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Remarks on the paper ¢Sur certaines hypothéses
concernant les nombres premiers”

by
A. ScHINZEL (Warszawa)

In the paper [14] mentioned in the title some historical inaccuracies
are committed which ought to be corrected, besides some mew results
gtrietly connected with the above paper arise, which seem to the writer
worthy of mention. This is the aim of the present paper.

To begin with, as kindly pointed out by Professor P. T. Bateman,
Hypothesis H coincides for the case of linear polynomials f; with a con-
jecture of L. B. Dickson announced in [7]. Therefore, it is easy to see
that Oy, Cy, C;-Cyy are consequences of Dickson’s conjecture.

On the other hand, as Dickson quoted in [8], Vol. I, p. 333, V. Bounia-
kowsky conjectured ([1]) that if d is the greatest fixed divisor of a given
irreducible polynomial f(#) (with integral coefficients, the highest coef-
ficient > 0) then the polynomial f(x)/d represents infinitely many primes.
This conjecture of Bouniakowsky implies Hypothesis H for the case
8 = 1 and therefore C, and the first part of C,.

Now we shall deduce Bouniakowsky’s conjecture from Hypothesis H.
For further use we shall deduce the following stronger proposition.

Cy. Let Fy(x), Fo(@), ..., Fs(w), Gy(x), Go(2), ..., G{(w) be irreductble in-
teger-valued polymomials of positive degree with the highest coefficient > 0.
If there does mot exist any integer > 1 dividing the product Fy(x) Fyx)... Fa(w)
for every @ and if Gy(z)stFy(») for all 4 < s, <1, then there ewist infinitely
mamy positive integers x such that the numbers Fy(@), Fy(@), ..., Fo(x) are
primes and the numbers Gy(w), Go(®), ..., Gy(w) are composite.

Proof of the implication H->Cy. Let F; = @yfd;, &; = [yle;,
where ®;, I; are polynomials with integral coefficients, d;, ¢; are posi- .
tive integers. Let further d=dd,..d;, e = e, ... 6, I =T1F,..Hs,
D =D, ... By, d = pi'p3’ ... P¥.

Since the polynomial F has no fixed divisor > 1, there exist integers #;
such that
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We can assume that the polynomials Fy, G; (4 < 8,j <1) are alge-
braically coprime, because otherwise either G; = F; or Gy(x) would be
composite for all sufficiently large #. We have then (F,Gy) =1 (j <1)
and there exist polynomials a;(s), b;(x) with integral coefficients and an
integer ¢; # 0 such that

(1) a;(2).F () — by(w) Gy(2) = ¢; .

Tet ¢ = ¢,0; ... ¢. Since every polynomial possesses infinitely many prime
divisors, there exist primes g;+cde such that ¢;|G(y;) for some integer y;.
Let ¢ = ¢1¢p .- G-

In virtue of the Chinese Remainder Theorem, there exist integers 2
satistying the following system of congruences

@) z=o,(wodpi™), i<s,
e=yi(modg), j<i

let 2, be any of them. Let us consider polynomials

Puldgnt2)

filw) = Fi(dgn+2) =——

Since d;|dg and Pi(z,)/d; = Fy(2,) is an integer, polynomials f; have integral
coefficients and the highest coefficient > 0. Besides, they are irreducible.
‘We shall show that f(z) = f,(®) ... fs(#) has no fixed divisor > 1.

Suppose that prime p is such a divisor. We have by (2), since pi*t'+d,

1(0) = F(2o) = F (@) 5= 0(modp.),
and since g¢;te,

18

Gi(z0) = G4(y;) = 0(mod gy) .
It follows hence by (1), because g;r¢, that
1(0). = F(zo) 5= 0(modgy) .

Therefore, we must have (p, dg) =1.
On the other hand, by the assumption about F, there exists an in-
teger z, such that

P () 5 0(mod p) .
Let «, be a root of the congruence

dgw +2, = 2, (modp) .
Since (d, p) =1, we have

) = Fdgoy+2) = LHBLE) L) _pi) o mody).
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Our supposition about p is therefore false and the polynomials f; satisfy
the conditions of hypothesis H. Thus, there exist infinitely many in-
tegers @ such that numbers fi(x) = F(dgw+z,) are primes. Meanwhile
for every ‘
’ I'y(dge Ty(z
6ydga -+ = AULEE) o ) _ 1) = 0(mody)
then for sufficiently large # numbers &(dqw-2,) are composite.
Now we shall deduce
Cu. For every k > 1 there ewist infinitely many nwmbers my, such that
the equation
@(y) = my,
has emactly & solutions.
' Proof of the implication H—C,. Consider first k even, & = 21,

and put in H
flo) = 208141 (§=1,2,..,20), faul®)=2a.

The polynomials fi(#) are irreducible, their highest coefficient is > 0.
and since fi(—1)fo(—1) ... fusa(—1) = —1, they satisfy the conditions of
Hypothegis H. Therefore, there exist infinitely many integers @ such
that all f,(») are primes. Consider for such x> 5 the equation

(3) (y) = my = 4ot .

Since @ is odd my =% 0(mod 8), y may have only one of the following
forms: pe, 2pe, 4pe, pegf, 2p°¢f, where p and g are primes > 2. If a>1
we should have p (p— 1)|4a#, whence as « is prime > 5,p = z and — 1|4,
which is impossible. Therefore, there is a =1 and similarly, g = 1.

y = p or 2p is impossible since then

P =@¥)+1=4s4+1 = 0(mod5).

y = 4p is also impossible, because then

p=}py)+1=_224%+1 = 0(mod3).
In the case y = pg or 2pq, we get
(p—1)(g—1) = 4o,

whence
p=2nr+1l, g=29"+1.
Since for n even 2wn--1 = 0(mod3), it remains the only possibility
() y = (20714 1) (2040241 + 1) = (@) faia(®)
or .

g = ) fara(®) (E=1,2,..,0).
1*
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Since the numbers fi(#) are primes, the 21 values y given by for-
mulae (4) satisfy (3), which completes the proof for even k.
Congider now odd %, k=243 (I=0,1,...) and put in Cy

Fifw) = 2095 4+1, Frlo) =6a%14+1 (i=1,3,..,10),

Fy(e) =o, Fapa(w)=6221+1,
Glw) = 2245 +1, Guy(w) =201 (j=1,2, e )y
Gupi(@) = 2071 +1,  Gaea(w) = 120872 41,

The polynomials F; are irreducible and satisfy other conditions of O,
because in view of

F(—1)=—5.7, F()=38.7#, F(2)=£0(mod7).

F(z) has no fixed divisor > 1. Since @; % F; (4,7 < 21+42), there exist
by C,, infinitely many integers  such that numbers F;(w) are primes and
numbers G;(x) are composite (4,§ < 21--2). Observe that the numbers
22" +1 are composite for all positive = < 6142,n 3£ 6i—38, Dbecause
for n even 22741 = 0(mod3). Consider for @ of the above kind the
equation

(5) P(y) = my = 120042,

By similar arguments as in case of (3), we infer that y may have
only one of the following ‘forms: p,2p, 4p, pq, 2pg, where p,q are
primes > 2 (the possibility y = 9¢ or 18¢ fails, because we ghould have
then ¢ =4¢(y)+1 = 20824 1).

It cannot be y = p or 2p, because then p = p(y)+1 = 12a9+2 41,
which is ecomposite.

The cage y = 4p gives

(6) P =1%p(y)+1=6a"r211 = Fy o(n).
In the case y = pq or 2pg, we get

(p—1)(g—1) = 12a%2,

whence p—1 = 2gm, g—1 = 6adti~n (0 < < 61+2) or p, g change places.
The numbers 2¢m+1 being composite (0 < n < 6142, n 5 6{-3)
the only two possibilities remain

1° y = 3(6a%+2+1) = 3Ty qw)  or Y = 6Fg..0(m);
2° y = (2088 41) (6a0C-0+5 1. 1) = Fy(w) Fy—sr1(2) or
Y = 2F @) Fyiia(@) (6 =1,2,..,1).
Th}a numbers Fy(z) being primes, the 21 -+ 2 values Yy given above ratisfy
(5), which together with (6) gives exactly 21+3 golutions of (5), q. e. d.

’
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Cys. For every k=1, there emist infinitely many numbers ny such that

the equation .
o(y) = my

has exactly k solutions.

Proof of the implication H-Cy. Put in H,

fi(@) = 2(20+1)—-1 (i=1,2,..,2k+1),
© fonre(@) = 204-1.

The polynomials fi(x) are irreducible, their highest coefficient is > 0
and sinee f;(—1)fa(—1) ... farra(—1) =1, they satisfy the conditions of
Hypothesis H. Therefore, there exist infinitely many integers « such that
all f;(@) are primes and since (2°—1)/(2@ + 1)*** tends to infinity, infini-
tely many of them satisfy the inequality 2°—1 > 4(2z-+1)%**%,

Consider for any such x the equation

a(y) = ng = 4(2p 4 1)+,
Suppose that pe|y, p*t'+ry, where p is prime, a>1. It follows from the
at 1

i PICFES IS

In virtue of the theorem of Zsigmondy (cf. [8], Vol. I, p. 195),
(pett—1)/(p~1) has at least one prime factor of the form (a+1)b+1.
Since ¢-4-1> 2 and the numbers » and 21 are primes, we clearly
must have ‘

feea(2) = @,

above equation that

(e+LVk+1=224+1, a+l=u,

hence )
21< 1;—%:—;2 4(2m 1)k,

which contradicts the assumption about z. The received contradiction
proves that y is squarefree, and since nxz=0 (mod.8), n,zE0 (deB),
y may have only one of the forms p, pg where p and ¢ are primes,
2<p<y.

y = p is impossible since then

p=o(y)—1=4(20+1)%¢—1 =0 (mod 3).
In the case y = pg we get
(p+1)(g+1) = 4(2x + L)H+4,
whence
p=2020+1)"—1, ¢=2@2e+1)*",

Since © = —1 (mod3), 2(2z+1)"—1 =0 (mod3) for all odd =, it

remains the only possibility

y=(2(20+1)%—1)(2 (20 + 1)kt -2 1) = f() foies1-4()

0<n<2k+2.

(t=1,2, .. 1 k).
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Since the numbers f{(x) are primes, the k values of y given above
satisfy the equation o(y) = ny, which completes the proof.

P. Erdos proved without any conjecture that it there exists one my
such that the equation ¢(y) = my has exactly % solutions, then there
exist infinitely many such my, ([9], Theorem 4), and the analogous theo-
rem for the equation o(y)=my; (Lc., p. 12). For &k =1 the well-known
conjecture of Carmichael states that such a number my does not exist
and for ¥ >1 W. Sierpifiski conjectured that m; and m; exist (cf. [0],
p. 12). We have just deduced this conjecture from ITypothesis IT; by
more complicated arguments we could also deduce that for every pair
<k, 1y, where k1, 1 >0, there exist infinitely many numbers m such
that the equation @(y)=m has exactly % solutions and the equation
o(y) =m has exactly ! solutions.

On page 191 paper [14] containg two historical mistakes. The theorem
about the difference of arithmetical progression formed by primes, ascribed
to V. Thébault was proved. earlier by M. Cantor ([2]). On the other hand,
the disproving of the M. Cantor conjecture about progressions formed
by consecutive primes, ascribed to the writer, was made much earlier
by W. H. Loud (cf. [4]).

Part of the paper [14] concerning functions g, p was covered to some
extent by the regults of H. Smith’s paper [16]. It is easy to notice, that
the function An considered by Smith is connected with function g by the
condition p(4n) =n—1 < p(l+4n) and considered by him ,,k-tuples”
just corregpond ,,nombres k-jumeaux’’ of [14].

Theorem 1 of [14] follows from the table given for An by Smith, his
results further imply the following equalities

e37) = .. =(42) =11, (43) =.. =p5(48) =12,
2(49) = 5(50) = 13 ,

o(51) = ... =g(56) = 14, (57) = ... = 5(60) = 15,
3(61) = ... = 5(66) = 16 ,

2(67) = ... = g(70) = 17, §(T1) =... = 5(76) = 18,
(7) B77) = .. = 5(80) = 19 ,

8(81) = ... =g(84) = 20, 3(85) = ... = 3(90) = 21,
B(O1) = ... =5(04) = 22,

895 = ... = 5(100) = 23, B(101) = ... = p(110) = 24 ,

3(111) = ... = 5(114) = 25 ,
0(115) == g(1186) = 26 ,
thus, in particular Theorems 2 and 3 of [14].

It d.i.spenses the writer of the duty of publishing mentioned in [14]
the laborious proof that g(100) < 23.
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From formulae (7) it immediately follows that pg(z)<=(x) for

. 86 < w < 116. Paper [14] contained a proof that p(z) < m(z) for 1 <

<% 132. Owing to Smith’s results, one can prove the stronger
THEOREM. p(%) < w(z) for 1 < o < 146.
Proof. Tt is sufficient to prove the above inequality for 132 < &
< 146. Profiting by Lemma 3 of [14] we get

5(140) < B(114) +5(26) = 25+ 7 = 32 = x(133)
3(146) < B(114) + 2(32) = 25+ 9 = 34 = x(141) ,

which in view of monotonicity of functions g and = gives the desired
resalt.

Analogously, as in [14], we obtain

COROLLARY. If > 1,y >1 and if at least one of numbers @ and y
is < 146, then .

(8) a(@+y) < m(@)+7y) .

As to inequality (8), it was verified by E. Lukasiak for 1 <&,y
< 1223 = Poyy - .

H. Smith gave also in [16], numerical data concerning k-tuples for
T <k <15, g < 137-10°% One may remark, that there was omitted
there 15-tuple formed by primes 17, ..., 73.

As to Hypothesis H, of [14], we shall give the following remarks.

L. Skula noticed (written communication) that if H, is true, then
also the intervals [n2+1, n2-+n] and [n2+n+1, n?+2n] contain primes.

On the other hand Hypothesis H, is a simple consequence of the
conjectures, that for all @ > 117 there is a prime between « andz +Va
or that for all # > 8 there is a prime between z and »--log?w (cf. H. Cra-
mér [6]). Since these conjectures hold for @ < 20,3 -108, as can be verified
owing A. B. Western ([17]) and D. H. Lehmer ([11]) tables, Hypothesis H,
holds for all n < 4500 < 108)/20,3.

As to Hypothesis H,, it was verified by A. Gorzelewski for n < 100.

Tinally, it seems interesting to review 17 conjectures concerning
primes, written out by R. D. Carmichael from Dickson’s book [8]: 13 from
Volume I ([3], p. 401) and 4 from Volume II ([5], p. 76). One of these
conjectures ([3], 14) is already proved ([13], [15]), 3 are consequences
of Hypothesis H ([3], 6,8, 11), 2 are consequences of Hypothesis H;
([3], 12, 13), 4 are various modifications of Goldbach conject11re~([3], 9
[8), 1, 2, 3), 7 are false. Among these latter: 2 are mentioned in [14],
Schaffler’s and Cantor’s conjectures ([3], 7, 10), 3 concerning Mersenne
primes M, ([3], 1, 2, 3) are wrong respectively for n = 13, 263, 607, one
concerning primitive roots ([3],15) was recently disproved by A.Makowski
([12]) and ome ([5], 4) we shall disprove now.
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It states, that every prime 18n 41, or else its triple, is expressible
in the form #8— 3xy? 448, If it is true, then for all 2, the form a®— 3wy? 4-¢?
represents at least a/(}2) numbers <z (#"(2) is the number of primes
18% 4+ 1 < #). But this is incompatible with Siegel’s theorem (cf. [10],
p. 139).
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Unpublished results on number theory I
Composition theory of binary quadratic forms
by

8. LuBBLSKI t
Edited by C. Somoer (Amsterdam)

1. Thig second mnote gives an elementary exposition of the compo-
sition of binary quadratic forms. It is shown that the classical theory (%)
carries over to the case that the coefficients are taken from a (com-
mutative) Huclidean ring (?).

Firstly, following Dirichlet and Dedekind, the forms to be eompounded
will be replaced by suitable equivalent ones, and it will be proved that
this leads o & unique composition of the corresponding (proper) equi-
valence clagses. In doing this, the use of quadratic congruences and,
of course, of irrational numbers will be avoided. Next, a theorem on the
decomposition. of a given clags will be deduced, and a characterization
of ambiguous classes will be given. The connection in the classical case
with ideal theory shall not be discussed (3).

Helpful advices were given by Dr. 0. G. Lekkerkerker who also
simplified the proof of theorem b.

2. Let I be a Buclidean ring with characteristic s 2. Then in I
factorization in prime elements is possible and unique, in the usual sense.
The one-element will be written 1. We consider quadratic forms

H@,y) = awt-bay+ey®  (a,b,¢,2,9¢€]),

() Por the history of the subject the reader is referred to L. E. Dickson, History
of the theory of mumbers, Vol. III, New York 1934, ch. IIX, p. 60-79.

(") Actually, the counsiderations of this note apply more generally to all principal
idenl rings with characteristic s 2, which moreover are integral domains and in which
the factorization property holds.

(" It may be recalled that in that case there i8 a one-to-one correspondence
between classes of forms and classes of ideals. See e.g. E. Landau, Vorlesungen iiber
Zahlenthoorie, Bd. 111, Leipzig 1027, p. 187-196; B. W. Jones, The arithmetic theory
of quadratio forms, Carug Math. Monographs, No 10 (1950), p. 153-168. .See also S Lu-
belaki, Uber Klussenzahlrelationen quadratischer Formen in quadratischen Korpern,
Journal reine ang. Math. 174 (1036), p. 160-184.
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