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Let &, be the class of all separable Banach spaces having an uncon-
ditional basis (see [3], Chapt. IV, § 4). Suppose that we have defined the
classes $I, for all § < a (@ < o). We define £, as the class of all separable
Banach spaces X which have the following properties:

(a) Xell; for each f < a;

(b) there exist sequences (X,) of subspaces of X and (f,) of ordinal
numbers < a such that X,eil, (n=1,2,...) and every element weX
may be uniquely represented as a sum of an unconditionally convergent

series # = Y @,, where @, X, for n =1,2,...
n=1

'We say that the separable Banach space belongs to the class &, if
Xell, for no o < w;.

Questions:

1. Are all classes ¥, (for o < w,) non-empty?

2. Does there exist for every 0 < a < w; & compact metric space
Q such that C(Q)<¥,?

We know only that 0%e8ly, 0" <fly, 0(Q)ell, for uncountable Q.

5.5. Let X be a Banach space with the conjugate space X* isomor-
phic to 7. Does there exist an ordinal « such that X ~ 0%
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States of operator algebras

by
R. E. EDWARDS (Reading, England)

§ 0. Introduction & summary. Let < be a fixed Hilbert space and
denote by B = B(YX) the algebra of all bounded endomorphisms of X.
B is a complete normed algebra with an involution whick carries TeB
into its adjoint 7™; this algebra is non-commutative unless X is one-di-
mensional. If o is a self-adjoint (i. e. stable under *) subalgebra of B,
we follow Segal [5] in extending the eustomary language of statistical
quantum mechanies by applying the name “state of «{”’ to any positive-
definite linear form f on «, i. e. a linear form f on «f such that f(T%) = f(T)
and f(T"T) > 0 for arbitrary Tes{. These correspond to the ‘“‘mixed
states” of a quantum mechanical assemblage and are therefore thought
of a8 being compounded in some way from the ‘“pure states”

(0.1) fo: T — (Tw, 2),

where % is an arbitrary element of %. The main aim of this paper is to
discover more precisely how some at least of these mixed states are ob-
tained from the pure ones.

When o = B, von Neumann gives one answer to this problem, at
least for those states which are weakly continuous. On the other hand,
Segal [5] discusses a fairly general type of algebra ¢ and shows that
there exist always sufficiently many pure or minimal states to make
plausible the possibility of expressing a wide class of states in terms of
these. However, Segal does not concern himself with any explicit repre-
sentation of this kind. von Neumann’s approach ([6], Chapter IV) for
A = B is very direct and leads to a representation in terms of the trace.
Unfortunately his approach is not adaptable in any obvious way to states
initially defined only on some subalgebra & of B. This is one reason for
seeking an apparently different representation.

The proposed alternative is a representation in terms of positive
integral combinations of pure states:

(A) 1T) = [(Tw,z)im(a),
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where X is the unit ball in X and m is a positive Radon measure on 3.
Ag will be shown in § 7, this type of representation is equivalent to von
Neumann's trace representation in case ¢ = B.

The one type of algebra for which a completely satisfactory decom.-
position theorem is known is the ((*-algebra (= commutative (*-algebra
in Segal’s terminology; [56], p.75), though here the basic components
are quite different from the pure states (0.1). Since we shall often appeal
to this theory, we recall in § 1 the requisite results, amounting essentially
to the abstract form of the Bochner Theorem for CC*-algebras.

Summary. §2, 3 and 4 deal with some conditions which are always
necessary, and for some algebras also sufficient, in order that the state f
shall admit a representation (4). In §5 we show that in goeneral these
necessary conditions are not fulfilled, and we exhibit states admitting no
representation (4). § 6, which is somewhat of the nature of an “agide”,
shows how the theory of topological tensor products leads to similar but
legs precise results for continuous linear forms which are not necessarily
positive-definite. Finally, in §7, we congider the relationship between
the preceding results and those of von Newmann for the full algebra
B(2).

In order to avoid certain trivial exceptions to some of our assertions,
we ewolude throughout the case in which i is reduced to the zero operator.

1. The Bochner Theorem for (/0*-algebras. For the reader’s con-
venience we give here a very brief resumé of the decomposition theorem
as it applies to these algebras.

Let of be a 0C*-algebra, or mhore generally any commutative, complete
normed algebra with an involution such that |77/ = ||T|* for each T'e o,
Such algebras are discussed in [1], Section VIIT, [2], p. 69-71, and [4],
Chapter V; in any one of these references will be found an account of the
key results we are about to summarise.

Associated with of is a locally compact space X, called the character
space of of, such that «f is isomorphie and isometric with 0,(X), the algebra
of complex-valued continuous funections on X which tend to zero at infi-
nity. The points of X are the (necessarily positive definite) characters
z of A,and the said isomorphism associates with T'e of the function 71t 7>
— ¢(T), an element of 0y(X) termed the Gelfand transform of T.

At this point we interject a definition applying to a general algobra
A with involution (not necessarily CC*). If f is a state of of we define

N(f) = Sup {{(T*1): Te o, |T|| < 1};

N(f) may be -+ oo. Note that if Ieof, then N(f) = f(I).
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Returning to the story of 00*-algebras, the isomorphism of ~ 0, (X)
leads very duickly to an abstract Bochner Theorem : if f is a state of
for which N (f) < 4 oo, there exists a unique positive Radon measure
p on X of total mass u(X) = N(f) such that

(L1) HI) = [ 2(T)au(y)
X

for all Tes{. The subnormalised states f, i. e. those for which N (<1,
form a weakly compact, convex subset of the dual of ¢f. The characters
%, together with 0, are the extreme points of this set; they are also the
minimal states in the sense that they admit no decomposition into the
sum of two states unless each summand is a sealar multiple of the ori-
ginal. In retrospect one sees (1.1) as an illustration of the Krein-Milman
Theorem in action. It gives a perfect decomposition of the desired
type.

§ 2. Some preliminaries. We turn now to the consideration of the
formula (4). As has been said, ~ denotes the closed unit ball lefl < 1in X.
We shall denote by Z, the “boundary” || = 1 of this ball. Tt would, be
natural to suppose that m is concentrated on Z,. However, m is usually
not uniquely determined by f; and the proof that in some cases m may be
chosen to be concentrated on X, is rather indireet (see §4, Remark 2;
§7).

We shall always equip 2 with the topology induced by the weak
topology of ; it is thus a compact space, and X, is an F.-set in Z. Tt is
essential in view of the results of § 5 to remember that m is to be a Radon
measure, and not a general finitely-additive measure.

The existence of the integral appearing in (A4) for each T<B and each
m is settled by the following considerations. It is not difficult to show
that (T@, #) is a continuous function of zeX if and only if 7' is compact
(= completely continuous). Every positive selfadjoint T B is the strong
limit of an increaging directed family of compact positive self-adjoint
operators (e.g. operators PT, where P ig a finite-dimensional projector;
if X is separable, one needs only an increasing denumerable sequence).
Oonsequently (Z', ) is & lower semicontinuous function of weX, when-
ever I'eB iy positive self-adjoint. Any T'e B is a linear combination of four
positive self-adjoint operators, so that (I'w,») is certainly Borel-measurable.
It is obviously bounded for veX, hence is integrable for any Radon
meagure m on .

§ 3. Properties of states defined by (A). The remarks of the last

‘paragraph show that, m being any Radon measure on X, (4) is effective

in defining a linear form f on B. It is furthermore trivial to verify that f
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8 a state of B, provided m is a positive measure. We proceed. to enumerate
certain properties common to all such states f.

Let us recall that a directed family (77,) C B is said. to converge weakly
to TeB it (Tyw,y) - (Tw,y) for fixed but arbitrary =, ye9X.

THEOREM 1. Let m be a positive Radon measure on 2y having unit
total mass, and let | be defined by (A). Then: ‘

(i) f is @ normalised state of B;

(ii) the inequality
(B) HT) < Sup(L'z, w)

LaX

holds for each self-adjoint TeB;

(i) 4f a sequence (T,) converges weakly to T'e B, then

Eﬂf(Tn) = f(T)

(iv) if (T;) is an increasing directed family of self-adjoint operators
in B which converges weakly to T B, then imf(T;) = f(T).
i

Proof. Both (i) and (ii) are immediate. As for (iii), we note that weak
convergence of the sequence (7,) implies (Banach-Steinhaus Theorem)
that the T), remain bounded-in-norm; so the Borel functions (T, 2)
on X are uniformly bounded and converge simply to (1w, %), whence (iif).
In (iv), there is no loss of generality in agsuming the 7; to be positive
self-adjoint. Then the functions (7;z, #) on X form an increasing directed
family of positive, lower semicontinuous functions whose upper enve-.
lope is (1w, #). Integration theory leads at once to the stated con-
clusion.

Remark 1. Property (iv) may be briefly described by saying that
f is weakly order-continuous. Moreover, as we shall see in § 6 below, B
may be identified with the dual of the projective tensor product A,
and it follows from this that on each norm-bounded subset of B conver-,
gence relative to the weak topology defined by this duality coincides
with the weak convergence spoken of in Theorem 1. If S is separable,
this induced topology is metrisable; and then (iii) in fact says that f-is
weakly continuous on B. Some direct consequences of such a restriction
on f are noted in §6.

§ 4. Converses of Theorem 1. To what extent are the properties
listed in Theorem 1 sufficient to ensure that f admits a representation
(4)? As we shall see, the inequality (B), holding for self-adjoint T e,
is decisive for the existence of a representation (4) for compact operators.

The role of (iv) would appear to be the foundation upon, which (4), if .

t;'ue for feompacjs Ted, may be extended to more general operators.
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THEOREM 2. Let A be a self-adjoint subalgebra of B(X(), and let | be
o state of A such that (B) holds for self-adjoint Te. Then
(a) f is the weak limit of convex combinations of pure states,

2 “pf%,

I<pgn *

i<pn
(b) there exists a positive Radon measure m on X satisfying m(Z) < 1

and such that (A) holds for each compact T e .

Proof. It is enough to look at the behaviour of f on the set of, of
self-adjoint elements of of. o, is a real vector space, and each state f of <
may be considered as an element of the real dual of of,. With this view-
point adopted, (B) and the Bipolar Theorem shows that f is weakly ad-
herent to the convex envelope of the pure states f,(zeX). This signifies
that (a) is true.

Turning to (b), a typical approximative sum referred to in (a) can be
written in the form of a vector-integral [ f,dm’(2), where m’is the measure

P

2 Cp" By

1<p<n

and e is the Dirac measure at . It follows from (a) that there exists a di-
rected family (m;) of measures of this type for which

HT) = limy [ (T, 2) dmy(a)
z

where the wyeX and where the numbers ¢, satisfy ¢, =0 and 2 6 <1;

for each Teof,. The family (m;) has a vague limiting point, say m, which
is necessarily a positive Radon measure m on X of total mass m(X) <1.
Then, if T is compact (so that (T%, #) is continuous), the directed family
of numbers: 7 - zf (Tx, ) dm;(z) admits Ef (Tw,z)dm(x) as a limiting

point. (b) is thereby proved.

We append two supplementary remarks.

Remark 2. If (4) is known to hold for all 7' in a subset F of A,
and if f is known to be order continuous (weakly or strongly), then (4)
must still hold for all T'« F’, where F’ comprises those operators expressible .
as finite linear combinations of positive self-adjoint operators §e.of which
are limits (weakly or strongly) of increasing directed families of positive
self-adjoint members of . (Cf. the proof of Theorem 1, (iv)). \

Remark 3. If (4) is known to hold for some m satistying m(X) <1
and all 7' in a set F C of of self-adjoint operators, and if it is known that

¥

(4.1) Sup{f(I): T, |7 < 1 =1,


GUEST


68 R. E. Edwards

then in fact m (X) = 1 and m is concentrated on the boundary X . Indeed,
given &> 0, we choose T¢F for which [T} <1 and f(T) =1--¢, i e.

[ (7o, p)im(@) >1—e.

z .
This shows already that m(X) > 1—e, so that (¢ being-freely chosen)
m(Z) must be exactly 1. Moreover, if ¢, (0 < r < 1) is the ball fju|| <,
we see that l—g < [(Tw,0)dm(@) < r*m(o,)+(L—m(oy)) and so

z

m(o,) < (1—7%)"'e. Letting ¢ — 0, we conclude that m(s,) = 0 and so,
by countable additivity of m, that m(X— ;) = 0, as asserted.
In applying Theorem 2 the following auxiliary result is useful.
PrOPOSITION 1. Let A be a closed, self-adjoint subalgebra of B(X),
oA its commutator. Let | be o state of A and suppose that both N(f) and

(4.2) Sup{f(T*T): TeA ~ A, ||T| < 1}

have the value one. Then (B) holds for each self-adjoint T esA.

Proof, Take any self-adjoint T esl. Let of, be the OC*-algebra
generated by {T,} v (e ~ A'). Then o, C . Letb f, = f|oA;: this is a state
of «f, which, since N (f) and (4.2) have the common value one, is norma-
lised. Hence, by the results recalled in § 1, there is a positive Radon measure
u on the character space X of 4, such that u(X) =1 and

1(T) = [Tap
X v

This shows in particular that f,(7) < ||T|| for T« o{,. Furthermore, since
Ay ~ 0(X), we majy choose a positive self-adjoint e of, such that |B|| <1
and nE+ T, is positive self-adjoint, n being a suitably chosen real number.
Also, since (4.2) has the value one, an ““increase” in F may be made 8o as
to arrange that f,(E) > 1—&/n, ¢ being any preassigned positive number.
Then, by what we have just proved (applied to T' = nH-+1T,), we have

(Teody).

nfy(B)+F(T1) = L(nB+T,) < [nB+1T|.
Since nF 4T, is positive self-adjoint, the last term is equal to
Sup ((nE+Ty)2, 2) < a+Sup (T, 2, 0).
xeZ E2

Hence
F(T) <&+ S&P(ley ).

Letting & — 0, the desired result follows. This completes the proof.

icm
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By combining this result with Theorem 2 we obtain directly

TEEOREM 3. Let of, oA’ and f be as in Proposition 1. Then there exists
@ positive Radon measure m on X such that m(X) <1 and (4) holds for all
compact T e A. Furthermore, (a) of Theorem 2 is valid.

If we apply Theorem 3 to the case of = B(X), then «{’ is B(X) or
{I} according as dimS( =1 or Aim %X > 1. The hypotheses if Theorem 3
reduce then to normalisation of f: f(I) = 1 — as indeed it does whenever
Iegl. Also, any positive self-adjoint 7'« B is the strong limit of an increa-
sing directed family of compact operators (e. g. the operators TP, where
P is a variable projector of finite rank). So, bearing in mind Remarks 2
and 3, we derive

TueorEM 4. If f is a mormalised, sirongly order-continuous state of
B(X), | admits a representation (A) in which the positive Radon measure
m on X satisfies m(X) =1 and m(E—Z,) = 0.

Remark. 4 If X is separable, strong ordercontinuity is required
only in sequential form.
If oA is a (C*-algebra, o' D of, and we derive gimilarly

THEOREM 5. If <A is a CC*-algebra and f a normalised state of oA,
there ewists a positive Radon m on X such that m(X) <1 and (4) holds for
all compact T e . Once again, (a) of Theorem 2 is valid.

To describe matters very briefly, the preceding results establish the
existence of a representation (4) for any closed self-adjoint subalgebra
< of B(X) and any order-continuous state f of o, provided that (a) oA ~ o’
is “sufficiently large” (ef. Theorem 3), and (b) ¢ contains “sufficiently
many®’ compact operators.

§ 5. Existence of states admitting no representation (4). We
aim to show that in general there exist states f of o which are normali-
sable (N (f) < -+oo), which satisfy (B) for self-adjoint 7'e o, and which.
even 50 do not admit a representation (4), the failure to do so being attri-
butable to their lack of order-continuity.” This state of affairs presents
itself whenever ¢f fulfils the following condition:

(C) oL contains & sequence (T,,) of positive self-adjoint operators which
is monotone decreasing, converges weakly to 0, but does not converge uniformly
(4. e. in morm) to O.

Agsuming the existence of such a sequence, consider the functions
on(8) = (Tyw, ) on Z. Then ¢, | 0 simply, but the convergence is not
uniform. (Dini’s Theorem informs us, incidentally, that the T, cannot
all be compact). Frqm the general Proposition 2 to follow we may conclude
that there exists a positive, bounded, finitely-additive measure p on X
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such that
Int [ gu(@)dp (@) > 0.

nzl 3
This measure p, which of course fails to be a Radon measure, serves
to define a state f of «f via the formula

HT) = [(Tw, 2)dp(z)

z

Thanks to the choice of p, Inff(T,) > 0. Thus f is not order-continuous
nl

and therefore (§3) cannot admit a representation (4) (wherein m iy assu-
med to be a Radon measure).

It remains to establish

PROPOSITION 2. Let X be an arbitrary set, and let (p,) be & monotone
decreasing sequence of bounded functions on X such that ¢,V 0 simply but
not uniformly on Z. Then there exists a positive, bounded, finitely-addi-
tive measure p on X such that.

Int [ ¢, (2)dp () > 0.
nzl $

Proof. Denote by # the Banach space of bounded real-valued
functions on X, equipped with the “sup” norm. It is known (sce e.g.
[1], Section VII) that the dual E' of F may be identified with the of all
bounded, finitely-additive measures on X, the duality being established
by integration:

{p,w) = {1/)627() (pell, wel").
S E

Our hypotheses ensure that Inf|jp,| =c¢ > 0. Let K be the con-

n=1
vex envelope in F of the ¢,. Bach peK admits an exprossion

= 2 G Py

1gichk

where ;>0 and ' a; =1, Tt follows at once that ||| = ¢ for each el
1<igk

hence in particular that 0 is not adherent to K. But then (Hahn-Banach

Theorem) 0 is not even weakly adherent to K. So there exists some w <R’

for which the sequence [@,dw does mot converge to 0 ag # - oo, The
. z

same must be true, therefore, if w is replaced by a suitable one of its po-
sitive and negative parts, say p.

icm
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Then

Inf [ gudp >0,

n>1 5

a8 asserted. This completes the proof of Proposition 2.

Remark 5. Naturally, (C) fails to hold if «f contains only compact
operators. On the other hand, there is no difficulty in exhibiting a class
of algebras o which satisfy condition (C).

Suppose for example that X is separable, and that  is closed and
containg at least one self-adjoint operator «f whose spectrum is uneoun-
table: we claim that then A satisfies (0). To see this, form the 00*-algebra
A, C oA containing 4, and let X be its character space. X is homeomor-
phic with the spectrum of 4, hence is uncountable. Now with each point
x of X is associetad a ‘“‘spectral projector’ P,, the P, are orthogonal,
and P, 0 if and only if the one-point set {y} C X has positive u,,-mea-
sure for some zeX (cf. [2], p. 70-71). On the other hand, since 9 is sepa-
rable, at most countably many P, can be non-zero. Therefore, since X
is uncountable, there must exist a point y of X such that u,z({z}) =0
for all zeSX. In this case it is easy to construet a sequence (h,) C Oo(X)
of positive functions which decrease monotonely to zero at all points
of X other than y, whilst &, (x) = 1 for all n. To h,, corresponds then a self-
adjoint T, e of, C o, these T, decrease monotonely, they converge strongly
to 0 (since the i’n = h,, converge boundedly to 0 a. e. for each “spectral
measure”’ ,u,f_z), and yet T, = ||hy,/| =1 for all n. Thus (O) is satisfied.

§ 6. An analogue of Theorem 2. It is perhaps worth noting that
continuous linear forms on B = B(X), and therefore states of B in parti-
cular, may be expressed in terms of tensor products, and that this view-
point leads to an analogue of Theorem 2 in which precision is in some
measure exchanged for generality.

It is necessary to make some identifications. In the first place we use
the fact that X is reflexive; more precisely we introduce the standard
isometric mapping J: =z — &' of XX onto X’ sueh that {z,y> = (x,y).
This allows one to set up an isometrie isomorphism between B(X) and
B(XY') by associating with ueB(X’) the operator T = (J " uJ)*. Secondly,
we use the customary identification of bounded hermitian forms and
bounded endomorphisms. When all this is done the construction ([3],
. 28) of the projective tensor product O¢ @ <’ ensures that it admits B(X)
as its dual, the duality being such that (x®y’, Ty = (T, ¥). Using the
general principle of injecting a normed vector space into its bidual, or@o’
appears finally as a strongly closed vector subspace of B(%X’). The pure
state f, defined by (0.1) is thereby identified with # @ «#’. The decompo-
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gition (A) is at the same time expressed in the form

- (A) f= f(w@m’)dm(m);
z

the integral on the right of (A') is interpreted in the ‘“weak’ sense, the
mapping ¢ — v@a' of £ into B(X)' being bounded and weakly Borel-
measurable (cf. § 2).

A, fundamental theorem about tensor products of Fréchet Spaces
leads at once to an analogue of Theorem 2 applying to arbitrary clements
of B(X). :

TuEOREM 6. Let o be a vector subspace of B(X), and let f be any con-
tinuous linear form on . Then

(a).f ¢ the weak limit of finite linear combinations

D 7ol@p®yp)
I<pgn

where Ty, YpeZ and the numbers y, satisfy Y |yl <|[fll4-¢ (e > 0 chosen
1<p=n

freely in advance);

(b) there ewists a Radon measure M on X x X of total mass | M| (X x X)
< [ifll+e such that

HI) = [ <oy, 1riM@,y) = [ (To, y)ad (2, 9)

ZxZ Ixz

for all compact T e of.

Proof. By the Hahn-Banach Theorem we may as well assume
that of = B(X). Noris there any loss of generality in assuming that ||f|| = 1.
The Bipolar Theorem shows that the unit ball of any normed space is
weakly dense in the unit ball of its bidual. In particular, therefore, f is
the weak limit of elements of the unit ball in 9 §<¢’. On the other hand.
it is known ([3], p. 51, Théoréme 1) that, given any s > 0, each element
of the wnit ball of Y& X’ can be written in the form

o0

2 7o (T ® Up)

p=1

where pzllypl < 1+4¢ and @, ype2. Bach such infinite sum is the strong

limit of its finite partial sums. Whence assertion (a) follows atb
once.

Assertion (b) follows from (a) exactly as in the proof of Theorem 2.

icm
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Remark 6. If we assume that f is weakly confinuous, we may
conclude that f is actually equal to the infinite sum ¥y, (%, ® y,) for sui-
=1

tably chosen y,, @, and y,. To check weak continuity it suffices to ve-
rify weak continuity of f when restricted to bounded subsets of B(X);
and if & is separable, weak sequential continuity suffices.

§ 7. Connections with von Neumann’s trace-states. Our states
of B = B(X) have precisely the formal properties of the expectation va-
lues used for the statistical description of assemblages of quantum me-
chanical systems ([6], Chapter IV). Although von Neumann’s expecta-
tion values are defined only for self-adjoint operators, they may be exten-
ded in an obvious manner into states as defined in § 1. Moreover, although
von Neumann does not explicitly delimit any algebra specifically, it is
clear from what is said (loe. cit. p. 313) that all self-adjoint operators
are to be included ; thus B is the only possible choice within the framework
of this paper. (Physically one would demand the inclusion even of certain
unbounded operators, but neither von Neumann’s arguments nor ours
cover such an extension.)

For this case our results are incorporated in Theorem 4. On the other
hand, von Neumann’s arguments lead to the conclusion that each wedkly
continuous state 7 of B admits a representation of the type

() Ty = TrHT,

where ‘“Tr” signifies trace, and where H is a positive self-adjoint opera-
tor depending only on f. We must leave aside infinite-valued expectation
values (cf. [6], p. 310) and so assume that TrH < + oco. With this Limita-
tion we speak of the states (N) as trace-states. The uniquely detexmined
operator H serves to describe completely the behaviour of the assemblage
in question; it (or rather its matrix representative) is the so-called “sta-
tistical matrix” of the assemblage.

Von Neumann shows that the minimal trace-states are precisely the
pure states (0.1) (corresponding to the case in which H is a one-dimensio-
nal projector or a multiple thereof), and that there are no trace-states
which are at the same time characters (dispersion-free states).

It is easily seen that the decompositions (A) and (N) are in a sense
equivalent. On the one hand, if H, = &' @ is the operator defined by
H,y = (y, ®)w, so that (N) with H = H, gives the pure state (0.1),
then the state f defined by (A) may be written as the trace-state corres-
ponding to the operator

(7.1) H= [ H,dm(@) = [ (o' @2)dm();
z z
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the integral here exists in the weak sense and represents a positive gelf-
adjoint operator with trace

TrH = f(TrI—[,)dm(m) = j |2 tm (),
z P

which is clearly finite. On the other hand, it H is positive self-adjoint
and has finite trace, it is necessarily compact and we can choose a com-
plete orthonormal base (e,) for X and scalars 1, = 0 such that

TrH = Dl < 4 o0
n

and
H = D'l ®e,)
n

Then (N) takes the form
TeHT = 3 1(Ten, &)  (TeB),
n

so that (A) holds with
m = A" g,

where ¢, is the Dirac measure at a.

It appears from this argument that the measure m appearing in (A)
is not uniquely determined (if it exists) by f, and this even in the most
favourable case in which « = B; cf. [6], p.330-332.

Remark 7. As has been said in §1, there are obvious difficulties
in the path of extending von Neumann’s direct proof of a representation.
(N) from the case of B(X) to a subalgebra f thereof. Whilst the theory
of (C*-algebras may help in this direction (at least in respect of woakly
closed algebras of and compact operators Tegf), all the simplicity of
von Neumann’s approach is lost, and there scems little fo recommend
this method in preference to those adopted in §4 ahove.
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