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T, would commute with each R,. However, T; would not be bilinear.
This feature suggests falling back on an approach which is a priori very
natural, and which reduces the problem to two partial problems each
similar to that dealt with in §§1-5 above. It is merely necessary to
decompose u; into a sum

14
Uy = Vit Uy,

where v, = Ty(f,0) is the solution of (6.3) and (6.4) with f =0, and
v, = Ty(0,f') is the solution of the same equations with f = 0. The
mappings

8D~ ¢E,  Bif = Tu(f, 0) =,

8;:D =&, 8if =T0,f) =7

are each linear and commute with right-translations. Each may be
treated by the methods of §§ 1-5. The resulting representation theorem
will be of the form

wy = ppef+ /‘t,*f,7
where p; and y; are bounded Radon measures. In general y, and 4 will

not be positive measures: this will depend partly on X and partly on
the boundary conditions (if any), and also of course on the nature of D.
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Projections in certain Banach spaces

by
A. PELCZYNSKI (Warszawa)

It is a well known fact that every finitely dimensional subspace Y
of a B-space X is complemented (!) in X. In general this property of
finitely dimensional.subspaces does not remain valid for subspaces of
an infinite dimension. The first example of a subspace ¥ which has no
complement in €0, 1] was due to Banach and Mazur [2]. Further examp-
les of non-complemented subspaces in Ly, 1, (1 <p #* 2), ¢, m, M and
in other. spaces were given by Murray [25], Sobezyk [30], Philips [29]
and Komatuzaki [21], [22]. In many cases the fact that a subspace Y
is not complemented in a B-space X depends only on the isomorphic
properties of X and Y. For example: no reflexive infinitely dimensional
subspace of C[0, 1] has a complement (Grothendieck [16]); in an
arbitrary B-space X each subspace isomorphic to a space C(S), where S
is a topological compact Hausdorff space extremally disconnected, has
a complement (Nachbin [26], Goodner [15]).

Hence the following two problems arise naturally:

1° Given a B-space X, characterize the isomorphic types of com-
plemented subspaces of X.

2° Given a B-space X, characterize the isomorphic types of such
B-gspaces Z that every subspace of Z isomorphic to X is complemented
in Z.

In section 2 of this paper we prove (Theorem 1) that every infinitely
dimensional subspace complemented in 7, (p = 1) or ¢, is isomorphic
to 1, or ¢, respectively. We do not know whether the space m has the
same property. Partial results in this direction are given in section 4
(Corollaries 7-9). In section 3 we consider the reciprocal problem. We
prove that, if Y is a subspace of ¢, or I,, or s, or m, or I, (1 <p #2)
and Y is isomorphic to ¢, ly, §,m, or is isometrically isomorphic to I,
(1 <p #2), then ¥ has a complement.

(*) For the terminology and notation see section 1.
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The main result of section 4 states that every linear operator from
a space C(S) into an arbitrary B-space X, no subspace of which is iso-
morphic to ¢,, is weakly compact. Applying this fact we obtain some
necessary conditions, expressed in terms of isomorphic invariants, for
a subspace Y to have a complement in C(8). These results suggest positive
solutions of the following problems:

P,. Is every complemented subspace of ((S) isomorphic to a space
C(8,) (8 and S, being topological compact Hausdorff spaces)?

P,. Let X be isomorphic to an abstract L-space and ¥ be comple-
mented in X. Is Y isomorphic to an abstract L-space?

P,. Let X be a B-space such that X is complemented in each space
in which it is embedded. Is X isomorphic to a space C(S), where § is
a topological compact Hausdortf space extremally disconected?

In section 5 we apply the results of section 2 to the investigation
of unconditional bases in L, and 1,.

1. We intend to preserve the notation and terminology of the
treatise of Dunford-Schwartz [9]. In particular, the symbols m, ¢, I,
L,L,,1,and Iy forp >1 (n =1,2,...), C[0,1] and C(8S) have the same
meaning as in [9], Chapter IV.

We consider also the F-space s of all real sequences » = (t,) with
the F-norm :

lell = 327" ital (14 Ital) ™

Let X be an F-space. The term ‘“subspace” of X always means
a closed linear manifold in X. Let (x,) be a sequence in X'; by [z,] we
denote the smallest subspace of X spanned on elements z,, %, ... By
[#, ®gy ..., 2,] we denote the smallest subspace spanned on elements
Lyy Layeoey Tpe

Let B be an F-space consisting of real sequences. We use the symbol
e, (n=1,2,...) to denote the n-th ‘unit vector” (0,0,...,1,0,...)
in E.

Let X and Y be F-spaces. We shall write X ~Y if the spaces X
and Y are isomorphic. If X and Y are B-spaces and there exist an
isomorphism 7' from X onto Y, and a constant % > 1 such that

(1) ol < T < klwll, =X,

then we shall write X £ ¥. In particular, to express the fact that X and ¥
are isometrically isomorphic we shall write X1 Y.

The symbol X@Y denotes the product of F-spaces X and ¥, i.e.
the space Z of all pairs (z,y), where zeX and yeY with the F-norm
Gz, I = i+ ly )
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Let B be an F-space consisting of real sequences with the F-norm
||z satisfying the condition

(%) if (4)eE and [s;] < |t (4 =1,2,...), then (8)eE and ||[(t;)|lx
= l(s:)lz-

Let X,, X,,... be F-spaces with F-norms l“lixys I llxyy - - - respect-
ively. By (X,®X,®...)r we denote the space of all sequences (a;) where
z;eX; (t=1,2,...) such that (lzllx,)e B with the norm |z)|| =
= [(l#llx,)lz. The definition of finite product (X, PXD... DX,z is
analogous. It is easily seen that (X,®X,®...)z is an F-space. Moreover
if B,X,,X,,... are B-spaces, then (X.@X:;®...)z is also a B-space.

Let X be an F-space. A subspace Y of X is said to be complemented
in X (to have a complement in X) if there is a subspace Y, (a complement
to ¥) such that for each x in X there exist a y in ¥ and a y, in ¥,
such that 2 = y+y, and if 0 = y+y,, then y = 0 and y, = 0.

We recall (2) that:

A. The subspace Y is complemented in X if and only if -there is
a projection (i.e. a linear idempotent operator) from X onio Y.

B. If Y has a complement Y, in X, then X ~Y®Y,.

Let X be a B-space. The symbol X P, denotes that X is complemented
in each B-gpace Y which contains X as a subspace. We write X P, if
for each space Y which contains X as a subspace there is a projection P
from Y onto X with the norm ||P| = 1.

In the sequel we shall need a few propositions.

ProrosirioN 1. Let X and Y, be B-spaces and let X contain a sub-
space Y isomorphic to Y,. Then there are a B-space X, and an isomorphic
mapping T from X onto X, such that the subspace T(Y) is isometrically
isomorphic to Y.

Proof. We define the space X, as the set of elements of X with the
same operations of addition and of multiplication by scalars, under the
norm defined as the Minkowski functional of a suitable convex set W.
Namely, we set

- 136
W = co({er:]]Uy][ <1} u{meX: |l gf}) .
where U is an isomorphism from ¥ onto ¥, and K is a positive constant
such that |y <T@ < Klyll, y«¥ and

llzll, = inf{z > o;% eW}.

(2) For the proofs see [8], p. 480-482.
.(*) By co(4) we denote the intersection of all convex sets containing a given
set 4.
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We leave it to the reader to show that the functional |||, is a norm,
X, under this norm is a B-space and the identity operator 7' (Tx = g,
zeX) is the required isomorphism, q.e. d.

From Proposition 1 and the fact that the notion of complement is
an isomorphic invariant we obtain.

PROPOSITION 2. If ¥,e¢P and ¥ ~ Y., then ¥eP.

PROPOSITION 3. Let B be one of the spaces s,l, where 1 < p < + oo,
¢y, m. Then

a) (BEQE®..)g~E, -

b) for each of the F-spaces X and Y

(XY (XDY)®.. )~ (XRXD.. )s®(YRY ®...)x,

c) If (X,) and (Y,) are sequences of B-spaces such that there is a con-
stant K >1 that Xy~Y, (n=1,2,...) then (X, BX:,®...)g ~ (Y,0Y.®
@)z

¢’y If X and Y are F-spaces and X ~ Y then (XPX®...)g~ (YO
YD...)g,

d) If (X,) is a sequence of B-spaces and Y, is a subspace of X, such
that there is a projection P, from X, onto ¥, (n =1, 2,...) and sup||P,|
< oo, then there is a projection P from (X,@X,®...)p onto its subspace
(Y. OT®...)z-

Proof. a) The required isomorphism may be given by the linear
extension of an arbitrary one-to-one mapping from the set of vectors
e =(0,0,...,0,6,0,...)<(BERED...)g (1, =1,2,...) onto the set

n-th place
of unit vectors in X.

b) The required isomorphism may be given by the following formula:
T((@), () = (21, 9:)) Where m;eX, ;Y (i =1,2,...).

c¢) Let T, be an isomorphism from X, onto Y, satisfying (1). Then
the required isomorphism’ may be given by the formula

T(@n) = (Tawa); (%) (X, DXD...)5.

¢’) If T' is an isomorphic mapping from X onto ¥, then the required
isomorphism is T(z;) = (I"%;), (%;)e(XDXD...)z.

d) The required projection is

P(mn) = (ann)y (mn)e(X1®Xz®“-)E~

ProroSITION 4. If B has the same meaning as in Proposition 3, X is
a subspace complemented in B and X contains a subspace Y complemented
in X and isomorphic to B, then X is isomorphic to E.

Proof. From the assumption of Proposition 4 it follows that there
exist F-spaces X, X, ¥ and Y, such that

@) E~X®X,, (i) E~Y, (i) X~YOY,.

icm

Projections in certain Banmach spaces 213

Thus using the fact that the operation of the product of F-spaces
is associative, according to Proposition 3 a), b), ¢’) we have

E~X0X,~(YDY, )X, ~ (EDY,)0X, ~BD (Y@ X,)
~(EQED. . )z®(Y,0X,) ~((XDX)O(XDX)®...|z®(Y,0X))
~((XDX®.. )s®(X,DX,D.. |z®(X,®Y,)~
~(XDXD.. )@ (X,0X:®...)5) DY ~(XOX,)D(XBX,)D.. )z Y,
~(EQE®.. )zPY , ~ERY,~Y®Y,~X,

g.e. d.

2. THEOREM 1. Let E be one of the spaces 8, 1,, where 1 <p < oo,
or ¢,. Then each subspace complemented in E is isomorphic to B or is of
finite dimension (*).

For the space s our statement immediately follows from the result
of Mazur and Orlicz, which states that each infinitely dimensional sub-
space of s is isomorphic to s (see e. g. [5]). In the sequel we shall only
consider the case of the space [, (1 < p < oo). The proof for ¢, is analogous.

LEMMA 1. Let (2,) be a sequence in 1, such that there is am increasing
sequence of indices 0 = py < Py < ... such that the expansion of 2, in the
unit vector basis in 1, is of the form

T=Dyy
o = E e =0 (m=1,2,..).
1=Pp—1+1

Then

a) the subspace [2,] is isometrically isomorphic to 1y,

b) [2m] is complemented in 1,.

Proof. First we observe that for arbitrary scalars A, As, ..., 4
the equality

k Dm Pm

o | Zuel=13, 5

M=1 i=Dpy_1+

k
= (3 P lewl?)” (k=1,2,..)

m=1

Pt )"

=X

k
m=1 i=pm~_1+1

Inti e
1

holds.

(4) The assumption that X is complemented in F is essential in the case of
E =¢y and E = Ip for 1 << p < 2, is not essential in the case of Z = s and B =y,
and, seems to be essential in the remaining cases. We can construct in the space ¢o
and in the space I, (1< p < 2) infinitely dimensional manifolds which are not
isomorphic to the whole space ¢,, ot lp respectively.
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From (2) we infer that
1° (2,,) is a basis in [2,] (by @ result of Nikolskil in [271),
2 tm ” converges if and only if 2‘ [tnl? < +oo.
m m=1

By (2), 1" and 2° it is easily seen that the mapping

m) =7‘n§:: tm‘ﬂ;m_“ (tm)slp

is an isometric isomorphism from I, onto [2,].

For m=1,2,... denote by E, the subspace spanned on the
vectors epm~1+1,epm 132000 ez, . Since 2z,e¢E, (m =1,2,,..) there is
a linear functional 'wm in Em such that wh (z,) = 1 and [wnll = 1/|lz,ll.

Let us put for z = 2 tieiely,

i=1

oo DPm
Pz = Z Wy t; ei) R
m=1 i=Pp—1+1

It immediately follows from (2), 2° and the inequality

(3) wza(i__pm_lﬂtiei) <ﬁ(i=p§+l\mp)“’° m=1,2,..),

that P maps 1, into z,,. Since the sequence (z,,) forms a basis in [#,] and
Pz, = 2, P is a projection from I, onto [2,]. The continuity of P and
moreover the fact that ||P|| =1 follow from the inequality

cL Py

(@ e =(Yor( S sl ar)”
m=1 T=Ppy_1+1
(X 2 (Plenl?) (2 3k l”) = el

=1 =Py _1+1

where z :A%’ tie;el, (to establish inequality (4) we use formulae (2)
and (3)).

I.JEMMA 2. Let X be an infinitely dimensional subspace of l,. Then X
containg a subspace Y which has a complement in 1, and is isomorphic to 1,.

Proof. According to the fact that X is of an infinite dimension we

e ©

icm

Projections in certain Banach spaces 215

may choose a sequence (¥,,) in X and a sequence of indices 0 = p, <

< p;<... in such a way that
Pm
(5) Ym = t”'el,
T=ppy—1+1
(6) H?/mH =1 (m = ,2, ),
3

(7 I e | < s

t=Dyp—1+1

Let us set
Pm
Zm = v tmﬁi (71’b == 1, 2, )
T=Ppyy+1

COlearly |2, — #ull < 1/2™*' and 80 2, # 0 (m =1,2,...). Let P be the

projection from I, onto [2,] and (25,) be the sequence in [#m]* orthonormal
to (2,). It is easﬂy seen by 2° that

1 _ 1
Sl = lym—ml 1

llemll =

Tewmll

Since

=] R 0 1
1P Y letlllgm—2all < D) 75 < 1

m=1 m=1

the sequence (y,,) fulfils the assumptions of Theorems 2 and 3 of [4])
Applying these theorems we infer that [y,] is the required subspace.

Proof of Theorem 1. Let X be an infinitely dimensional subspace
complemented in ,. By lemma 2 there is a subspace ¥ of X such that ¥
is isomorphic to I, and is complemented in I,. Therefore ¥ has a com-
plement in X. Now we apply Proposition 4, q. e.d.

Remark. In the space L, (1 < p # 2) there is a subspace iso-
morphically different from L, and I, which has a complement. This follows
from

PROPOSITION 5. Let w,(t) = signsin(2"nt) (n =0,1,...) be Eade-
macher functions and p > 1. Then the subspace [yn] 8 complemmted in Ly
and [y,] is isomorphic to I,.

Proof. By Khintchin’s inequality (see [17], p.131-132) it follows
that there are constants 4, and B, such that for each of the scalars
(k =0,1,...)

i < (f IZW \dt)””—llZ b <

Toy By, .-

(8)

534"

i=0

4 (
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Hence by the results of [26] it follows that the sequence (w,) is
a basis (in the sense of the metric of L,) of the subspace [y,] and we can
easily verify that [y,]~1,.

From well-known properties of Rademacher functions (see [17],
Kapitel VII) it follows that the mapping

Px

o

[l
o

1

[s@p@dtw(t), we(Ly),
i=0 g
is a projection from I, onto [y,], q.e.d.

Proposition 5 shows that Lemma 2 cannot be generalized to the
cage of the space I, for 1 < p # 2. But, in view of the fact that the
space L is an abstract L-space, from Corollary 6 (see p. 222) we obtain:

Bach infinitely dimensional subspace complemented in L contains
a subspace isomorphic to 1 and complemented in L.

3. In this section we shall give a few results concerning the converse
of Theorem 1.

THEOREM 2. Let X be a subspace of 1, {1 <p < +4o0). If X is iso-
metrically isomorphic to 1,, then X 18 complemented in 1,.

Levuma 3. Let 1 <p #2 and x = (4;), ¥y = (8;) be two elements in 1,
such that

9 lle— Y1+ llo-+ y 7 = 2({lalP+ Ty1I*);

then s;t;, =0 for i =1,2, ...
Proof. For p > 1 this lemma is proved in [16], p. 239. For p =1

it follows immediately from an elementary inequality, which states that
for each real a,b,

(10) la+bl4la— b} < 2(la]+ 1b]);

moreover the equality sign holds if and only if a:b = 0. (We omit the
proof of inequality (10)).

Indeed, if s; -f;, # 0, then by (10) |s; +1; |+ 185~ | < 2(|8; |+
+It,))- Hence by (10) o T tigl 185, — gl < 2(185]

la— g+ oyl = 3 s+t lsi— ] < 2( Y Isil+ [4]) = 2(lioll + yl) -
i=0 i=1

Proof of Theorem 2. The case of p = 2 is well known. Let p # 2

and X be a subspace of 1, isometrically isomorphic to I,. Let (2,) be the

sequence in X which corresponds under an isometric isomorphism to the
unit vector basis (e,) in ,.
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Let

(n=1,2,..,

N, = {teN:t} # 0}
(N denotes the set of all integers).

As each pair e,, e, (n #m; n,m =1,2,...) satisfies (9), each pair
2, % also satisties (9). Hence N,~N, =@ (n #m; n,m =1, 2,...).
Let B, be the smallest subspace spanned on the sequence (e;) where
ieN,. Since 2,¢H,, there is a linear functional w, in E such that
wh(z) =1, il =1/lzll =1 (n =1,2,...). For each

o0

0
) =Ztieiel,, let P(x) =Zw;( Z tiei)-z,,.
i=1 n=1 16Ny,

By the same arguments as in the proof of Lemma 1 we infer that P
is a projection from 7, onto X with the norm |P[| = 1.

Remark. By the same method as in Theorem 2 one may establish
the following statement:

Let 1 < p < oo and X be a subspace of L. If X is isometrically 1so-
morphic to 1, or Ly, then X is complemented in L.

TaroreM 3. Let E be one of the spaces s, 1y, 6, or m and Y a subspace
of B isomorphic to B. Then Y has @ complement in B.

Proof. The case of I, is well known. In the case of s it follows from
the results of [5] and in the case of m if follows from the fact that meP,
and by Corollary 1. The validity of Theorem 3 in the case of ¢, is an
immediate consequence of the next theorem.

TemoREM 4 (Sobezyk [31]). Let X be a separable B-space and Y be
a subspace of X isomorphic to ¢y. Then Y is complemented in X.

Moreover if Yo Co, then there is a projection P from X onto ¥ with

“the morm ||P|| < 2 (). . .

Proof. Let us note that the first part of this theorem is an immed-
iate consequence of the second one and of Proposition 1.

To prove the second part of this theorem we observe that it is suffi-
cient to restrict our attention to the case of the space C[0,1]. Indeed
according to the Banach-Magur theorem on universality ([1], p.185)
we may realize the space X as a subspace of 0[0,1]. IfPisa projection

(5) Added in print. For the generalization and other proofs of Sobozyk’s
theorem see [33] and reforences in [33].
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from €'[0,1] onto ¥ with the norm ||P|| < 2 then, according to the inclu-
sion ¥ C X C 0, the operator P restricted to X is the required projec-
tion.

Let Y be a subspace of C[0, 1] and let us suppose that there is an
isometric isomorphism between Y and 6. Let the functions f, (n
=1,2,...) corespond under this isometric isomorphism to the unit
vectors in ¢,. Since [|f,]| = 1, there is a point f, such that fultn)] =1
(n=1,2,...). Let Z denote the set of all limit-points of the sequence
(t,). Clearly Z is a closed subset of [0, 1]. According to the obvious pro-
perties of the unit vectors in ¢y, |[f,+full = 1 (n#Em;n,m=1,2,...)
Thus

_ [ 0 if nEw,
|fn(tm)] = l]_ if o= M.

Hence if te Z, thenf, (f) = Lmf, (t,,) == 0 (n = 1,2, ...). Finally according
k

to the fact that the sequence (f,) is a basis in ¥ we infer that for each
ye¥, if teZ, then y(t) = 0. Let 0, denote the subspace of C[0, 1] consist-

ing of all functions vanishing at each point #eZ. Let us put
o

Tz = Y o(t,)signf,(t,)f,

n=1

zeCy,
since zeCy, limx(t,) = 0. Hence in view of the fact that the functions f,

corespond to the unit vectors in ¢, Tis a well-defined linear operator
from C onto Y. Since Y C (), and the sequence (f,) forms a basis in ¥
and 7'(f,) = f,, we infer that T is a projection from O, onto Y. Moreover

Il = sup [Tzl = sup |a(t,)] = 1.
<1 n

To complete the proof it is sufficient to show that there exists
a projection @ from C[0,1] onto C, with the norm QI < 2. Indeed if
such a projection exists, then the required mapping may be given by the
formula P = QT. The existence of the projection ¢ is a consequence of
the next proposition. :

ProPoSITION 6. Lt Z be a closed set in a compact metric space S.
Then there exisis a projection Q with the norm 19 < 2 from C(S) onto its
subspace C(8[Z) of all continuous functions on § vanishing at each point
of Z. :

Proof. According to Borsuk’s extension theorem (see [6]]) there is a linear ope-
ration U preserving the norm which corresponds each function in 0(Z) its con-
tinuous oxtension on §. Let us put @3 = 5— URx, z¢C(8), where R is the restriction
operator which corrosponds the function z its restriction to Z. It is obvious that @
is a linear mapping from ('(9) into 0(8/2). 1t ze0(8/7) then Ry = 0, and thus
URxz = 0 and finally Qz = z. Hence @ is a projection operator with the norm
il =léglllwll+liUI! Bl = 2, q.e. 4.
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4. The main result of this section is Theorem 5, which will be
applied to the investigation of the properties of complemented subspaces
of C(8). .

TurorEM 5. Let S be a topological compact Hausdorff space and X
a B-space such that no subspace of X is isomorphic to ¢,. Then every linear
operator T from C(8) into X is weakly compact (°).

Proof. This proof is a modification of the proof of Theorem 6 in [9],

. 494.

! 9According to Theorem 2 in [9], p. 492, there is a unique set function
u(+), defined on the Borvel sets in § and having values in X, such that

(a) u(*)2* is a real countably additive set function defined on the
Borel sets in § for each x* in X¥,

(b) #*Tf = [f(s)ulds)a®, feO(8), a*<X*().

&

By Theorem 3 in [9], p. 493, it is sufficient to prove that u(H) is in X
for every Borel set E. . ‘

By the same arguments as in [9], p. 496, we show that it is suffi-
cient to restrict our attention for metric compact spaces.

Let 8 be a metric compact space with the metric function p and let 3
denote the family of all Borel sets in §. Let B, be the intersection of all
sets B of functions of 8, such that

() 0(8)C B,

(i) if f, be a sequence of functions in B such that 2115 g‘l [fu(8)] < o2y
. ¢S i

then 3 f,eB (where ( 3 f)(s) = 21]["(8),863).

n=1 n=1 = X

By the same consideration as in [9], p. 495, we prove that B, is an
algebra under the natural product fg(s) == f(s)-g(s), seS.

Denoting the characteristic function of a set E by 1m bwe let. Bo
= {EeB:y5¢B,}. Let E, be a sequence of disjoint sets in 3,. Since

1> %0g,(8) = D ar,(s) = D) 1z, ()], se8,
n=1 n=1

according to (ii), (B, <J,. Hence, by the fact that <3, is an algebra, it C1'5;
easily seen that 3, is a o-field contained in 5. We now show that 93, = 93
by proving that 93, contains all the closed sets.

(‘)nThe operator T from X onto ¥ it said to be weakly compact if for every boun-
ded sequence (x,) the sequence (T,) contains a subsequence (T'sy,) weakly convergent

to an element y in ¥. . .
(") The sy?inbol Jf(5) u(ds)z* Genotes the integral of the function f with respect
s

to the g-additive set function p(-)a™.


GUEST


A. Pelezynski

Let F' be an arbitrary closed set in 8. Let us put go(s) = 1; g,(s)
= g TN e E) 5 o (n=1,2,...) where g(s,F) = info(s, 1).
teF

Clearly g, ¢0(8) and, for each s in §,

1r(s) = D) gul(s) < D lgalo)l < 2.
n=90 n=0

Hence, by (ii), xcB,.
We now show that u(E)eX for Ee9B. Consider the collection B,

of bounded B-measurable function f such that there is an z; in X such
that

z* () =ff(s),u(ds)m* for each a*eX™

The collection B, forms a linear manifold which, by (b), contains
C(8). Now we show that B, satisfies (ii). Let (f,) be a sequence in B,
such that '

(11) ) ) 8)| < oo.

SpZ [fa(8)] < o0
Let #* be fixed and let, for n =1,2,..., ¢, = signa*(z, ). By (11),
according to Lebesgue’s theorem on integration term by term we have

00

D 1@l = e J Fa@u(@s)a* = [ (3 eufa(s)) p(ds)a*
" 1 s

Nn= n
< sup Y Ifo(9)] - Varu()a® < oo

Hence the series }'a, is weakly unconditionally convergent (°). Since
n
no .subpa,ce of X is isomorphic to ¢y, aceording to Theorem 5 in [4] the
series }'w; is unconditionally convergent to an element @ in X. Tt is easily
n

seen that for each #* in X*
7"(@) = [ Y fu()ulds)a”.
S n

Hence Zn;f"e%l. Thus B, satisfies (i) and (ii). Hence B, D B, and thus for
arbitraxry ¢ B = B,

u(B) =2

vz € X

q.ed.

(*) The series 3'» in B-space X is said to be weakly unconditionally convergent

n
if for each z*eX*, ¥|o* () < oo.
n

icm°

Projections in certain Banach spaces 221

CoroLrLARY 1. Let X be a B-space. Then each linear operator from
O(8), where 8 is an infinite compact metric space, into X is weakly compact
if and only if X contains no subspace isomorphic to c,.

Proof. It immediately follows from Theorem 5 and the fact that
for each infinite compact metric space there is a non-weakly complete
linear operator from C(8) onto ¢,. An operator having this property may
be given by the formula

Tf = (f(sa)—f(s)),  FeC(8),
where (s,,) is a convergent sequence of different pointsin 8 and s, = lims,, .

Remark. The assumption of metrisability of S is essential. It
follows from the fact that each linear operator from m into ¢, is weakly
compact ([15], p. 168).

By Theorem 5 and by the Dunford-Pettis theorem (see [9], p. 494),
which states that the square of an arbitrary weakly compact linear
operator from C(8) into itself is a compact operator, we obtain

COROLLARY 2. Let 8 be a topological compact Hausdorff space and X
a subspace of C(S) complemented in C(8). Then X contains a subspace
isomorphic to ¢,, or X 48 of a finite dimension.

If a B-space X contains a subspace isomorphic to ¢, and X is
isomorphic to a conjugate space ¥ of a B-space Y, then according to
Theorem 4 in [4] X contains a subspace isomorphic to m. Thus by
Corollary 2 we obtain

COROLLARY 3. Let X be a subspace of C(S) which is complemented
in C(8). Then, if X is isomorphic to a conjugate space ¥* of a B-space ¥,
X contains a subspace isomorphic to m or X is of a finite dimension.

COROLLARY 4. If B is a B-space isomorphic to an abstract L-space
and X is o subspace of B complemented in B, then either X contains a
complemented subspace Y which is isomorphic to 1 or X 4s of finite
dimension. )

Proof. According to Kakutani’s representation theorem [19], E*
is isomorphic to a space C(S). On the other hand, if X is complemented
in B then X* is complemented in E* (see e.g. [9], p.481). Thus, by
Corollary 2, if X is of an infinite dimension then X* contains a ‘subspace
isomorphic to ¢, and, according to Theorem 4 in [4], X contains a com-
plemented subspace which is isomorphie to 1.

THEEOREM 6 (°). Let X be a B-space, X <P and satisfy one of the conditions

(*) Grothendieck [16], p. 169, has proved in a different way that if XeP and X
satisfios (¢) or X is reflexive, then X is of a finite dimension. Clearly our condition (a)

is essentially more general than the assumption of reflexivity or weak completness
of X.
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o
(8

(a) no subspace of X is isomorphic to ¢,

(b) X is isomorphic to a conjugate space Y of a B-space ¥ and no
subspace of X is isomorphic to m,

(e) X is separable.

Then X is of a finile dimension.

Proof. Since each B-space may be embedded in a space C(S) and
Y &P, then X is isomorphic to a complemented subspace of C{(s). Thus
in case (a) by Corollaries 2 and in case (b) by Corollaries 3 it follows that
X is of a finite dimension.

Proof in case (c). We shall now show that every separable
B-space X belonging to P containg no subspace isomorphic to ¢,. If it
were not so, there would exist a subspace ¥ of X isomorphic to ¢,. In
view of the fact that X belongs to 9P, Theorem 4 and a result of Good-
ner [4], p. 93, we should have c,e9P, which is not true because there is no
projection from sm onto its subspace ¢, (Philips {29]).

Now it suffices to apply result (a), which we have already proved,
q.e.d.

Philips [29] has observed that meP. Thus, by Proposition 2, if
a B-space X contains a subspace Y isomorphic to m, then ¥ is comple-
mented in X. On the other hand, if X is a subspace complemented in
meP, then, by Goodner’s result quoted earlier, X ¢P. Hence by Theorem
6 and Proposition 4 we obtain

COROLLARY 5. Let X be a subspace complemented in m. Then if X
is infinitely dimensional, then X is not separable, and if X contains a sub-
space Y isomorphic to m, then X is isomorphic to m.

In particular by Theorem 6 (b) we obtain

COROLLARY 6. Let X be a subspace complemented in m and let X be
isomorphic to a conjugate space ¥* of a B-space Y. Then X is isomorphic
to m or is of a finite dimension.

COROLLARY 7. Let X be a subspace of m and XeP,. Then X is
isomorphic to m or X is of a finite dimension.

Proof. According to the Nachbin-Kelley theorem (see [7], p. 95)
if Xe9P, then there is a compact Hausdorff space §* extremally discon-
ected such that X is isometrically isomorphic to 0(S). By a result given
in [14] if § is an infinite extremally disconected compact Hausdorff
space, then C(S) contains a subspace isometrically isomorphic to m.
Now it is sufficient to apply Corollary b, q. e. d.

Corollary 7 implies that each infinitely dimensional B-space X,
such that X9, and there is a sequence (z;) in X* such that supl|

n

< oo and |af] < sup |y (w)], <X, is isomorphic to m. In particular the
n
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space L, (see [28]), as well as the space Myp of all real functions defined
on [0,1] and having the property of Bairc (") (Semadeni’s thesis), are
isomorphic to m.

It is interesting to compare Corollary 7 with the following example,
which is due to Z. Semadeni.

Example. Let {J,}, aea and a =2 =1§ (¢ is the power of the
continuum) be a family of intervals and let u, be the ILebesgue
measure on 9,. By 4 we denote the product measure of the measures u,
defined on the Tychonoff cube 9'. We consider the space L, (', u) of all
real functions on 9f measurable and essentially bounded with respect to
the measure u.

The space Lo (9, u)eP,, but it is not isomorphic to a space m(4)
of all real bounded functions defined on a set A.

Proof. Since L, (I, u) is a boundedly complete vectorlattice (see [71s
D. 106), Leo(J7, )Py

The space Ly (9%, u) is isomorphic to a strictly convex space, because
we may introduce in L. (Jf, u) a new strictly convex norm {||-|]| equi-
valent to the original one by

llell] = supessfa(t) -+ ([ 2*(t)dps) ™
i

Thus according to a result of Day [8] the space L, (9% p) is not
isomorphic to a space m(A4) for A > R,. On the other hand, since
Lo (OF, p) > ¢, the space Ly (9%, x) is not isomorphic to a space m(4)
for a < Ro- ’ ’
5. Bary [3] and Gelfand [12] have proved that in the space L, each
unconditional basis (*') is equivalent (see Definition 1) to an orthogonal
basis. In particular each unconditional basis (x,) in L, satisfying

(*) 0 < inflle, || < sup o, < oo

is equivalent to the unit vector basis in I,.
In this section we show (Theorem 7) that the fact that in L, and I,
all unconditional bases satisfying () are equivalent characterizes the.

(20) The definition of the function having the property of Baire, see [23], p. 306.
We adopt the norm in Megn,
Ifil = inf sup |f ()]s
4eK 1e0,1)-4
where K is the family of all subsets of [0, 1] of the first category.
(11) For the definition and basic properties of unconditional bases see [7],
p- 73-1717.
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space L, among the spaces L, for p > 1 (I, — among the spaces 1,).
A result similar to our Theorem 7 was anounced without proof by
Gaposhkin [11], [32] (*).

We do not know whether in the space I (or ¢,) there exist two non-
-equivalent unconditional bases satisfying (+). On- the contrary, we show
that in L there is no unconditional basis (Proposition 9).

Definition 1. Let (#,) and (y,) be bases in B-spaces X and Y
respectively. The bases (x,) and (y,) are said to be equivalent if for each
sequence (t,) of scalars the series D't, %, converges if and only if the series

n

D'ty converges.
k13

Bases (2,) and (y,) are said to be commutatively equivalent (c-equi-
valent) if there is a permutation (p,) of indices such that the sequence
(¥p,) forms a basis in ¥ equivalent to the basis (z,).

We observe that for an arbitrary permutation (p,) the unit vector
basis (e,) in 7, (1 <p < oo0) is equivalent to the basis (ép,). Hence for
each basis (z,), if the basis (z,) and (e,) are equivalent, then they are
c-equivalent.

TarorEM 7. If 1 <p #2, then in each of the spaces L, and I,
there are two non-c-equivalent unconditional bases satisfying (+).

Proof of Theorem 7 for I,. We shall show that for 1 <p#2
in I, there exists an unconditional basis satisfying (x) which is not equi-
valent (and thus not c-equivalent) to the unit vector basis (e,).

Let us consider the space X, of all real sequences (f,) such that

< v(»+1)

el = (3 &))" < oo where s, = (6=0,1,...).
It is easily seen that X, under the norm ||| ||| is.a B-space and the
sequence (f,) where f, = (00...10...) forms in X, an unconditional

#-th place
basis satisfying (+). Since for each 1 < p < 2 there is a sequence (%)

in X, such that 3 [t{|” = oo and for each p > 2 there is a sequence (t))
=1

such that |[| ()l = oo but I [P < oo, it is easily seen that the bases
=1

(fa) in X, and (e,) in I, are not c-equivalent. To complete the proof it is
sufficient to establish the next proposition.

PRrOPOSITION 7. The spaces X, and 1, are ssomorphic.

(%) Added in print. In [32] it is proved only that for 1< p s 2 the Haar
system is not equivalent with certain its permutation.

e ©

icm

Projections in certain Banach spaces 225

Proof. According to Theorem 1 it is sufficient to show that there
is a subspace Y, in [, such that

1° ¥Y,~X,,
2° Y, is complemented in 1.
Let [V, ¥1y--.y ¥,] be the subspace of L, spanned on the Rade-

macher functions ¥,, ¥y, ..., ¥, and let 4, be the subspace of L, spanned
on the characteristic functions yy_yp—npe-n(k=1,2,...,2"0=0,1,...).
Since 4, is isometrically isomorphic to I, , the space [¥,, ¥y, ..., ¥,1C 4,
is isometrically isomorphic to a subspace R, of 1,, and finally the space
Y, = (R@R:®...), is a subspace of the space (li@lf@...)ilp. Aet?rd-
ingly to inequality (8) there is a constant K, such that R, ,~2 1§
(n =1,2,...). Hence, by Proposition 3, the spaces Y, and (BOLED...)y
are isomorphic. On the other hand, it is clear that X,,Nla (LOLS-..), and
thus Y, ~X,.
Let us put
n-1 1

Q=) [aswdt-p, zeL, (p>1, n=1,2,..).
i=0 0

It is clear that @, is a projection from I, onto [¥,, ¥i, ..., Po_rl
By well-known properties of Rademacher functions (see [18], p. 245)
there exists a constant C, such that [|Q,]<C, (n=20,1,...).
Since 4, D [¥,, !P;, w.vy W,_1] there is a projection P, from A, onte
[P, ¥iy ..., ¥y, and finally there exists a projection P, from I, onto
R, with the norm ||P,|| <C, (n=0,1,...). Thus, by Proposition 3,
Y, is complemented in 7,.

Proof of Theorem 7 for L,. Denote by (x,) the Haar orthogonal
gystem normalized in I,. That is

xo(t) =1, te[0,1],
2P for 27"k <t <<27"TV(2k41),
() =1 —2®  for 277N 2k4+1) <t <277(k+1),
0 elgsewhere,

where r = [log,n] and k¥ =n—2" (n =1,2,...). ]

According to results of Marcinkiewicz [24] and Gappshkm [10]
the sequence (y,) forms in I, an unconditional basis satisfying (). Now
let us consider in the space L,®l a sequence (w,) such that

(k=0,1,..),
(k=1,2,..),

W1 = (xx 5 0)
wor = (0, €x)
where e, is the k-th unit vector in I,.

Studia Mathematica XIX,
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It is easily seen that the sequence (w,) forms in L,®1, an uncondi-
tional basis satisfying («).

Since the relation of c-equivalence of bases is an isomorphic in-
variant, to complete the proof it is sufficient to show that

1° the spaces L, and L,®l, are isomorphic,

2° for 1 < p # 2 the bases (y,) in L, and (s,) in L,®l1, are not
c-equivalent.

1° From Proposition 5 if follows that there is a B-space X such that
L,~X®l,. Since L,Dl,~1,, we obtain

Ly~ X@L~I® (LOL)~L,®1,.

2° Suppose that the bases (w,) and (¢n) are c-equivalent. Then
there is a sequence (n,) such that the basis (iny,) In the space [%ny] 1s equi-
valent to the unit vector basis (ey) in I,. Thus according to a result of [27]
the spaces [#n,] and I, are isomorphic. But this fact contradicts the
following

PRrROPOSITION 8. For no sequence of indices ny < g < ... the spaces
[xn,] and 1, are isomorphic.

LeMMA 4. Let (4) be a sequence of different intervals such that A,
CIO1) (k=1,2,..) and if by <ky and dy Ay # @ then A, C dy .
Then there exists a subsequence () such that either (x) if » 5 ;4, thezh,
A;.;nAk# =@ or (B) Ay, DAz, D ... (& denotes the empty set).

Proof. Suppose that no subsequence of (4,) satisfies (g). Then for
every. index % there is an index (k) such that A, C A, and 4
contains no intervals 4, different from itself (n =1, 2(]:)...). Since thewgg
are i‘nﬁnitely many intervaly 4, 4,,..., the set Z = {p(1), ¢(2),...}
is infinite. From the definition of Z it follows that if ky = ky and &, and %,
belong to Z, then Akvndk” = (. Hence the subsequence consigting 01‘?
all elements of Z satisfies (x). .

o Proof of Proposition 8. According to theorem 7 in [1], p. 205,

%t is sufficient to show that the space [y, ] containg a subspé,ce Y

fhontaorphic to I,. To prove it we note that if (#,) is a sequence in L, such
a

(=) @, #0 and @,(H)z,(t) = 0 for almost all t (n FE My N, m =
=1,2,...) then the space [x,] is isometrically isomorphic to 1, (we omit
the simple proof of this fact). ’

Let us put

By = {te[0,1]: 7 (5) 20}  (k=1,2,...).

It iy easily seen that the sequence (44) tulfils the assumptions of
Lemma 4. Hence there is a subsequence (4y,) satistying either () or (B).

-1
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If (4) satisfies («), then the sequence (#n;) (where n, = )
satisties (++). Thus [yn']~1p.

If (4, satisfies («), then we may define by induetion the numbers
A, (»=1,2,...)in such a way that the sequence (i Ao 2aiy,) Stisties
(**), q.e. d.

We complete theorem 7 by the following

PrOPOSITION 9. In the space L there is no unconditional basis.

Proof. Suppose that the sequence (z,) is an unconditional basis
in L. Since L is weakly complete, the unconditional basis (z,) is bound-
edly complete [7], p. 74. Thus by Lemma 2 of [7], p. 70, L is isomorphic
to a conjugate space Y* of a B-space Y. But this fact contradicts
a result of Gelfand given in [11], p. 265, q.e. d.
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On the theory of non-linear operator equations
on conjugately similar spaces

by
8. YAMAMURO (Sapporo)

1. Introduction. It is the purpose of this paper to consider an
eigenvalue problem for some operators F which map a Banach space R
into the conjugate space R. For this purpose, we take, as the Banach
space R, a special kind of vector lattice, a conjugately similar space
which has been introduced by Nakano [9]. Roughly speaking, this is
a Banach space R such that a one-to-one correspondence T exists between
E and R. This correspondence T enables us to define a proper value A
and a proper element aeR of the operator F from R into R by the
following equation:

Fo = ATa.

In the case of L,-spaces (p > 1), this definition agrees with that of
E. 8. Citlanadze [4].

The definitions and elementary properties of the conjugately similar
spaces will be given in § 2. In the next section we will prove a theorem
of L. A. Ljusternik in its special form. The simple proof may be in-
teresting. In § 4 we will consider the eigenvalue problem of a non-linear
operator. The last section contains an application.

We express here our hearty thanks to Dr. Musielak for his valuable
remarks on various points in this paper.

2. Conjugately similar spaces. Let R be a vector lattice which
satisfies the following condition: for any system of positive elements z;,

(Aed) there exists an “infimum” element (7} z;. The conjugate space B
Aed

of R is the totality of all linear (additive and homogeneous) functionals
% on R which satisfy the following condition: if ;40 (*), then

inf{z(2,)] = 0.
ed

() We write #31e4 0 When {21 (AeA)} is a non-increasing directed system and

M@ =0.
AeA
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