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We add here a numerical example of the splitting formula in the
simplest case where F' = £ is rational number field and p = 2. Let O
be the multiplicative group of non-zero elements of the 2-adic number
field £,. Then, for every representative of 03/0;? the value of w,(a)
is given by

a =1, 5, —1, —5, 2, 10, —2, —10
wy(a) =1, 1, 4, 4, 1,—1, 4 —i.

Thig gives, for example,

(10,—2)= —..i= 1

2 q
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On the existence of primes in short
arithmetical progressions
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E. FoeeLs (Riga)

Introduction. In 1944 Linnik (see [4]) proved the existence of an
absolute constant ¢ > 0 such that the smallest prime in any arithmetical
progression ku-+1, (k,1) =1, . =0,1,2,... does not exceed %°. In
1954 Rodosskii (see [6]) gave a shorter proof in which a fundamental
lemma of Linnik was replaced by a weaker result (see further (10)).
Introducing a new parameter in Rodosski’s proof in 1955 I proved
(see [2]) the existence of an absolute constant ¢ >0 such that there is
at least one prime p =1 (modk), (k,1) = 1, in the interval
1) (, a%%) for all o>1

and I proved that there are other absolute constants ¢, ¢, (¢a >¢; > 0)
such that
(@) w(@;k, 1) >ak~t  for all we(k2, ¥,
if (k,1) =1 and z(z; k, ) denotes the number of primes p =1 (modk)
not exceeding .

The estimates (1) and (2) are of some importance for o < expk®,
&, denoting (throughout this paper) an arbitrarily small positive constant.
In this case the uncertainty about the existence or nonexistence of the
real exceptional zero of Dirichlet’s function L(s, ) with a real character y
modulo % is the reason why the existing estimates of =(w;%,1) and
estimates of the difference of consecutive primes = I (modk) fail to give
us any positive information. For x > expk® and k > ky(s;) according to
Tehudakoff ([3]) there is at least one prime =1 (modk) in the interval

3) (o, (1407,
and (2 k, 1) > ¢s(e) 2 /p(k)loga, where (k) is Euler's function denoting
the number of natural numbers I < % with (I, k) =1 (%).

(1) For these results see, for example, K. Prachar [5], IX Satz 2.2, IV Satz 8.2;
IX Satz 3.2, 1X Satz 4.2. (Roman numbers denoting the chapters, A the appendix).
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It is the aim of this paper to improve the estimates (1) and (2) in
such a way that the increasing of  should diminish the length of the in-
terval in which there is at least one prime p ==l (mod%k) and it should
possibly increase the ratio ¢(k)m(w; k,1): 2. The principal result o
this paper may be formulated as the following

THEOREM. There are absolute constants ¢ >0, ¢ >0 such that for
any positive ¢ < ¢, for all k = ky(e) and all

%> 70?;102(0/')
there is at least one prime p =1 (modk), (k,1) = 1 in the interval
(x, wk°).

Actually there are > n/p (k)%™ primes = 1(modk) for & < expk’, k > Iy (s).

By absolute constants we understand constants which are independ-
ent of k,1,e.

The function %,(e) of the theorem depends on Siegel’s constant ¢;(e)
(see further (8)), no estimate of which is known at present.

CoROLLARY. We have
(4)
for all me(kO5Cte expk?), & > ky(e).

Using ¢ = ¢ in the theorem and the corollary we get (2) and the result
concerning (1) as stated above.

For another consequence of the theorem see the note on functions
of Liouville and Mobius at the end of this paper.

We shall prove the theorem by the method of Linnik-Rodosskil
supplied with two more parameters and applied to other dissection of

the critical strip in regions of summation. Using this method for s = expk’
We can prove the existence of a prime p = I (modk) in the interval

w(w; b, 1) > ofp(l)1*

(o, 0(1+ 04));

where ¢, is some absolute constant > 0 (see further (67)). In. proving this
We use a .rather weak estimate of the number of L-functions ]daving ZOTO8
in the neighbourhood of s = 1. Therefore we cannot goet as good an esti-
mate as §3), the proof of which uses a more profound knowledge about
the f]Jstrlbuhion of the zeros of L-funetions; nevertheless it cannot be
applied to the case z < expkl,

A short note containin, i i 0 sent
o the Deklady et gk tl;es ;aRa.’m results of this paper hag been sent
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Preliminary theorems. We take for granted the general properties
of Dirichlet’s functions L(s, y) with characters y modulo k¥ >1 to such
an extent as is given in Prachar’s book [5] and, with a few exceptions, we
uge the same notation. .

A, B, C, 0y, 05y Cy-nnykay bgy ooy 0y Moy &, ¢y @, b denote positive
congtants which may depend on each other but not on %, ! (and not on
any of the parameters ¢, T, 4, ..., which are used further on). The depen-
dence on g, & or ¢ is always marked in the usual way.

n denotes natural numbers, p —primes. The natural numbers & and I
are always supposed to have the highest common divisor' (%, 1) = 1.
(By (a, b) for real a, b we denote the interval a < # < b as well, but there
is no danger of a confusion arising from this ambiguity.)

y < @ or y = O(x) for positive # has the meaning of the inequality
iz < ¢, for some n (n >b).

The complex variable is generally denoted by s = o+ it (o = res,
t = ims); sometimes we use w or z as well.

We use expz for the exponential function ¢*, whenever it is more
convenient for the print.

Further we shall use the following properties 1-9 of L(s, x) or other
functions.

1. In the region

(5) o = 1—oflogk(lt|+-2) = §

for all characters y modulo & we have L(s, x) 7 0, with at most one exception
corresponding to a function L(s, y,) with & real non-principal character x;
this function L(s, ¢1) may have in (5) a single real zero B, < 1([6], TV
Satz 6.9).

2. There is an A such that for 6, = 1—f,

[ it 4 < Allogk,
(6) b = .
: Aflogk  otherwise,
eA
7 = Alog ———
™ hy = Alog g <[4, Hloghl,

the rectangle (L—A/loghk <o <1, t| <k) contains no zeros ¢ of any
function L(s, x) with a character y modulo k wilh probably one emception
o = f, ([6], X (4.8), (4.9), (4.10)).

3. (Siegel'stheorem). For any ¢ > 0 and any real character y modulo &
we have L{o, y) %0 in the region

8
(6], IV Satz 8.2).

o=1—cs(e)k™"
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4. Let N,(T) denote the number of zeros of L(s, y) in the rectangle
(0 o<1, lt| <T). Then for any T > 2 we have

©) N,(T) = 2 Tlog T+ a(h) 7+ 0 (logh7),

where a(k) 15 a real function < log2k, which does not depend on T ([5],
VII Satz 3.4).

5. Let N(8,T) = N(8, T, k) denote the number of zeros of all functions
L(s, ) with characters modulo k in the rectangle (o = 1— 4, [t| < T). Then
there is a C such that for all Ae[0,loghk] we have

(10) N(aflogh, ¢* flogh) < e%.

(See [B], X Satz 2.2. This is a simple consequence of Rodosskil’s substi-
tute for Linnik’s fundamental lemma, The latter gives a similar estimate
for the number of the functions L(s, ) which have at least one zero
in the rectangle ¢ >1—A/logk, [¢| < min (21, log3k).)

6. Let Ay Agy ... be a sequence of nmon-decreasing real numbers with
limb, = oo, and let a, (n =1,2,...) denote arbitrary real or complew
numbers. Then for any real or complen function g(£) having a continuous
derivative in the segment 1, < & <o we have

(11) D angh) = A(m)gla)— [ A(E)g'(8)dE,
A< i
where

Ag) = 2 .
i<t
([81, A, Satz 1.4.).

7. Let A(n) bo logp if n is a positive power of the prime p and O other-
wise. Then we hawe for all x > k*

(12) vk, )= D An) < ajp(h)
)
nesl (mod k)
(See [5], VII, proof of Lemma 7.1).
8. For amy positive numbers m, y and any real number a wo have

atico -
(13) f m z'eazydz = q/l/f_ e-—-(lggm)ﬂlw
: Y

a—ioo

(5], A, Lemma 3.3).
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9. For any positive numbers x, y we have

B log3n [z
_s .
(14) gmmmm exp( m )
—  2-i00 ,
= z]/_gi f Z (w, g) @t N .
T 2—1%00

To prove this we use in (13) m = n/z, a = 2—¢, multiply through
by z(n)A(n)n~® and sum over all n > 2. Since

LI
D x) A= — = (e-+5, 2),

we get (14) putting z-+s = w. (See [5], A Satz 3.3.)

Proof of the auxiliary inequality (46). We use in (14) s = — %,
multiply through by 7(I) (the complex conjugate of x(I)) and sum over
all (k) characters modulo % taking into account that

1 1 i n=1(modk),
—_— n)g (1) =
o(k) ; #(miz) [0 otherwise
([8], IV (2.11)). Moving the path of integration to the line rew = — %

(which is legitimate, since the integrals and sum of residues are absolutely
convergent) we geti the identity

log2n /o )

(15) O, yik, ) =plk) Y Amn exp(ﬁ v

=2
n=l(mod k)

—2Vay o expGy) — 2y ) ZURes S (0, 7)o" Pexpl(w-+ Hry)+

Tty W=y
~1f24ic0
+ > a)iVy/= — (w, Pa T exp{(w-+ §)2y) dw,

where &(x,y; k, l) denotes the function defined by the left side of (15).
On the right side g, runs over all zeros of L(s, ) having the real parts
> 0. Since

’

L
A (— 3-+it, x) < logk(lt|+2)
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([5], VII Satz 4.3) and k >1, the integral in (15) is < y~'* log 2% (cf. [5],
VII, proof of Satz 6.1). Hence, if 8, denotes the probably existing real
zero of L(s, ;) with the real exceptional character y, and if we put

(16) 8, =1—f, ¢ =1—0+1r,

we have, by (15),
(17) D(w,y;k,1)
= Vg 2" oxp Gy )1 — By 0" y, (1) exp [ — 8, (3 — 8,)y1—8} + Ol (k) log ),

where
1 it
0  otherwise,

exigty
B b exists,

and
(18) 8= D'7(1) D o ’exp{[— (38— 0)—v3+ir(3—20)]y+irloga}.
x o1
Let f(7) be a real or complex function of the real variable » and B
any natural number. By If(n) we denote the integration B times repeated,
of the funetion f(n), the range of integration being (n, n--1). For any
constant ¢ and any continuous functions f(n), g(y) we have

(19) Igl =1, Ipaf=alpf, Iz(f+g)= Ipf+Ipyg,
and
@ B
(20) Ipe™ = (6 ‘1) 6.
a

Let f(n), fi(n) be real continuous functions and let f < f, for all 4.
Then we have

(21)
(22)

Ipf < Igfy,

min f{t) <Isf(n) <

T onst<n+B max 7).

n<t<n+B

The properties (19)-(22) may be proved by induction with respect
to B.

Further we will use a fixed B satistying the inequality
B > max(2, C+1),
where C is defined by (10), and a constant 7, < 1,
(24)

(23)

7o == max(4, 0),

icm°®
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other restrictions on which will follow. Suppose 7, to be the initial value
of 5; the operation Iz increases it by B and hence we have the restriction
on 7
(25)

We shall use in (17)

1y <9 < N+ B.

(26) =K, £=0,
(27 y=—logk,
with # satisfying (25) and

(28) 1<y Slogk, »<e®

for all £ =0, « satisfying the inequalities
(29) 0 < a < min(g, 3B, 4/3B),
where A and B are defined by (6), (7), (23). Let us divide (17) through by
Zl/rr—y mmexp(%y)a.nd effect the operation Iz. Writing
o b et
we get, by (17), (19),
(8l) U=1—E,5;(Da1Ige 100 1,8+
+Izy M exp(—{y)0 (s (k) logk).
Using (27), (21), (22), (28), (24), (29) we get the estimate

7,
exp(—3y) < exp(—%wvE

—1/2

Ipy logk)

1 i &>10,
= [exp(‘—%noe'“elogk) SEe LB < B if 0 < £ < 10.
Hence for all 4 > 1 and & > k; we get the estimate
(82) Ipy exp(—1y)0 (07 p(k)logh) < k7.
By (27), (21), (22) we have

(33) Ige 81679 < oxp (—-2 T d,log k)
v
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Using (18), (20 (27) we get the expression

exp {—— T (264 1?)log Ial
B\, -8 4
(s8] < (2) Zw \(26—{—12—1—7}1)10gk+i110gm|3
e

(34)

The summation is extended over all zeros ¢ = 1—d-+ir 3 f; with 6 < 1
of all the functions L (s, ) with characters y modulo k. The critical strip
0 <o <1is cut in three regions G4, G4, G5 as defined below, and T,

T,, Ty denote the corresponding parts of the sum in (34).
Let G, be the region (0 <o <1, [f| >1logh). Then we have

! Mo
T, < 2 exp (— " ralogk)
[zI=log &k

< o(k) f exp (— @ﬁlogk)- #logT-log ki
logk v
< klog?k f exp (—— o, t2log k)~t310gtdt
logk g
< klog?k f exp(»- T t”logk~|—3logt) di
v

Jog &

< klog®k fexp -—-adta)dt

logk

klog*k

3 — ¢gtlogh)dt = JCelogk
< klog?k fexp(k cstloghk)d ologh
log &
by (34 (28), (9), (11). Hence for all & >k, > k; we have
(36) T, <k

Let @, be the region of the points s = L—A/logk+iy/logk with
(36) fo <A <logh, |yl <y=y(2) = min(é, log*k),

4, being defined by (7), and let us write the zeros ge¢@, as follows:

87 ¢ = 1—Aiflogk+iy/logk, A= hay V=Y.

=T +Tz‘|"113 .
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Using (34), (26), (37), (7), (11), (10), (29), we get the estimates

Ty < @) ) o2 SR (Z2m) <( > )B D exp(— (£+2n0/) 1}

e
0eGiy (22) 4 Ao<i<logk
logk

<[ [ (e 2mp)expl—(e+2mp) 1)e% a1+
0

+exp[— (£+ 2o/ —0)log ]}
< vPexp| — (£+ 20 /v— C) Ao} < exp {— (8&+2m0/r—0) Ao}

exp[— (§&-+2nm/v) 2] if £>=30,
exp[— (§&+70/7) ] it £<30, 5 =0

Hence we have
(38) Ty < o0xp[— A (36+m/)]  for 1y > 06*C,

Let @; be the remaining part of the rectangle (0 < o < 1—4y/logk,
[t] <logk). Supposing 1, < 2loglogk, we have

To< v D exp(— Ehg—201of) [y ™% = P exp{—ho(E+2m0r)} Y Iyl ™®

03 06Gy
2loglogk .
< 1,BGXP{ — Do (E+2m/9)) { f e-r-BAeG’Zdl_!_e—(B—(})Zloglogk}
%

< vPexp{— iy (§+ 2+ B—0)},
by (34), (37), (26), (7), (11), (10), (36), (23); for A > 2loglogk there is
no @; and consequently Ty = 0. Hence in the same manner as in (38) we
get the estimate
(39) Ty < egexp{ —2Ao($E+m0/v)} .
Now we have, by (31), (32), (34), (35), (38), (39),
(40) U >1—a""exp[—(2n7) 8;log k] — 25— coexp{ — Ap( & +7a/)}
Increasing 7, if necessary, we may suppose the inequality

(41) 24 =1
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holds. Since we have » =1, and 8, > 6, by (6), and 1—e™ > 3t for
0 <t <1, using (41) we get the estimate

42)  1—a~Yexp[— (2n/v)8;l0gk] > 1—exp[— (2my/») dylogh]

dlogk

> 1—exp| (4v) " 4 logk} > T

By (29), (23) Wwe have a < }A. Therefore there are non-negative solutions
of the system of inequalities

(43) AE[3 >ak+logde, AEB>1.

TLet us denote by & the least non-negative solution of (43) (& > 0). Then

for all £ > &, we have

1
—AdE3 6—05
e < 4o,

and consequently

coe™ P << 14y,
by (28). Using this inequality and (7), (6), (43) we get the estimate
(44) og0xp{ — A ($E+70/r)} < p0xD(— $h)

eA
= 60%p {_ ke (Alog Slogh )}
. (%logk )*‘“ _ (6ologk)‘”/3_ 0,640
"\ ed A

dologk
4Av

for & > &,.
Increasing 7, if necessary, we mxy suppose that the inequalities

(45) nAe™™ > af +loghey, mpAde St >1

are satigfied. Then we have, by (28),
o 1 —afy Mo A >
- — X 1
" for0 < £ < &, and consequently
e~ MY < 1 [y, Anely = 1.

* ©
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Using these inequalities and (7), (6) we get the estimate

ol ) < nl 24

Jologlc)A”“/’ —drgs _ Bologk
- . gt d
( G = 44y

- (ef. (44)). This proves (44) for all & > 0.

For all & > ks > k, we have

dylogk

2—-2
LA 84y’

by (6), (8), (28). Using this inéquality and (40), (42), (44) we get the
estimate . )

(46) U> %1“— s,logk

for ¢, >1/8A4 and some 7,< 1 satisfying (24), (38), (41), (45). This is
the required auxiliary inequality.
Proof of the main inequality (59). We introduce the number

(47) 2 = kT = e

and divide the sum (15) up into the partial sums

48) 0, y; kD) =Sotpll) > exp(—l"gap/”)-l/z?logﬂ

4y
pet@mod)
+ 81+ (k) 8,
where
logzp/m) —
= — 257 V. y/p]
8y = (k) 'zg; exP( 4y V.’P 0gPp,
p=1{mod k)
log"n,/w)
S; = ok —
(49) 1= @(k) g A(n)l/'nexp( |
n=l(mod k)
— log?
8y = Z A(n)]/'nexp(— og‘in/m)'
n=p%<s Y
a2, n=l(mod k)

Acta Arithmetica VI 20


GUEST


306 E. Fogels

Using (49), (li), (12), (47), we get

¢ (logtje 1 ( 10g”t/m)
—Z logt— —2— 12
2) $log iy

(50) 8 < ey f ( 5

Flu 1) (3u+logm u? ) i
= — ) exp | ———2— — —
n f 2 2) TP\ 2 4y

logaly

o0
U 1 3u u?
= 0y, 2*" —_—= — ——)du
o el
logsly % 2 2 4y
Flu 3 3u  u?
< 3¢ 2% f (— ———) exp (—— — —-) du
Jogsiy 2y 2 2 4y
2
= 36,2 exp (%logz/w— h—gﬁf) = 30,2~ = 3¢,, 0> ™

(since /2y = (logz[x)/2y = 2, by (47)). In the same manner using (11),
(12) (with k¥ = 1) we get for a fixed a>2

2102 [5/*
(51) ZGX})( @ OE P/ )fpalzlogp

o<
o a?logt/z'® a atlog?t[a®
_S e S logt— =T ) g
<011§f ( 2+ % )91113(2 ogt 4 ) +
2
+¢,,6Xp (ﬁlogz— 10g4yz/ d —}—logzl"‘)

(logz/x)/a
< oy Y12
v/a

Wy A+

[ 2 e (8
o+ |-+ ()

og"z/w)

-+0y,6xp (logz

(The lower limit of the integral is obtained by taking atu |2y—al2 =0.)
Since

/e <@Ba7'+a7")y < 4y/a = (logz/s)/a,

icm®

Primes in short arithmetical progressions 307
by (47), we have
(logz/z)/a
a*u  a a atu?
52 f vuw_2o 2 1) u— }d
S e R e e
vja
—24 g1
< 3 1 e e aru a ox a,u adu? d
X exp ';5"‘ p Yy 2y P) P 2 n U+
vja
(logz/x)/a
3 “u_o 1) ex 1—!—1 % anua} du < 4exp
+ 27 2 P2 Iy PGY)-

(Ba—24a—lyy

In the sum S, we have a < 2logz, by (49). Hence, by (51), (52),

(26), (27),
log?
o2
A}

Jog?
og4;/w )} logz

(47),

(83) 8 <

2<a<?logs plcs

< 09 {m exp ($y)+ exp (logz—
< eys(4+vE[mo)ay exp Cy).

Using (49), (12), we get the estimate

[k D Vplogp+g(k)Va Y logp < K +a' < 2™ it £ > 5,

(54) Sp<{ 7= s
k X Vplogp < ke < 426 it 0< £ < 5.
<z

By (48), (54), (50), (3), we have

log? —
@) o) ) exp( 5L Vplogy

TLDL2
= B(w, y; k, 1) — 01487 €% — 6130 (k)(4+v&/m,) wy exp (3y)
> 0@,y k, 1) —p2Vry s e
where

(66) 0 < p < osly™ P+ g (k) (44 2Efma)Vy fre™).
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For £< 3 and &k > ks > k; we have
F(4+vE)Vy < bV logh < B%* < KPP < a6,
whereas for £ >3 and all &k >Fk; = k¢
k(44 vEVy < kVloghe < B0¥ S B < o',

Using this we get, by (56),
p < 0

gince 4~ * < 1. Hence, by (21), (22), (19), (27), (56), (25),
(57) IB,uG—yM' < 0166'(’70/4")108%'

Now let us divide (55) through by 2WVryaslexp(jy) and effect the
operation Ip. Writing

— log? -~
(88)  Ig[2Vmya™exp(y)] " (k) 2 exp(——ip / m)l/ﬁlogp =7,
T<P<L Y
p=l(mod k)

we have, by (19), (30), (83), (87), (58), (46),
(59) V = U— g e ®N0ek = o 07 §ilogh— oy ¢~ it logis
Thig is the required inequality.
Proof of the thesrzm. Suppose that under some circumstances
(60) g N (0 120) §logh.
Then we have, by (59), (6), (8),
(61) V > (00/29) ologh > o3y (e') k"

for all &' >0 and &k > ¥y(e’) > k,. If there is a » satisfying (28) and (60),

then, by (61), (58), (47), (25), there is at least one prime p = I (mod k)
in the interval

(62) (2, ") = (@, 2k*") C (w; oK' TEV) = (g, k"),
where we put 4(n,+B)/» = ¢ or

(63) v = 4(ny+B)/s.
Take

(64) &' = &[16 (n,+B).
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By (6), (8), we have &, > c3(e") k™" for all &k > ky(e') = Kyo(e) = Ks.
Therefore (60) would follow from the inequality

0163~("°/4")1°gk < f‘—ll C1g k*"/zlog k= ey B2 —-——*cm cmlogk ',
2v 26559

Since
e G ologh

1
2015 v =

(supp osing that %, is large enough), it is sufficient to get the inequality
(65) ¢~ (o/4)log® k"”',

whence (60) would follow as well. And we have (65) in consequence of (63),
(64), (24).
It remains to prove that », as given by (63), satisfies the two condi-
tions of (28):
1<y <logk, » <6

The inequality » > 1 is a consequence of the restrietion ¢ << 4(7,+B)
=¢. And v logk for all k = ky; (&) = %y, by (63). From the second
condition of (28) and from (26), (63) we get the restriction

__________4 (mo+B) < gflogallogk
-3
or
logw
logk

4 B
> a_llog_(ﬂgi_)_’
&

whence
> kc'log(a/')’ ¢ = 1/a, ¢ = 4(no+B).

This proves the main part of the theorem.
Using (58), (61), (27), we get

y logp/z 99
Ip Z ]/ exp(-— ™ logk lfilogp

T<p<? nlogk 4y
peimotk) > oy (') @™ [ (WK,
whence, by (26), (21), (62), i
(66) ' Vplogp > oy ()W fp(R) R
ri<pckéts
p=l(nod k)
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Therefore the number of primes p = ! (mod¥%) in the interval (62) is at
least
015 (&) B [ () +C P Log 4 > o () 7

for » < expk®, k > kyy(e) > ky;. From this and (64), (24) we get the
remaining part of the theorem.
Replacing £ by £—e in (66), we get the inequality

> Vplogp > ow(e) R p(k) (£ > ),
KE—tp<kt
p=l{mod k)
‘whence
w55 T, DETLoght > cgo (') 5 fop(T)
or

a(@; &, 1) > cpafp(R)F* for o=k <expk'.

From this and (64), (24) we get (4).
Note. Now suppose # > expk’l. Then we have, by (8),
o™ < exp(k1[— 0, (21) 6]} = exp{ — 35 (1) K} <3
for all & > %y3(e,) > k. Therefore, by (40),
U >§— 252 — gy~ +ml),

Hence, by (59),
V> % — 2k~ — gy~ REBTON _ g o= (m/t)logk ~, 3

for v = ¢;;'logk with appropriate ¢, >2 (such that e~ <§), and
for all & > ky4(e;) > %y5. From this and (58) we deduce that there is at
least one prime p =1 (modk) in the interval

(67) (@, ok E B = (@, woy,)
(ef. (62)), where
Oy = e*nlo+E) > 7,

Note on the functions of Liouville and Mé6bius. Let A(n) and
#(n) be the functions of Liouville and Mdbius, defined ag follows: A(n)
= (—1)", v being the total number of prime factors of n, where multiple
factors are counted a multiple number of times; u(n) = A(n), if n contains
no square factor >1, and = 0 otherwise.

As a simple consequence of the theorem we can prove that there are
absolute constants & >0, b >0 such that for amy positive & < b, for all

icm®
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k > kys(e) and for all
(68) - 2 kalog(b/s)

the functions A(m), u(m) change their signs at least once if m rums through
the integers =1 (modk) of the interval !

(69) (@, 2k®).

To prove this, we take in (68) a = 2¢’, b = 2¢. Then, by the theorem,
there are primes p,p’,p’’ such that

p =1(modk), o<p<<ak’
and

Vo < p’ < Vol
}/g<p// < ﬁknﬂ’ pll #p,,

whence p'p”’ =l (mod k), x < p'p’’ < «k’; and we have A(p) = u(p) = —1,
Mp'p") = uw(@'p") = 1.

In 1948 I proved ([1]) that the functions A(m), A(m), u(m)
(m =1 (mod%)) keep their average values in the interval (z, 2-+h) for
some positive h < 2’ and o > expk®. In the present paper we have
proved a weak analogy for » < expk'l, namely the existence of the con-
stants a, b such that for all # satisfying (68), in the interval (69) there is
at leagt one prime = I(modk) and for m running through the numbers
= [ (mod%) of (69) the functions A(m), w(m) change their signs at least
once.

p’ =1 (modk),
p'"" =1 (modk),
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