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Contributions to the theory of the distribution of prime
numbers in arithmetical progressions I

by

S. KNAPOWSKI (Poznan)

1. In this paper we shall occupy ourselves with some quesbions
concerning the distribution of prime numbers in arithmetical progres-
sions of the form

(1.1) L,1+k, 1+2F, ...

where 0 <l <k, (I,k) =1.
Let us write, as is usual,

v, b, ) = 3 A,

n=l(mod k)
BLL

» where A(n) is the familiar Dirichlet symbol;

logp if n=p% a=1,2,...; p prime number,
A(n) = X
0 otherwise.

It has been found that

(1.2) p(@, k, 1) ~ (& - co, p(k) is Euler’s function)

x
¢{k)
for every fixed k, and in fact (1.2) is known as the prime number theo-
rem for the progression (1.1).

Let us introduce error term in the asymptotic formula (1.2)
L

Rz, k1) = yp(w, k, ) — ——
(@,1,1) = plo, by )=

and ask about the difference in orders of magnitude of the expressions

max |B(s, k, L), max [R{z,k, L)

IgeT 1<egT

(L # Ly, 0< <k, (liak)=17 i=1,2)
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as T is large enough. Some partial results in this direction have been
obtained in [1], [2]. Namely it has been shown there that

logT
max |R(z, &k, 1)]
4 loglogT 1ge<T

(13) max [R(z, k, 1) < T‘“T’ezq)(
1<e<<T

for (t) T > max(6, expk?), where 6(T) was 2 certain function tending

to zero with T — co. ‘ ' . N
Essential thing for establishing (1.3) was the inequality (implicitly

contained in [2])

max |R(z, k,1) =
1<esT

logT )
l/log 1og T

holding for all T > max(e,, expk?), with S(T', k) being the real part
of an arbitrary zero ¢ = f-+4y of some arbitrarily taken Dirichlet L-fune-
tion mod %. It follows that in order to get an extension of (1.3) with two
arbitrary numbers I,, I,, one should seek for an analogue of (1.4) valid
for gemeral error term R(w, k, ). So far so good, but the” inevitable
difficulty arises now. Namely, the proof of (1.4) based on the following
lemma of P. Turdn (see [5], p. 52).

., 2 be complex numbers such that

(1.4) zmﬂ”)exp(

leal Z 12l 2 ... Z 2w, & 21

and let by, by, ..., by be any complew numbers. Then, if m is positive and
N = M, there ewists an integer v such that

m < r < m+W,
o, (1 N WY
(1.3) b2+ bazi+ ...+ Dar 2] ?(@M) lg}gillbﬁ—brl—m-l-bil .

This lemma was then applied with
(1.6) by =by=...=by =1,

which was due to the fact that all characters take value 1 at [ = 1. As
the latter obviously breaks down in the case of arbitrary I, we should
obtain in general a froublesome factor at the right-hand side of (1.5)
(in fact the actual b;-numbers are of form 1/y¢(l), x a character mod%k).
Therefore it is evident that in the first instance we ought to find some
improvement of (1.5), that is to say, to obtain some more comfortable

(*) Throughout this paper: ¢,, ¢,, ca, ...
constants.

stand always for positive numerical
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factor in place of mjnM |b3+bz+ ...+ by|. This sort of result has been
1<i<

stated in Lemma 1. To be sure, even having the latter I did not suc-
ceed in proving the desired inequality for R(z,%,l) without any hy-
pothesis. Nevertheless I have been able (Theorem 1) to deduce the
estimate

T

(w k, l)] 1 ( logT
dw > T"exp [—2 —8~
j!‘ > L Texp(—2 loglog T) ’

X = Texp(— (logT)")

(1.7)

where

logT

(and 80 a fortiori max |R(w, %, 1) W

X<l

> T exp ( — )), holding for

all T > max(¢c,, expk®), from the following conjecture
(1.8) In the rectangle 0 < o < 1, |t| < max(e;, k'), 8 = o-it, I-fune-
tions modk may vanish only at points of the line ¢ = }. The numer-
ical constant ¢y is supposed to be sufficiently large and can be ewplic-
itly calculated.

It would be desirable to have at the right-hand side of (1.7) 7% (in
place of T**), with f, >>} being real part of an arbitrarily fixed zero
of L(s,y) modk. Such inequality would facilitate working out com-
parigon-theorems in the distribution of primes (not only prime powers!)
in two arithmetical progressions. This, however, is no longer possible
by the method employed. In fact, following the previous way one could

‘not even assert that any one term of the form

1 1 vl o ve\2
e D | —— ], | _
p(k) 2() ( %g) Hol < vl

would oceur in the sum b,+b,+...+b;, 8o that the lower estimation
of mm [by+ba+ ...+ b;] would evidently break down.

h<i<
Natural question is, of course, what lower evidence for
T
Rz, k,1
[ Rk b,
P @
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can be supplied without any hypothesis. The method whigh I have
ased when (1.8) assumed true, is still, to a certain extent, applicable now.
I have, in fact, been able (Theorem 2) to conclude

T
(1.9) f [B@ 5 U g o s with X = Texp(— (logT)*?)
9 .
(and also max |R(z,k,1)| >1"") for T > max(o,, exp k%), where L,

<o<T v . .
s the congs;;i of Linnik, ie. such number that to arbitrarily given

Lk, 0<l<k, (k) =1 there always exists prime number 2P ==
?
=1 (modk), k<P < k(3. .

The substantial novelty in the proof of (1.9), not to mention the
theorem of Linnik, is the use of the following density-theorem (see
[4], Satz 1.1, p. 299 and D. 323). »

Tet 0 <a<1 and N(a,T)= N(a,T,k) stand for the number of
zeros of all L-functions modk in the rectangle

a<0<1, M<T

Then, if T =k
(1.10) Na, T) < o5 (k* T°F)~“log"T.

I did not take care to obtain the best possible exponent at -the
right-hand side of (1.9); % seems to be the optimal simple one. The im-
provement of (1.10), known as the ‘“density-hypothesis”, had it been
right, would have led to }—e (®). o '

By partial integration one could state inequalities corresponding
to those of Theorems 1 and 2 for

[I (w,k,l)——ﬁliw

T

[

X

[]@®n=

p=l(mod k)
Mg

ol dz,

‘where

}_, lim=f-~fd_@.t._

(?) Strietly speaking Linnik's theorem asserts only the right-hand side inequal-
ity P < kFo. However, it has been shown implicitly (see e. g. [4], p. 369, the ine-
quality (4.25)) that there are “large” primes P = l(mod¥k), P < kLo, whence the left-
hand side. R

(*) See Remark to Theorem 2.
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Similar problems are to be passed when investigating the distribu-
tion of prime numbers in two different progressions with the same mod-
ulus k. Again it is of interest to study the order of magnitude of

max [yp(®, k, L)—p(z, &, L))|.

1<e<T .
I defer this and related questions to the forthcoming eontinuation
of the present paper.

As to the conjecture (1.8), it probably might be established by means
of computing for not too large numerical values of k. Note e.g. that
in the case of the Riemann zeta-function, ie. for % = 1, the following
evidence has been checked (see [3]).

In the rectangle 0 < o < 1, || <10°, s = o--dt all the zeros of the
Riemann zeta-function lie on the line ¢ = %.

2. Lemma 1. .Let m be a non-negative number and =z,,2s,...,2y
complexw numbers such that

=g 22 =... 2wl =... 2lan], |2 >2m_
Then there exists an integer v with m < v < m+ N such that
612+ byzs ...+ b2y . ( 1 N )N
2.1 ] b b b
&1 (31l Z i bt NG )

where hy < N is any integer for which [2n,] < |2a|— N [(m+N). In that

case when there do not ewist numbers h, satisfying the latter inequality, we

put at the righi-hand side of (2.1) min [b,+ by+...+b;| instead ().
h<i<N

<7<
Proof. We can confine ourselves to an outline of proof as it does not
essentially differ from that of Satz IX in [5]. First of all we assume that
all z’s are different numbers (in the general case we apply a simple

limiting process) and find similarly to [5] that the inequality

z 1 N O\
[Jems > (2
=1 be 2N+m

holds everywhere outside of some set which may be covered by no more
than N circles having joint sum of diameters not exceeding 3N /(2N 4+ m).
Then there obviously exists an 7, with

(2.2)

(2.3) |28l — =

(*) Compare [5], Satz VII and Satz X. In this paper Lemms 1 will be used only
in the particular case of h; = N. The general statement will be of importance in
some further applications.
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and such that (2.2) holds on the whole boundary. 2] = 'ro..]i‘m-ther, it
follows that for every set of integers ji, ja, ... Jr with (1<) j, <jo< ...
.. <jr (< ) we have '

1 ¥ )N for |o} = 7.
(2.4) ﬂ O ey .
Case I.
(2.5) ] =7, for j=1,2,...,N.

Then [5], Satz VII furnishes that there exists some integer » with
m <» < m+ N such that

N N

IR N R Nz I S P S o o L (m)
sl ]
> min by byt Tfl(lzhl—S(zNer) )

whence noting that
2N Izhl

(2:6) = s eN T m 2

and that owing to (2.3) and (2.5) there is no h, < N with

’ N
ol < fond =

we obtain the desired inequality (2.i).
Case IL. There exists some infeger I with
1<I<N,
such that )
I=la|l 2l =... 2 >rn>au = ... =2yl
Note that
2.7 <l <hy.
Let ns write

N N1
filz) = H (e—2) = ch)zN -]

i=l+1 j=0

It is evident that

(2.8) o] <(NJ ’), J=1,2,..., (N—1).

° ©
8. Knapowski Im

Let f,(2) stand for the polynomial of degree
= 2y, &3, ..., 2 the values

Prime numbers in arithmetical progressions I

1

1

1

zgmlﬂfl (#1) ’ z%ml%—lfl (2) ’

We may write f,(2) in the form

fa(2) = 032)+052)(z"31)+0§2)(z”‘z1)(2— Z)+ .o, (z—a)..

and find ag in [5]

) =

dw

A (m)

i f W™+, () (w— 2,) (w

wj=ry

In view of (2.4) and (2.6) we get then for j =0,1,2,...

(2.9) G- 1

[

1

"N P
(12e A2N+m)

Putting now f,(z) in the form

we obtain similarly to [5]

421

<l—1, assuming at ¢ =

Ae—2,),
—2) . (W—2py)
ji=0,1,2,...,(0—-1).
s (I—1)
- 1
B ( i N )N‘
12e 2N+m

-1 .
fa(2) =Zc_§3)z’.,‘

=0

, 2), 5 12 j+1 j+2) 2 -1
1< e el () 1ol ()l (),

whence, by (2.9),

(210) |¢f) < |2

Z

~[m}

1

2N +m

We introduce still another polynomial

and observe that

B fs(zl+1)

[m}+N

fal)) = " (2) fole) = D) o

Jalz1) = f(a) = ...

=fa(zl+2) = e

i=fm+1

=fs(z) =1,
= fialen) = 0.

(1 .
j_t_])y j=0,1,2,..,

‘“T*)‘(

( 1
12e

(I—1).
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Hence
[m)+¥
bbbyt ot b= Y A (b bt bydh)
i={ml+1
and by (2.7)
(2.11) min |b,+ by ... +b;
h<i<hy
i {m]+N
< max [b,2} - by 25+ ...+ by ey 2 LR
[m]+1<rg[m]+N j=ml+1

Tt remains to estimate the latter sum from above. We find that

[m}+N

2 0(4)i <(Z l(.(l)l‘)(lzl:{c?(i)l),

F=[m]+1 1=0 Jg=0

whence by (2.8) and (2.10)
[m]+N

- 4*’"’"“*"—"”—;\7-
=t (3_ y )
24¢ 2N+m
This and (2.11) give (2.1).

3. In this section we give two further lemmas. Their statements
differ only slightly and for brevity’s sake we shall prove them at the
same time.

LemMa 2. Let k>3, 0<l<k, (I, k)=1. Suppose (1.8) satis-
fied. Then there emists a number D, %max(eq, k') < D < max(c, ),
such that

1 1 WQ_e"'V'Q 2
@) l&ﬁ;m%”(e 20 )

where v = 13D, y runs through all characters modk and ¢ = o(x) through
the zeros of L(s, y) lying im the strip 0 < o < 1.

The other lemma asserts a little less but holds without any con-
jecture.

LemMMA 3. Let k>3, 0<l<k, (I,k) =1. Let L, be the constant
of Limnik. There exists a number Dy, max (e, k) < D, < max(e, Ky,

such that
ewle_e—wlo 2
\WG)Z @ 2 ( 2y )

with p, = 1/3D, and y, Q(z running as i Lemma 2.

> ¢, Dlog D,

(3.2) = ¢yD,log Dy,

icm
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Proof. First we shall confine ourselves to & > k,, where k, is a suffi-
ciently large constant. Consequently, as far as Lemma 2 is concerned, it
can be taken that in the rectangle 0 < o <1, |f| <k, L-functions
modk have no zeros outside ¢ = }.

There certainly exists a prime or prime square D with D = [ (mod k),
<DL In fa.ct, we have (see [4], p. 232, Satz 4.6)

v D = qo(k) ) Zx(l 2

1Fl=chd

+0 (log®k)
and

5 1 1 TR
w3k, &, 1) = V,_; Z : 40 (log*k),

Z 1
20(k)  g(k) = x( o

whence and owing to (1.8) we obtain

3

L +O(Plog?k) = e, 1.

P D= p R, b D) =5

On the other hand we have obviously

v,k D=y, k) = 3 logpt Y logp-+O(klogh)
p=l(mod k) pP=1(mod %)
IBr<p<k® B<p’<id

and the existence of D clearly follows.

Let y be arbitrary non-prineipal character modk and x* the corre-
sponding primitive character. The latter’s modulus will be denoted by
E* (< k). We have elearly x(D) = 5*(D) = x(1).

Let us start from the integral

1 ¥ __ o yS\2 r
- ;st(e——g—) .(——(8,7 )ds
271 2ys
@)
w8 __ ,— w8\ 2 d
w5 [T e
2 & 2ys 7'

O . 1 6" — e ¥\2 [ D\®
- gx (71)/1(71)'—.[ 70 V(2 .
2w 2ys n
n=1 (2) ¥

It may be noted that

¥S_ p=¥Ei2 D\
’ (6 ¢ ) (f—) ds =0 for
& 2ys n

I(y)

I
El}{] 8
R*

n > De™¥,
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and also, if we move the line of integrabion to ¢ = —1,

f Ll ¥ —D—)s ds =0 for n<De™.

Syps n

@

But
D—1 < D(1—2y) < De™™ < D < De*® < D(1+3y) = D+1,

s0 that

s __ o + PRt

4p2s?

Iy = (D) AD)s—

1 f@
27t
TG

— DA 2

1
=1(l)'/1(D)"2;)~

On the other hand by Cauchy’s theorem of residues and [4] (Satz 4.3,

227)
ove__ g Ve 2 . . 6urs¥e—ws)
_ - p[—2
——Fm(gw) w1 =ra D ()
a(x
1 e —e v\ L' .
S [ P!
v [ (o),
(—=3/2)
with (), »_1(z*) equal to 0 or 1.
Also by [4] (Satz 4.3, p.227) we have
o0
1 (e I *) _splogk*  logt
1 Dl————) [—=(s, ")) ds| < ¢, D73 —— dat
ﬂm'j ( 2ys )( 7 &) 1 v ) B

(=312}
< ¢,3D"*log D.

All in all we obtain
(3.3)

-
2(l) £

In the easc of a principal character y = y, we similarly get

yo__ ,—ve\2 1
e(Li_) — A(D)- — +0(D"*logD).
2y0 2y

wo__ ,—ve\2 V__ p—¥\2
(e —¢ ) - A(D)';)—l‘ —D(6 i ) +0(D'*log D),
2y

xo(l) 2y
( Ve )-
3ye

ie.

(3.4) A(D)-—l- ~D+0(D"*logD).
nmw 2y
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Multiplying all the velations (3.3) and (3.4) by 1/p(k) and summing up
we obtain

1 1 (e‘”"~e“”9)‘l 1 ‘
—— > - N D|———) = A(D)-— +0(D),
@ (k) % x(l)% 2y0 D) 2 ()
whence (3.1) by

A(D) > ¢ DlogD.
It is easily seen that the case of k < %, provides no difficulty as
we can always find fhen a prime D=1 (mod%k) with 1% <D < K.
Proof of Lemma 3 follows exactly the above lines if we note that in
virtue of Linnik’s theorem there exists a prime number D, with & < D, <
< k%. Algo the case of &k < k, may be settled similarly.

4. THEOREM 1. Let k>3, 0<l<k, (I,k)=1. Suppose (1.8)

satisfied. Then we have ’ :
w(w, k, Z) 1 logT
41 f o > T ex )
® [ Pk )I e p( “loglogT
with
X = Texp(—(logT)*")

for
(4.2) T > max (o5, exp (™)),

where ¢5 1s a calculable numerical constant.

Proof. As before we shall prove Theorem 1—or rather deduce
(41) from (1.8) taken with the rectangle 0 <o <1, [t <k —for
k > ky, k, being a certain sufficiently large numerical constant. We pass
to the general case on putting in (1.8) ¢; = ;. One may then easily prove
Lemma 2 with ¢ = kj and Theorem 1 with e = exp (k).

Put
T, = % ¢ (D, as in Lemma 2),
logT
4 =3 loglog T,, B — (logT,)"', 08T 10037, (loglog T, ),
s “4axB %

to be fixed" later, satisfying
( 5
<g‘.

1 1 L’

(k) & 20 T

7 an integer,
logT,
A+B

logT,
loglogT,) /"

(4.3) m L r <

Further write

1
(8, 2)———=+C(8),

Fils) = = 7(®)
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where the sum 3, is to be extended over all the characters mod k.

()
We start from the integral
Bs —Bs

1 e —e "\ | e —e T\
T Eyr, T) = 5= fD‘*(—Z—ws——) -(e 5 ) Py(s)ds
@)

and have by a simple evaluation

@4) I, k7, T)

© o 1 . 6yys_'e-ws ) eAs GBS-—Q"BS)' E’?
2{(1, )A(’il)—‘ )} 5’;{(“) " ops 5 Bs e

n=1
where
@ 0 if m==l(modk),
“ =11 i n=l(modk).
We note that the integrals at the right-hand side of (4.4) vanish for
2 > De*-e 4P’ = X, and also—if we push the line of integration to,

say, 0 = —1 —for n < De~.g4-Br — X, Hence we obtain
J( k,r, T)
yS __ ,—uwE\2 6)S‘s_e~1l!f; r ds
Y a,(l)/l('n)—~1—~ N st £-e 3115_______) =.
i " (k)] 2wi s 2Bs n
Xign<Xy 0)

This, if we write R, k1) = 9=, k, )—[a]/p(k), can be expressed
by the Stieltjes integral

J( k7, T)
Xy v —us\g Bs __ ,—Bs\r .
=f —l—fpse i )(aﬁse i )ﬁs}dR(m,k,Z)
27t s 2Bs @
X ©)

y 1 L (6" —e*\2 AseBs—e-BS)f di}xz_
={R(m’k’l)vﬁ(6!-D( 2ys ) ¢ 2Bs o ) x;

Xy 8 - —u8 Bs —~ B8\ ¢
- 1 e —e V[ e —e ds
- [ Bk, “d(o—g [ 7| Zys ) (”“ 955 ) 7)
% )
Xg 0 ) R
- 1 sinyt\? (sin Bf
_- f R(w,k,l)d{——f eos(t(logD—,—Ar—-logm))(—«%{) ( Bt ) dt}
E T
Xy -]

Wi Bt

[

- f R, %, l){% f sin t(logD—l—Ar—logm))( w)(sm"’t) (SinBt)rdt}dw-
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Therefore

1
Ik, 7, T) < _f

P

” . (sin y)t)2
0 vt

. X, o
sin Bt |E(w, &, 1)|
Cage [ DR
Bt | f do

X, z

But
F sinyt\*|sinBt | & |sinBt| 1 7 |sinw
ft—rl v [ =g [ |70 i
[ kd [ 0 u
(fdu+f ) — < 2ViogT,
s0 that
I, k, 7, T) < Vieg T f -—"”»I-“’J)—’ .

Noting further by (4.3) that

X, = DeH B  petv.p, = T

and

X, = De“-Br-2

> D exp(—2yp—2Br+4log T, — (A+ B)log*" T, (loglog I,)’)

10 logT,
>T 4 — a —-1/4 3/5 3
P 3 loglogT, loglog T, (08 T1) (logT,) (loglogT,))

> Texp(— (log T)*")

we obtain
r -
—— Rz, k,1
(4.5) @, &y, T)| < ViegT [ ﬂ?_)!dx
X

where

X = Texp(— (log T'**).

Now, there exists an infinite connected broken line U, consisting of
segments alternately parallel to the axes, all lying in the strip

1
30

1
<0-gﬁﬁ

such that for all the characters modk

’

—(SJ 1)

< oy klog? (K (8] + 1))

427
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on U {comp. [1], Lemma 4). . .
C;.uchy’s re’sidues theorem applied to J(I, k,r,T) gives

Boyr
Ly S| )
. = N\ +
(4.6) JU k7, 1) = «p(k); () 9%

e —e v\ ¢ )r .
s 5 I, ds
[ ( 2ys ) (6 T
®)

(e = o(z) > U means that the ¢’s are to be taken to the right of U).
The integral over U is clearly
dt)

oo

_ 0(T1/20+5/12,kf

[

Ve __ p—ve\2 Bo__ p~
€ —e )(6490 e

290 2By

1
+ 274

+oo

4 +B)yr[20 2 1
0(1)1/20 4+ .. f log2{k (Jt| + 1)}

(24 5"

)
log? (ke ([t +1))

(4 ™

dt) '

~ log?t
=0(1ﬂ-“klog2k-c;7 f O;f dt):O(TM“).
()

If we drop in (4.6) those terms for which |Jpo| > ¥ = (log T,)*”® we shall
get an error

(A +B) , Cwl
(De( /YW IOEZ‘”") _ O(Tl+5’l210gk f o::)a dm)
'B 1L>—Yil s ‘%Y
log 7 )
A
exp |2
=0 (Tl'l/u P( loglog T )
B (log T,)*

logT R (5 10glogT1)) 048
loglog? "5 8T \3 T aa B (

Nz (
=0 € 3

Henece we obtain

1 — 1 oo g—ve)\? y gB",,_wg“”“ r
) Ty Ty 7, T) = — —— ¥ — ”( )("Q +

(4.7) J(, &, 7, T) ¢(k)% 2() g; 2y0 2By

Rel<¥

+0(T"%).

The sum at the right-hand side of (4.7) will be denoted by §; it is easily
seen that the number of terms in S does not exceed klog®* T, (loglog T,)*.

icm

Prime numbers in arithmetical progressions I 429

Let ¢, = ¢1(xs) = 3+14y, be that zero from 0 < o < 1, i <&
which has the greatest absolute imaginary part. It may be noted that
(Dol < |Seil —1, where 0 = }+ iy are the zeros of L(s, x) modk, implies

eBe e—Be eBer __ e~ Be1 |
(4.8) —— —_ .
2By 2B, !

In faect, the left-hand side of (4.8) squared is
143 B2 +0 (Bt|g|t))2 = 143 B%0%2+0(B*|gl¢)
1 1 ,  Bly? 1 1
= (LHEB G =) + 5 HO(Bof) = 1+ B —54) +0(Bs [l
and the right-hand side is similarly

1+ 3B (1 —91)+0(Bo,[")

80 that (4.8) follows by (4.2).
Let, next, g, = 04(xs) = .+ iy, be that zero from 0 <o<1,lt| <Y

e ,—Bo
at which | e4e > Bg is maximal. It is obvious that 8, > 1. Put S
Do
in the form
Agg Bg,_,_ ——Bg:, ¥
§— (z_(__ﬂu) x
2Bp,
x Yy L1 (ﬂ)(“g,)fi—_eie_)
L Loo(k) z(1) 2ye ePr—e~Mr

0 Rels¥
o>TU

and introduce the notation:

—va\2 By B
11 (M) SR AR Al A
T ek) 2(1) 2y0 ! e
By _B,
2 = etar—a) . L )
h 52_6~B92 0 N

We shall find the lower bound for § by (2.1) Lemma 1 taken with

min [b;+b,4...+b;|, where N = [k-log**T,(loglogT,)?]. If N is
hei<N ;

greater than the actual number of p’s in the considered domain, we put
2 =b; = 0 for the missing ones. :
PFirst of all we have

eBgl_ e_Bgl |

2B,

2By,

= gd(2-53) .
Izhl = 2 8392,_ e—Bes

Z et =
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and also ) This, (4.7), (4.9) and (4.10) give
ON  2klog*ST,(loglogT,)*  2(loglogT,\'k  2(loglogT,)’
£< o <____1]_T—ZT———~ = (]Ong)o_4 (10gT1)0.35 [J(l L.r T)I > Tlex _2—3 lOgT
N+m m (IOng)/ oglogl, P P 12 w !
so thab oN whence by (4.5)
’ Izh‘ >
N-4+m T
: R(z, k,1 n logT
Hence, with a suitable 7, f L‘(—;}’ﬁ)] dz >T II"GXP(—zﬁg*—T)-
. Bos _g-Bafr [ 1 N oW & oglog
S|P e T T (_,_«) smin by by Byl
(4.9) 18] = 5 | \ 2Bg, 2e 2N-+m! pojen 5. THEOREM 2. Let k>3, 0 <1<k, (I, k) =1. We have
ing to (4.8 T ‘
0w1;1g boi )+b (51) f) v, k) 1 ,dx> -
1 e il ’ J k
e 1 N o¥e . g ¥E\2 D logkn x @ 7 (k)
_VLZv;i ' ‘ DQ(—-‘*""“'> +0 2'”7,",74 with
Tl & s Zve nsfori-a ¥
{2) hWyefs - . X — Texp(—(logT)"")
2 __p¥e,\2 ogw .
I M Ny (Ew_r.)_e_) +0(k"logk f ’fz dw) for
- L oy (1) Ld 2y A '
‘P(k) m‘ /( ) P} ve 16.52 (52) _T> ma.x(czg, expkwLo),
1 ¥ 1\ - (e‘”—«‘f"'“)2 40 (K" 1og k) where Ly is Linnik’s constant and cy, is numerically calculable.
= e (k) 4(.)1 2(1) é;)# 2ypo Remark. The reason why we cannot obtain in the exponent more
A)x 31 ' than }, on the density hypothesis, is the following. Proceeding as in the
and by Lemma 2, (3.1) Lok present proof we consider the rectangle
in |by+byt...+b >¢ ogk. .
(4.10) hgjld |by+ byt § 19 s§<o<1, | <D™,
Further N and are led similarly to an asymptotic formula for by b,-. ..+ b; with
a | i ePer— g~ Fe2 ’.( 1 N ) an error term O(Di-N(1—4, D)) = O(DIe+), . Since, owing to
15171 2Bo 24¢ 2N +m Lemma 3, the exponent 6+ (2 + &) § cannot exceed 1,  must congequently
2! 02
AP gBa_ Bl [ 1 N oW be less than %.
= -—215~—— '(EIE' aN T m) Proof. This proof has much in common with the previous one.
1

Therefore for the greater part it will be enough if we content ourselves

eiri2 soise [ 1 \R1o&PT(oglogT) with sketchy explanations. We put, similarly as before,
= *2';*(1‘020B L8 i

logT T 9
A Ty=—e¢™1, (D, from Lemma 3), A, = =loglogT,,
> ¢ exp(— 0y BKr) - exp (— klog* T (loglog T)’) D, 3
oF 2 logT
- 3 By = (ogT)™™,  my = 5=t _log*1,(loglog )",
> 17 exp (" (44 B)r— (log Ty/* — (log I')** - (loglog T) ) 1+ B,
2 2 integer r, with
11 logT ) logT ( 5 logT )
12 — 2 . < < 2 2. st
>T exp( 6 loglogT ™SS TR 2 loglogT,)’


GUEST


432 8. Knapowski

and consider the integral
. — s
J= 1 fbf(e“—e ) (6
271 & 29,8 .
Arguments similar to those used in the preceding section lead to

T~
N —— Rz, k, )|
b ek B ALARY
T, < ViegT Xf p ,

—e Bys 15
y(s)ds.
‘)Bls

(5.3)

where o
X = T-exp(— (logT)™}.

Again we have a connected broken line Uy, Wlth segments alternately

parallel to the axes, all lying in the strip

< 0 < 7

such that for all the cha.racters modk

(s 71‘ < 6asklog® {k(l1+1)}

e
on U,.
Similarly as before wé arrive at

2 Z (ewle_ e vlo) (edle eﬁ'lg A—e’Bl")"l +
2y,0 2B, ¢

189!<Y1

(5.4)

. " +O(Tl/a.u/lsu)
with ¥, = (logT

The sum > 2

), which will be denoted by 8,, has at most

(éengLil
1 = [klog™* T, (loglog T,)'] terms. Let g3 = 03(ys) = Bs+%y; be that
Bre__ o—Bre
zero from 0 < o<1, |t < ¥,, at which|e®® ; is maximal.
1
Let, further. g, = g,(x:) = B4+ 9y, be that zero from the rectangle
‘9_17 o<1, [#f < Dr‘l’sy
ePre_ g~
at which |1 js minimal.
2B

If we write 8, in the form
{eﬁles (eP1es — ¢~ 3193\}'1
B I Y
' 2B, ¢,

11 R (cwxe_e—v{lg 2(e"‘l(g"“)(eglg—e“ﬁl")ﬁ’s; )rl
I ) T
@ >0 o) 20 Zyse (eP18—e 1) 7
Rel<¥y *

icm
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fuarther put .

2 eBie_ o—Bie
— plite-e
) y Z =6 1e-en) € T — o

@

1 1 '1119_6—‘0’19
b= . L .pe (6_ -
(k) x() 2y.0 €718 — ™M1

Iy !rb

oBres _ g~ Bre.
—_e 1% 5
2 = e o) ¢ =3

- T
B3 __ g~ Bieg 04

then, in view of

g

i )BI Qa | q7 Ay
2B, ¢, J

12| — gT1(Bs—53).
o] = e ‘ Gy

—Bjoy | ]
i

_ k(loglogT,)*
e (log Tp) 18 > S8 082
> oy - (log T') > (log T,)*™ >

3N, 2N,
Ny4my’

My

and putbing, as previously, z; = b; = 0 for the eventual
7’5, we can use Lemma 1, (2.1).
Hence

remaining

ed1%3 (gPros__ g-Fres) N,

F ( ; )
. - ) X
24¢ 2N,+m

X min |b;+by+...
hi<Ny

1

18] =

w[;t

1 23193
-+ b4l
and we obtain similarly ‘as in § 4

1811

> T"e in |b, +b + b byl

o (-850 ). mi
P loglog T' h<3<V;

Now the last factor! We have clearly (with b <j << N,)

1 1 evie __ g—vie\2
bitbato b= —0 3 DE(—-———)—)—
(;(L);x(l)%; A 2
logkn _,
rol 3 MErm) o 3 3

2.5
ﬂe<7,z7

evie__ e —gne -ve

T 2p0 )

n;Dl‘ -1
The first error term is

0(2

n}D2 5

log kn

D3) -0 (D3logk f

12025

loga: )

1
=0 (D"‘log D, ) = 0(Di™og*D,);

Acta Arithmetica VI 28
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in order to estimate the second one we use (1.10). This gives

1 | ene__g—ve |2 1 -7
kZ > 'DM 2 = (k)Z +
B G & he P T Cgi=m wisn
Re<7/27 fo<7/27 Ho-=7/21
7/27 ) pre el 1 dN@ x
K 05 (*1*‘ N ;2,1)1)‘{" - -5 (22’ ))
(k) ok) 5 @
a7 09 20
D;lm D%»mm ) N(z‘-n w)
<e T DS ggb 4 e Y dm)
h “(tp(k) ' etk 54
~ log'w
< 6oy (Dflmlﬂllog‘)D1+D3+7/2710g,01 f ;1——8%/81 da;) < Dy,
b

so that by Lemma 3, (3.2)
min b+ by+ ...+ b;| > ¢ Dylog Dy,

h<i<NY
and finally

log?'
Sy > T ex (—3——'»—“).
1Sl P loglog T’

Hence by (5.3) and (5.4) we obtain a fortiori (5.1).
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Uber die Umkehrung eines Satzes von Ingham
by

W. Srad (Poznai)

1. Ich versuche in dieser Arbeit, zwei Fragen zun beantworten, die
Herr Professor P. Turin mir gestellt hat. Die erste Frage betrifft die
Moglichkeit der Umkehrung eines bekannten Satzes von A. E. Ingham,
die zweite Frage betrifft den EinfluB den das Erdos-Selbergsche Rest-
glied im Primgzahlsatz auf die Nullstellenfreiheit der Riemannschen -
-Funktion ausiiben kann. Iech habe eine teilweise Umkehrung des In-
ghamschen Satzes gefunden. Es hat sich gezeigt, daB man den Umke-
hrungssatz sogar so weit ausziehen kann, dafB er insbesondere eine posi-
tive Antwort auf die zweite Frage liefert. Denn das Erdoés-Selbergsche
Restglied liegt eigentlich aunfBerhalb der Anwendungsmoglichkeit des
Satzes von Ingham.

A. B. Ingham hat folgenen Satz bewiesen ([2], S. 60-65):

Wenn die Riemannsche C-Funktion keine Nullstellen in dem Gebietl
(1.1) o >1—n(t)
besitzt, wo 7(t) fiir t = 0 eine abnehmende Funktion isi, die eine stetige
Ableitung 7' (t) hat und folgende Bedingungen erfillt:

(1.2) 0 < () <4,

(1.3) W) >0, t—oc

(14) L OQog), 1 e
‘ am O

und wenn « eine Zahl aus dem Intervall 0 < a < 1 bezeichnet, dann ¢ilt

die folgende Abschitzung des Restgliedes im Primzahlsatz

(1.5) Ay = N A(n)—z = O(zeieo®)
P

N
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