (function whose values are operators)
2(4) is said to be continuously derivable in A; < A < A, if it can be repre-
gented in the form

{p(4, 1)}

(6) z(d) = -W‘:

where ge@ and p(2, t) is a continuous function in 1, <1 < 4,, 0 <1 < oo,

At .
with a continuous derivative 61){()1, ) . The derivative of x(1) is given
by the formula

{02’(1, t)
B =
z =—,
{g(®)}

PropERTY IL. If (1) is a continuously derivable operational function,
we have Da'(3) = (Dw(A)), i. e.

d d d d

Zl_s-;iﬂ:wu} = —d—iagm(/l).

Proof. The formula is trivially true if #(1) is a parametric funetion
(i. e. its values are in ©), continuously derivable:

z(A) = {(4,1)} (@%t—) continuous);

in fact

7} 0
——t-b—}:w(l, ) = ry (—t2(A, 1))

If £(4) is an arbitrary continuously derivable operational function, write

an =28
q
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which is an abbreviated form of (6). Then

. P (A 1, '
DX (2) = 1)(%—)) = ?(Dp (A)-q—p'(2)- Dy
1 ’ 7 1 '
= ?([I)p(/'l)] q—p'(4)-Dg) =G (Dp (1) g—p(2)- Dy)
Dp(A)Y ,
- (_.%U.,) = (Dz(2))'.

4. The operator ¢” is defined as the value at A = 1 of the solution

x(1) = ¢”* of the differential equation
(7) o' (A) = wx(l)

such that 2(0) = 1. Thus the operator ¢” exists for a given operator w
if and only if there is a non-vanishing solution of (7).
ProrErTY II1. If the operator ¢ ewists, we have

‘ D¢’ = ¢ - Dw.
Proof. By (7) we have

Dz’ (3) = Dw-x(A)+ w-Du(4).
If we put

y(2) = Da(4)
it follows that ¥ (A) = Dz’ (1) and therefore
(8) ¥ (W—wy(2) = Dw-z(4).

In order to find y(1) we consider (8) as a differential equation with
the unknown function y (1), the function z(1) = ¢** being known. Put

y{(A) = e(2)-z(2);
substituting that expression into (8), we obtain
¢ (Mz(1) = Dw-x(A).

Since #(3) = ¢** is different from 0, this implies ¢’ (1) = Dw and
consequently ¢(1) = ¢-- ADw, where ¢ is a constant operator. The function

y(3) = (¢4 ADw)a(2)
is the general solution of (8). To determine ¢, it suffices to remark that
¥(0) = Dz(0) = D1 = 0.
Thus ¢ = 0 and, eventually,
Y(4) = ADw-z(2).
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In particular, we have y(1) = Dw-x(1), which proves the theorem.

Properties I and IIT yield a simple proof () that 2k= (k integer) are
the only operators such that ¢’ = 1 (see op. cit., p. 192). In fact, ¢ =1
implies €“-Dw = 0 and consequently Dw = 0. Thus w is a number and
the assertion follows.

ProrERTY 1IV. If the equation
(9) D = wr

is solvable, its solution is determined up to a numerical factor.
Proof. Let Dz = wx and Dy = wy; then Dz-y—x-Dy =0. If

2 # 0, it follows that D (i) =0 and L. a. If there is no solution =z 0,
2

the assertion is trivially true.
As a Corollary to Property 1V, we have

PROPERTY V. If Du = w and the equation Dx = 1wz is solvable, every
solution is of the form ae®, a being a number.

5. We have

Sl = (=)

s (@ number)

and
s{e””) = 20 fte””} 4 1.

Thus the operator z = {¢""} satisfies the equation

d s
e =
i + x

10 .
(10) 20 2w

It is easy to show that z = {e“"z} is the only solution of (10). In
fact, suppose that y is another solution. Then the function z =z—y
satisfies the homogeneous equation

d i s
—z
ds 2w

z2=0.

If z # 0, it should be of the form z = ae™%M® (g s£ 0); but the operator
e does not exist (see op. cit., p. 410). Consequently, # must be 0,

which proves the assertion. Equation (10) determines the operator {e“"z}
completely.

(8) This remark is due to C. Ryll-Nardzewski.
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6. Now, let us consider s as a complex variable and # as a function
of s. Then equation (10) can easily be solved; we obtain

1} — 82102 4
(11) @ = aem e o [0,
@5

where a i3 a number.

In this manner, the class of analytic functions (11), depending on
the parameter a, is assigned to ¢, In the case of a non-positive real
part of w, we can determine « in such a way that & is the Laplace transform
of ¢**. If the real part is positive, the Laplace transform does not exist.
In that case another condition may be used to determine «, e. g. that z
should be an odd function of s.

Reeu par la Rédaction le 12. 9, 1959
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The form of the solution of the Cauchy Problem
over a group

by
R. E. EDWARDS (Reading)

§ 0. Introduction and summary. Apart from certain extensions to
be discussed briefly in § 6, we shall for definiteness concentrate on what
may be termed the ‘“parabolic case’ of the Cauchy Problem suggested
by the heat (or diffusion) equation. The Cauchy Problem to be considered
is therefore of the type

Du, = (1>0),

the dot indicating differentiation with respect to t, with the initial con-
dition
limy o = f.

Herein «; is, for each ¢ > 0, an element of some pre-assigned locally
convex space € of real-valued functions on a group X, D is a given endo-
morphism of ¢, and the initial ‘‘data’ f is an element of a second pre-
-assigned locally convex space D of real-valued functions on X. We
agsume: (i) the existence and uniqueness of the solution; (ii) certain simple
properties of the mapping f — u;; (iii) a few conditions of a very general
nature concerning @ and ¢; and (iv) the crucial condition that D
commutes with right translations. From this we deduce that the solution
is necessarily of the form
"= f,

each y; being a Radon measure on X. There are close connections between
the results established below and those set forth by Hille ([4], p. 400-410),
whose main aim is to exhibit the relations between solutions of the Cauchy
Problem and the theory of semigroups. By comparison the present method
is in some senses more general, uses fewer special assumptions, and
accords to the convolution a more fundamental role.

The proof of the main theorem, which is given immediately after
the hypotheses have been set forth at length in § 1, occupies § 2. The
method is suggested by arguments used elsewhere (Edwards [2], [3]).
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