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6. Now, let us consider s as a complex variable and # as a function
of s. Then equation (10) can easily be solved; we obtain

1} — 82102 4
(11) @ = aem e o [0,
@5

where a i3 a number.

In this manner, the class of analytic functions (11), depending on
the parameter a, is assigned to ¢, In the case of a non-positive real
part of w, we can determine « in such a way that & is the Laplace transform
of ¢**. If the real part is positive, the Laplace transform does not exist.
In that case another condition may be used to determine «, e. g. that z
should be an odd function of s.

Reeu par la Rédaction le 12. 9, 1959
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The form of the solution of the Cauchy Problem
over a group

by
R. E. EDWARDS (Reading)

§ 0. Introduction and summary. Apart from certain extensions to
be discussed briefly in § 6, we shall for definiteness concentrate on what
may be termed the ‘“parabolic case’ of the Cauchy Problem suggested
by the heat (or diffusion) equation. The Cauchy Problem to be considered
is therefore of the type

Du, = (1>0),

the dot indicating differentiation with respect to t, with the initial con-
dition
limy o = f.

Herein «; is, for each ¢ > 0, an element of some pre-assigned locally
convex space € of real-valued functions on a group X, D is a given endo-
morphism of ¢, and the initial ‘‘data’ f is an element of a second pre-
-assigned locally convex space D of real-valued functions on X. We
agsume: (i) the existence and uniqueness of the solution; (ii) certain simple
properties of the mapping f — u;; (iii) a few conditions of a very general
nature concerning @ and ¢; and (iv) the crucial condition that D
commutes with right translations. From this we deduce that the solution
is necessarily of the form
"= f,

each y; being a Radon measure on X. There are close connections between
the results established below and those set forth by Hille ([4], p. 400-410),
whose main aim is to exhibit the relations between solutions of the Cauchy
Problem and the theory of semigroups. By comparison the present method
is in some senses more general, uses fewer special assumptions, and
accords to the convolution a more fundamental role.

The proof of the main theorem, which is given immediately after
the hypotheses have been set forth at length in § 1, occupies § 2. The
method is suggested by arguments used elsewhere (Edwards [2], [3]).
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In §3 certain consequences of the main theorem are detailed.
Amongst these are some remarks about the apparent infinite velocity
of transmission of effects governed by some equations of the type con-
sidered (the heat and diffusion equations, for example). It is shown that,
it one takes into account the finite sensitivity of measuring ingtruments,
this objectionable feature is more apparent than real. .

Calling to mind the connections with semigroup theory, we show
in §4 that if ¢, which in the main theorem is assumed to be suitably
related to right-translations, is assumed further to be similarly related
to left-translations, then the yu, form a one-parameter semigroup with
respect to convolution. This property is further exploited when X ig
commutative by examining the Fourier transforms of the measures Ui
this occupies § 5.

Finally, in §6, we comment briefly on the possibility of extending
the main arguments. The extensions contemplated include the wave
equation

_Dut = iy
with initial conditions
limg 0w =f, lmg,, 0% =f".

The main illustrations are those in which X is B* and D is a suitable
linear partial differential operator with constant coefficients, but the
method of treatment shows no preference for these over the case in which D

is a convolution operator. If D is allowed to be a distribution, the former
case ig included in the latter.

§ 1. Definitions and hypotheses. The group X iy assumed to be
locally compact with left-invariant Haar measure m and neutral element e.
Following Bourbaki ([1a], p. 48) we denote by K (resp. K.t) the set of
continuous real-valued (resp. positive real-valued) functions on X having
compact supports. For any function f on X and any aeX we define the
left- (resp. right-) translate L.f (resp. R,f) by L,f(x) = f(az) (resp.
R, f(x) = f(xa)) for z<X.

In respect of locally convex spaces we again follow Bourbaki ([1a],
p. 81) by saying that a locally convex space F satisfies condition (BC)
if it is separated, and if in < the closed convex envelope of a compact
set is weakly compact. Note that this condition is fulfilled whenever F
is separated and quasi-complete (the said envelope being then even
compact). Regarding duality theory for locally convex spaces, we follow
in general the notation and terminology of Bourbaki [1b].

In the sequel both ) and ¢ are assumed to be locally convex spaces

of real-valued functions on X such that the following conditions (A)

and (B) are to hold when therein we take & to be either D or €. It may
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be added parenthetically that the restriction » C X is one of convenience:
if the solution of the Cauchy Problem extends naturally to wider classes
of initial data, it usually does so in such a way that w, depends contin-
uously upon f, and a knowledge of the dependence for f belonging to D
suffices to determine completely the behaviour of its extension. More-
over, variants of the hypotheses are possible (see § 6).

(A) F satisfies condition (EC) above, and the topalogy of ‘F is finer than
that of simple convergence on X.

(B) F is imvariant under righi—tmnslatiom R,, each R, induces a con-
tinuous endomorphism of F, and for each feF the mapping a — R,f is
continuous from X imto °F.

Besides this, D is to satisfy the further condition

(D) DC K and D (the set of positive functions in D) is unmformly
dense in Wy and contains an “approvimate identity” (g;), i. e. a directed
family such that

(D.1) @ = Sup; [gidm < +oo  (KC X, K compact)
and
(D.2) lim;(g;* f) = f

weakly in D for each fe. . .
The space ¢ and the endomorphism D are to be inter-related in
the following way: .
(B) D is an endomorphism of ¢ which commutes with all right-trans-
lattons R,.
The principal hypotheses concern the solution of the Cauchy Problem.
These run as follows, p denoting a pre-assigned positive funetion on (0, o).
(CP) To each feD corresponds a unique solution of the Cauchy Problem

(1.1) we€, Duy=1 (>0),
(1.2) ‘ lim,_. ,qu; = f simply on X (%),
(1.3) Pty u, is bounded in € for > 0.

This solution has the following properties:
(CP.1) If feDy, then u; = 0 and w(e) < Maxf, whilst to each compact
KC X and each t > 0 corresponds a number ¢(K,t) such that

fKWzm < o(K, 1) [ fdm ().

i i dition that lim¢, o w = f
1) No harm is done by replacing (1.2) by the eon ) -
in a.ny( )stronger sense commutating with right translations (possibly thereby making

it casier to ensure uniqueness). . . . A
(*) The actual form of the function ¢(K,t) is immaterial for the main argu

ments; see also § 3.
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(CP.2) For fized t> 0, the mapping f— u, is continuous from D
into C.
In connection with the growth condition (1.3), we note that it may
be nullified by allowing p(f) = +-c0 and interpreting (4-oc0)™! as 0.
Uniqueness i3 known to require an effective growth condition for the
case of the heat equation, and to be superfluous for the wave equation.
It is convenient to recall here that the convolution of two functions g4
and f is by definition

(142)  gf(a) = [g(ey)fly™dm(y) = [fly" @)g(y)dm(y),

whilst the convolution u«f of a measure x and a function fis by definition

(1.4b) pef@) = [fly~ o) du(y);

in all cases which concern us, these integrals exist for all a.

Finally, we remind the reader. that the vague topology of measures
is the weak topology resulting from their role in defining linear forms
on X ([1a], p. 60).

§ 2. Statement and proof of the main theorem. We now prove
THEOREM 1. Suppose that D and C satisfy (A) and (B), that D
satisfies also (D) and & also (E), and that (CP) is fulfilled. The conclusion

is that to each t > 0 corresponds a unique positive Radon measure uy; on X
such that:

(M.1) m(X) <1 (2> 0)
(M.2) lim, o (X) = 1;
(M.3) Yimy ,  opu = 8 vaguely;
(M.4) lim ,,om(U') = 0

for each neighbourhood U of e in X, U’ being X~CU:

(M.5) w=pprf (feD, t>0),
2. €.
(M.6) (@) = [fly"a)du(y)

for feD, 2eX and t > 0.

Remarks. (1) There is an analogous assertion in which right-trans-
lates are replaced by left-translates in the hypotheses: then in (M.5)
we should have to replace u»f by f 44, whilst in all the other conclugions
# should be replaced by the measure 4 -4, A being the modular function
(Weil [7], p. 40) defined by i

fk(xa—l)dm(x) = A(a)fk(m)dm(w)
for general ke<X.
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(2) The uniqueness of u; follows immediately from (M.6), in view
of (M.1) and (D). .
(3) The uniqueness hypothesis in (CP) may demand the imposition
of boundary conditions on the solutions. These may be absorbed into
the definitions of @ and &, provided they are linear boundary conditions.
The proof of Theorem 1 will be based upon two lemmas.
LeMMA 1. Let F be either <D or &, assumed to satisfy (A) and (B). If
feX and geF, then g+f is identical with the abstract integral

b= [f(a™) Rag-dm(a),

o weak integral with values in F.

Proof. The weak integral exists because of (EC) (see [la], p. 81,
Proposition 2). By (A), the linear form d,: h — k() (Dirac measure placed
at z) is continuous on F. Hence by definition of the weak integral, one has

h(@) = <hy 8> = [f(67)(Rag, oy dm (a)
= [f(a™") Rog(@)dm(a)
= [f(a ") g(za)@m(a) = g+f(@).
Thus h = g+f, as was to be proved.

LEyma 2. Let X be a locally compact space, (u;) a directed family of
positive Radon measures on X which satisfy

(2.1) lim sup; p; (X) < 1.

Suppose that (u;) converges vaguely to o measure p such that u(X) =1.
Let A be the support of u. Then
(2.2) limpu (X) =1,
(2.3) lim; u;(T') = 0
for any open set U D A, where U = X~CU. .

Proof. Let ¢ be any positive lower semicontinuous function on X.
By definition ([1al, p. 104), if 4 is any positive Radon measure on X,
fedd is the supremum of fRaA tor keXs minorizing @. Thus }»‘—> [ q{:dl,
being the upper envelope of continuous functions, is lower semicontinu-
ous for the vague topology on the set of positive Radon measures. Con-
sequently
(2.4) Jodp < liming; [edu;
whenever u; — pu vaguely (the w; being positive). If we now suppose
that ¢ < 1 everywhere and ¢ =1 on 4, (2.4) and (2.1) combine to ghow
that

(2.5) lim, [pdp; = 1.
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Taking ¢ = 1 everywhere, (2.2) results. Taking ¢ = py (the character-
istic function of U) and subtracting the result from (2.2) we arrive at
(2.3).

Proof of the theorem. Take a fixed ¢z > 0 and denote by T, the
mapping of D into ¢ which carries f into . By (CP.2), T, is continuous.
Moreover the uniqueness part of (CP), combined with (B) and (E), entails
that T, commutes with right-translations R,; it is merely necessary to
note that (1.3) remains true when u; is replaced by R,u (since R, ir
continuous and therefore bounded), that (1.2) is equivalent to

lmy . T,u; = R,f simply on X,
and that

d . .
75 (Raut) = hme-yo (Ruui+s—-Rauf)/5

= lm, (R, (1., —m)/e
= Ra'h.]ne»n(ut-f-e_~ ut)/e = —Ru"';t;

80 that (1.1) remains undisturbed on replacing u, by R, u,.
By Lemma 1, with ¥ = ), we have

gof = [f(a™)" Rogy-dm (a)
for feD, and so, since T; is continuous,
Ty(gi+f) =ff(a_1)-TtRagi-dm(a)
= [f(a )R, T,g;- dm (a)
= (Tuogi)xf = hof

say, the last step being based upon an application of Lemma 1 with
F = €. Using (D.1). and the continuity of 7, once more, we derive
(2.6) Tof = iy (ks )
weakly in ¢&.

Thanks to (CP.1) and (D.1), h; >0 and

Supifghidm < Supia{K, t)fyi am << +oo

for each compact K C X. The measures hym are thus vaguely bounded,
8o that the directed family (h;m) admits a vague limiting point u;, which
is necessarily a positive Radon measure on X, But then the directed
family (hyqf) admits usf as a limiting point for the topology of simple

convergence on X, as appears from (1.4b). If (A) is applied to ¢, (2.6)
shows that (M.6) holds.

icm°

Cauchy problem 199

By (CP.1), if feDy one has

@7n JEW N duly) = wile) > fe)
ag ¢ — +0, and
(2.8) 0 < [f(y™dm(y) = we) < Maxy.

Since -0, is uniformly dense in ., (2.8) shows that 4 (X) < 1, which
is (M.1), and (2.7) then leads to (M.3). Lemma 2 may now be applied,
taking 4 = {¢} and u = é; (M.2) and (M.4) follow. This completes the
proof.

§ 3. Remarks and consequences. (a) Condition (1.3) does of course
entail that the measures p(¢)~'y are vaguely bounded, i.e. that

(8.1) Supg..op ()7 m(K) < +oo

for each compact K C X. This is, however, much inferior to (M.1) in
general. The estimate (3.1) may become valuable if in (CP.1) we were
to weaken the inequality wu,(e) < Maxf to

(3.2) ug(e) < g(t)-Maxf.

In this case (M.1) would be replaced by u(X) < q(2); (M.3), (M.5) and
(M.6) would remain, but the proof of (M.2) and (M.4) would break down.
On the other hand (D.1) could be shown to lead to

(3.3)

and it would be a matter of inspection to decide which of (3.1) and (3.3)
contains more information.

(b) For the heat equation in R", detailed results concerning the
uniqueness of the solution and its representation in conformulation form
are available. For a résumé and references, see Rosenbloom [6]. )

(¢) It is not very easy to check the integral inequality in (CP.1)
prior to knowing the form of the solution, and this even in the familiar
special case of the heat equation over R!. It is therefore interesting to
note that the said inequality is often derivable as a consequence of the
other hypotheses, at least whenever the solution can be said to exist
uniquely in some weak sense for all initial conditions f which are integr-
able and have compact supports. For such weak solutions, modifications
of the sense of the initial conditions would be necessary, as also would
the interpretation of D (partial derivatives being interpreted in the sense
of distributions, for example).

To illustrate the possibilities, we shall assume for simplicity that
D =% and that X is o-compact. The main agsumption will be that T,

w(K) < Ge(K, 1),
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is extendable from Q to the space L; of classes of integrable functions
with compact supports; for fin L}, 7,f is to be a class of locally integrable
funetions, and we assume that

(*) Ty(f+g) = (Tufixg '

for g<X (or for suitably ‘‘dense” subsets of ). This convolution equa-
tion cannot now be derived, as it was before, since we lack knowledge
of suitably continuity properties of 7.

Let 9B be the Banach space of (classes of) integrable functions f
vanishing a. e. outside a fixed compact set HC X; B is equipped with
the norm induced by that of L* = L'(m). In addition, let .2 be the space
of (classes of) locally integrable functions F, equipped with the topology
defined by the seminorms

F— fK]F|clm,

K ranging over any countable base for the compact subsets of X. .2 is
a Fréchet space. To establish the integral inequality in question, it suffices
to show that the mapping T is continuous from 93 into 2, and for this it
suffices to show that 7; has a closed graph.

Suppose then that a sequence (f,) extracted from 9B converges to 0,
and that (F,) = (T,f,) converges in .2 to #. We need to show that F = 0.
Now, if g¢X, fo*g X and f,,+¢g — 0 uniformly, and the first part of (CP.1)
shows that Ty(f,xg)—~ 0 simply. By (), this reads F,+g— 0 simply.
But F, - F in £, and so F,+g— F+g simply. Consequently Fxg =
everywhere, and this for all g<°X. This entails that ¥ is the zero class, as
was to be proved.

Note finally that () will be satisfied if uniqueness of the solution
of the Cauchy problem obtains in a suitable sense, the modified sense
of the initial condition “commuting” with right-convolution by elements
of %, and if D likewise commutes with right-convolution by elements
of . The argument will be as in the proof of Theorem 1, right-convolu-
tion replacing right-translation. (Right-convolution defines a continuous
endomorphism of 2).

(d) If we know that the Cauchy Problem has a unique solution for
(say) each bounded continuous f, and that (3.2) holds (the other hypotheses
remaining as before), it is easily seen that (M.5) and (M.6) hold for all
such f by virtue of a simple continuity argument.

If further D(1) = 0 (as in the case when D is a partial differential
operator), uniqueness guarantees that f =1 yields u, =1, and then
(M.8) gives x4 (X) = g(t). In particular, in the original case (g(f) = 1),
(M.1) and (M.2) may be simultaneously strengthened to

(3.4) m@) =1 (1> 0).
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(e) If feD, equations (M.1) and (M.6) yield

(3.5) Jlw(@)dm (@) < w(X)- [ |f(@)dm (),
with equality if f >0
(3.5 Judm = w(X)- [fdm.

(f) It often happens (as, for example, in the case of the heat equa-
tion over X = R") that if f > 0, f 5= 0, then w;(z) > 0 for all z<X and
all t > 0. This gives the impression that an infinite velocity of transmis-
sion is involved, a conclusion which would be physically objectionable.
A closer look shows however that there is really no paradox, provided
one makes allowance for the finite sensitivity of measuring instruments.

To see this we note that, after at most a change of scale, we can in
the cases of physical interest arrange that f > 0. Suppose further that f
vanishes outside a set 4 C X and is normalized by

(3.6) [fam = 1.

The integral on the left may be thought of as a measure of the total
initial heat content. If (3.4) holds, as it in fact does for the heat problem,
(3.5") expresses the conservation of total heat content. Take a neigh-
bourhood U of ¢ and a fraction r (0 < r < 1) and consider the time lapse
necessary before a fraction r of the total heat is to be found outside of
the neighbourhood V = AU of 4. A lower bound for 7, in order that the
said change may be observable, is set by the sensitivity of measurements,
and until a certain minimal time has elapsed measurement cannot con-
firm a flow of heat out from its initial confinement in A into the ex-
terior of V. This condition requires that

(3.7) [ rwdm =r.
Now from (M.6) we find that the integral on the left of (3.7
[ rim (@) = [ carf(y @) dpa(y).

If zeV’', then 247'C U’, so that the left-hand side of (3.7) does not
exceed

[rim@ [ of@ ™ 0)dpy) = [ oduy) [vfy~ o)dm(@) < p(T')
by virtue of (3.6) and left-invariance of m. Thus (3.7) entails
(3.8) wm(T)=r.

The relation (M.4) shows that (3.8), and a fortiori (3.7), can obtain only
it ¢+>T(U,r)>0. T(U,r) thus sets a lower limit to the time which

) is
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must elapse before experiment can detect the flow of heat out of 4 into
the exterior of V.
As a simple illustration, take the one-dimensional heat equation

20z =
over X = R. In this case g, has density (relative to m) given by
l (4mt) P exp (—a?) [41).
I U = (—a,a), (3.8) amounts to

)

2w [ ota s

\

" This requires {~"a < C(r), where C(r)> 0 depends only on r. Thus (3.8)
entails ¢ > C(r) e’ A time T = (()7"a® must elapse before a measur-
able quantity (depending in amount on the sensitivity of measurements)
will have flown outwards through a distance at least a from its initial
localization. This dependence of 7 upon @ indicates an infinitely small
speed, rather than an infinitely large one. It is also in agreement with
the view of heat flow and diffusion as being subject to an underlying

- random motion of particles.

§ 4. The semigroup property of the y,. We supplement (B) applied
to © by similar conditions pertaining to left-translations, and show that
ag a consequence the u, form a semigroup with respect to convolution.
The supplementary condition is the following one.

(B') @D is quasi-complete and, for fived f<D, the mapping a ->Lf
18 bounded and continuous from X imto D.

The gain is recorded in

THEOREM 2. Suppose that the hypotheses of Theorem 1 are fulfilled,
together with condition (B') above. Suppose also that for each s > 0 one has

(£.1) Sup.op(s+8)/p() < +oo.
Then
(4.2) Usyt = ps*py (8 >0, > 0).

Proof. Take a fixed s > 0 and feD. Put f* = u, = u+f. Thanks
to (B') and (M.1) (applied Wwith t = s), it is seen that f* again belongs
to <D: the arguments are like those used in the proof of Lemma 1, f* being
the weak integral

J Lot dpg(a

and (B’) being adequate to ensure the existence of this integral as an
element of D. »
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We congider the solution of the Cauchy Problem with the initial
state f replaced by f*. Because of uniqueness, it is easily verified that
the resulting solution is none other than ¢— ug,; ({ > 0), (4.1) ensuring
that this candidate still saitsties the growth condition (1.3). By The-
orem 1, therefore, u,,; = wxf", i e.

Bepir = p*pgrf

This relation obtains for all s > 0, ¢t > 0 and fe°D. Condition (D) now
forces upon us the conclusion (4.2).

§ 5. The case in which X is commutative. We assume here that
the hypotheses of Theorem 2 hold, and that in addition X is commu-
tative, and proceed to exploit the relations (4.2) by taking the Fourier
transforms of the measures p;.

It will be convenient to define u, = &: then {M.1), (M.5), (M.6) and
(4.2) hold for s >0, t > 0. Further, (4.2) and (M.2)-(M.4) show that
t — u is vaguely continuous for ¢ > 0, together with certain consequences
of this fact.

Introduce the group Y dual to X and denote by (x, y) the character
function. The Fourier transform of p; is the function on ¥ defined by

(5.1) w(y) = [ (@, y)du(x).

It is clear from (M.1) that g is (for fixed ¢ >
-definite function on Y, and that

(5.2)

0) a continuous positive-

()l <1 =0, ye¥).

Taking the Fourier transform of (4.2) we arrive af the equivalent
relations

(5.3) fose(y) = ps(¥)-uly) (s 20, 1=
These relations determine completely the dependence of u(y) upon
when y is fixed, as the following theorem shows.

TuEOREM 3. The hypotheses are those of Theorem 2, together with the

commutative property of X. Y being the group dual o X, there ewists
a continuous complex-valued function @ on Y such that

(5.4) ReQ(y) =0 (yeY),
(8.5) m(y) = exp[—Q()t] (ye¥, 1 =0).

Remarks. Before embarking on the proof of Theorem 3, it is interest-
ing to compare it with the formally identical conclusion presented by
Hille ([4], p. 405-406, especially formulae (20.8.7) and (20.8.8)). In the
cage considered by Hille, X is R* and D is a partial differential operator

0, yeY).
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with constant coefficients. As a consequence a direct application of the
Fourier transformation to (1.1) will lead to the required result. For, if D
is any convolution operator,

Du = kxu,

then formally (and justifiably if, for example, ¥ has a compact support
and elements of ¢ are suitably restricted in their rate of growth qua
functions on R"™) we may transform (1.1) into

kg =, u=F,
with the solution
(5.5")

This corresponds formally to

‘22; = f' Btk.

uy = py=f, where g = exp(tk).

Comparing with (5.5), we are led to identify % with —¢. A formal in-
version of (5.5") gives

w(@) = [ yexp(—1Qy): (z, y)-H(y)dy,

which is equivalent to Hille’s formula (20.8.7) already cited. Justifica-
tion of these heuristic arguments presents no difficulty in the situation
envisaged by Hille.

The following proof of (5.5) must proceed less directly since we do
not wish to assume the legitimacy or sense of applying the Fourier
transformation to (1.1) itself.

Proof of Theorem 3. This will call upon an auxiliary result,
Lemma 3, which will be stated and proved after the main argument.

It is convenient to introduce the alternative notation M, () = wm(y),

so that M, is a function on I = [0, +oco). From (5.3) and the relation
e = 6 we shall have

(3.6 MM <1, M0) =1, M,(s+1)= M,(s)M,(1)

for s,tel, My, is thus a ‘“‘character” of the additive semigroup I. The
first and principal step is to show that M, is necessarily an exponential.

To do this, we begin by showing that M, is measurable. Since
y,(X)ﬂg lﬂa,nd e = py vaguely as tel converges to tyel, Lemma 3 shows
that g — u;, weakly in L°(Y) in the same circumstances. Thus if Fell(Y)
the function gz, defined by

or(t) = [P )\m(y)ay’

(dy’ = Haar measure on Y), is continuous. If we allow # to run through
a suitable sequence (¥,) converging to the Dirac measure placed at a point

)
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ye¥, continuity of x; shows that ¢p — M, simply on I, whence follows
the measurability of M,.
It is important to notice that

(5.7) hmt—»-{—oJ[u(t) =1,

uniformly on compact sets of ye¥. This is an easy consequence of (M.3)
and (M.4). Combined with (5.6), it shows that M, is non-vanishing.

The measurability of M, and its non-vanishing property imply that
in fact it is indefinitely differentiable on I (right-hand derivatives at
t = 0). The argument, which depends on the use of the Laplace trans-
form, is probably well-known, but we include it for completeness. Thanks
to (5.6) and measurability of M,, the Laplace transform

L(p) = [ M,(t)e™dt
0

ig defined and holomorphic for Rep > 0. Sinee M, is non-vanishing, Ly
can vanish only for sparse sets of p; in particular we can certainly choose
for any given y a corresponding p such that L,(p) # 0. More than this
is true, however; since

Ly(p) = [ iuly)e™at,
. 0

continuity of i, and uniform boundedness show (via Lebesgue’s con-
vergence theorem) that I,(p) is continuous in y for any fixed real p > 0.
Hence, given y,¢Y, there exists p > 0 and a neighbourhood W of ¥,
such that
(5.8)

Lyp) =0 (yeW).

This being so, use of the functional equation in (5.6), followed by
an obvious change of variable, leads to
(5.9) M, (5) = Ly(p)" ' [ M, (s)e™™ds
0
holding for ¢ ;> 0 and y W, p being chosen so that (5.8) applies. Bjrom
(8.9) it is easily seen step-by-step that M, is indefinitely differentiable
on I.

Once the differentiability of M, is known, the functional equation
in (5.6) gives for M, the simple differential equation

My (1) = My (0)-My ().
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Bearing in mind the initial condition M,(0) =1, we derive
(8.10) ta(y) = My(t) = exp[—Q(y)1].

Boundedness of I, asserted in (5.6), shows that ReQ(y) > 0

It remains to show that @ is continnous. Let y,¢Y and choose W
80 that (5.8) obtains. It suffices to show that Q[W is continuous. Now
(5.10) and (5.9) give at once

—Q(y) = My(0) = p—Ly(p)~*

We have already seen that L,(p) is contingous in y for any fixed real

» >0, so that continuity of QiW is apparent.

Completion of the proof of Theorem 3 amounts now to establishing
the auxiliary Lemma 3.

LeMuMA 3. Let X be a locally compact commutative g group with dual Y,
and let (u;) be a norm-bounded directed family of Radon neasures on X,
# a bounded Radon measure on X. The following assertions are equivalent:

(a) ps — u vaguely;

(b) py — u weakly (4. e. weakly in the dual of the space C(X
contimuous functwns on X which lend to zero ai 'mfmm)

(€) p; — fi weakly in L>(Y).

Proof. Let HeL'(Y) and let

= [H(y) (=, p)ay

be its inverse Fourier transform. The generalized form of the Riemann-
-Lebesgue lemma affirms that he((X). By the Lebesgue-Fubini-Tonelli

theorem,
[h(~=)dr(w = [Hy)i(y)dy

(5.11)
for any bounded Radon Imeagure A on X. Note that norm-boundedness
of (u;) implies that of (g;) relative to the customary norm on L%(Y).
.The implication (b) =>(a) is trivial, since % C O(X (X).
On the other hand, thanks to boundedness, (¢) is equivalent to the
requirement that

) of bounded

fH/lidy»fH/Zdy
for each H belonging to a dense subset of LH(Y). It are known ([5],

Section 37A, p. 147-148) that those H eL1(Y), for which heX, are dense
in L}Y). It therefore follows that (a a) = (¢).

It remains to show that (¢) = (b ). But, thanks again to boundedness,
(b) is equivalent to the demand that

(5.12) Jh(—2)du (@) — [hp(—)d (@)

[
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for each h belonging to a dense subset of C'(X). Such a set is formed by
those heC(X) which belong also to L'(X) and for which H = % is in
L*(Y). To verify this it suffices to first approximate any heC(X) by
h'eC(X)~L'(X), and then to approximate &’ by functions " = h'+p,
where p is continuous, positive definite and in L!(X). For any % of this
dense set, (5.11) shows that (e) implies (5.12). This completes the proof.

Remark. Lemma 3 generalizes a result due to Carathéodory for the
case in which X is the circle group ([8], p. 82).

§ 6. Possible extensions. Arguments basically similar to those which
precede apply to other problems of the same nature, the central argu-
ment being clearly that part of the proof of Theorem 1 which amounts
to an appropriate representation theorem for continuous linear maps 7'
which commute with translations (right- or left-) in terms of convolution
with a measure. As is clear from [3], this development is not necessarily

‘tied down to the case in which X is a full group. Moreover it is possible,

and sometimes necessary, to drop the assumption, contained in (CP.1),
that 7 is positive. Instead one might assume that

(6.1) lu(e)] < (fed),

Jxludam < (feDs).

The existence of the measure u, would then follow as before, as also
would its boundedness; but it would no longer be true in general that
ug =0, and (M.1) would take the weaker form

| (X) < My (E>0).

A further extension, which would in fact involve modifications of
the type just contemplated, is illustrated by considering the Cauchy
Problem for the ‘‘wave equation”

M- Max |f]

(6.2) (K, 1) [fam

(6.3) Du, = u,
with initial conditions
(6.4) Hmt_>+o'ut =7, limt.>+07)ft = f,-

For the semigroup aspects, see [4], p.390-395. )
To deal with this problem one would replace D by a produet D x D' of
two spaces, each similar to @, and define T: Dx D — ¢ by

Ty(f, ) = w.
It we define R, on DxD' by
Ra(frfl) = (Raf; Rafl)’
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T, would commute with each R,. However, T; would not be bilinear.
This feature suggests falling back on an approach which is a priori very
natural, and which reduces the problem to two partial problems each
similar to that dealt with in §§1-5 above. It is merely necessary to
decompose u; into a sum

14
Uy = Vit Uy,

where v, = Ty(f,0) is the solution of (6.3) and (6.4) with f =0, and
v, = Ty(0,f') is the solution of the same equations with f = 0. The
mappings

8D~ ¢E,  Bif = Tu(f, 0) =,

8;:D =&, 8if =T0,f) =7

are each linear and commute with right-translations. Each may be
treated by the methods of §§ 1-5. The resulting representation theorem
will be of the form

wy = ppef+ /‘t,*f,7
where p; and y; are bounded Radon measures. In general y, and 4 will

not be positive measures: this will depend partly on X and partly on
the boundary conditions (if any), and also of course on the nature of D.
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Projections in certain Banach spaces

by
A. PELCZYNSKI (Warszawa)

It is a well known fact that every finitely dimensional subspace Y
of a B-space X is complemented (!) in X. In general this property of
finitely dimensional.subspaces does not remain valid for subspaces of
an infinite dimension. The first example of a subspace ¥ which has no
complement in €0, 1] was due to Banach and Mazur [2]. Further examp-
les of non-complemented subspaces in Ly, 1, (1 <p #* 2), ¢, m, M and
in other. spaces were given by Murray [25], Sobezyk [30], Philips [29]
and Komatuzaki [21], [22]. In many cases the fact that a subspace Y
is not complemented in a B-space X depends only on the isomorphic
properties of X and Y. For example: no reflexive infinitely dimensional
subspace of C[0, 1] has a complement (Grothendieck [16]); in an
arbitrary B-space X each subspace isomorphic to a space C(S), where S
is a topological compact Hausdorff space extremally disconnected, has
a complement (Nachbin [26], Goodner [15]).

Hence the following two problems arise naturally:

1° Given a B-space X, characterize the isomorphic types of com-
plemented subspaces of X.

2° Given a B-space X, characterize the isomorphic types of such
B-gspaces Z that every subspace of Z isomorphic to X is complemented
in Z.

In section 2 of this paper we prove (Theorem 1) that every infinitely
dimensional subspace complemented in 7, (p = 1) or ¢, is isomorphic
to 1, or ¢, respectively. We do not know whether the space m has the
same property. Partial results in this direction are given in section 4
(Corollaries 7-9). In section 3 we consider the reciprocal problem. We
prove that, if Y is a subspace of ¢, or I,, or s, or m, or I, (1 <p #2)
and Y is isomorphic to ¢, ly, §,m, or is isometrically isomorphic to I,
(1 <p #2), then ¥ has a complement.

(*) For the terminology and notation see section 1.
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