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whenee for a K2, (s > 3) by virtue of (12) at most D(o,7, ¢, K) may
be zero. Hence, being D(t,7, ¢, K) =¢"+...+q¢+1—Ny, if 1 <o, and
by virtue of second result of the present § 6, we obtain that:

Given any Kjq (s> 3), only two cases may oocur:

@) D(o,r,q,K)> 0, and then K, is properly contained in at least
one cap of kind h, where o <h <s.

(II) D(c,r,q, K) =0, and then K7, is not properly comfained in
any cap of kind h= o, ..., s (and so 8 # 4, of. first result § 2); but, 4f 8225,
K2, is contained in a cap of kind o—1 (because then o—122 and
D(o—1,r,q, K)> 0).

If o, denotes the least positive integer » satisfying

()a—114 ot (G- D +o— (@ + ot g+ D) 305
gince for a complete K;, both (11) and (12) must hold, we have
(13) gy <K <ang.

We have—as it can be easily proved—that

o (dh)t
(14) q_m“qr_‘lm =

Then from (13) we see that, for any complete K, having ¢ sufficiently
large with respect to r, we have

(15) Vel=1 g—st1le < K < Vol 1 glr—otDle .
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Unitary products of arithmetical functions

by

E. ComEN (Knoxville, Tenn.)

1. Introduction. In this paper » and r will represent positive
integers. The wnitary product (convolution) g(n) of two arithmetical
functions F(n), g(n) was defined in an earlier paper [1] by

(11) g(m) = D f(d)9(8),

@
where the summation is over all relatively prime pairs d,é such that
8 = n, that is, over all complementary pairs d,d of unitary divisors .
of m. If the condition, (4, ) =1, is removed, the summation in (1.1)
becomes the ordinary Dirichlet (or direct) product of the functions
f(n), g(n).

In [1] the unitary product was used in treating several asymptotic
problems in elementary number theory. It is the purpose of the present
paper to apply this method to additional problems involving the distri-
bution of sets of integers. We shall use a generalized unitary inversion
formula proved in § 3 (Theorem 2.3).

Let n have distinct prime factors py, ..., p;, and place

(1.2) n = pi... pt,

5o that ¢ = 0 in case n == 1. Suppose a and b to be positive integers. We
denote by Sap the set of integers n in (1.2) such that each e; is divisible
by either & or b, and by S&, the set of # such that each ¢; is divisible by
one of the integers a, b, but not by both (i =1, ..., #). For real x, Sau(w)
and §%,(e) will denote the number of n < & contained in Say and Sip,
respectively. Asymptotic representations of Sus(«) and 8%(x) are deduced
in § 4 under certain natural conditions on a and b.

Our investigation of the distribution of Sap and Sip involves the
consideration of two divisor functions, t,3(n) and is(n), defined as
follows: 7,5(n) is the number of decompositions of » in the form n = ass,
while zXs(n) denotes the number of such decompositions, under the
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restriction, (d,8) =1. In particular, we require estimates for the
sums,

(1.3) Tuplw, )= 3 ta(n),  Thalw,r) = whaln).
n<e n<w
(n,r)=1 (nr)=1

Asymptétic expressions for these sums with a 5 b are obtained in § 3.

The precise approach is as follows. On the basis of the unitary product,
the treatment of Si;(z) is reduced to that of Sgp(), whose treatment
in o similar manner, is reduced to that of Tis(z,?). The consideration of
Tk4(x, 7) is then, by means of direct products, made to depend upon that
of Top(w, 7). Finally, Top(z,r) is evaluated by applying the generali-
zation (3.6) of a well known result concerning the sum of powers of con-
secutive integers. The method of the paper does not require the use of
generating functions.

The paper is independent of [1] in all essential respects. The O-con-
sbants in the results of §§ 3 and 4 are not uniform in the parameters a and b.

2. Inversion formulas. The simplest approach to the topic of
unitary inversion is by elementary abstract algebra. Let E denote the
binary system consisting of all (complex-valued) arithmetical functions
with respect to the unitary product and the ordinary function sum. For
convenience, the unitary product (1.1) may be written ¢ = fg.

Define L 1

n=1),

(2.1) ; e(n) = 0 (n>1);
also place I(n) = 1 for all », and let u*(n) = (—1), where ? is the number
of distinet prime divisers- of n:

Remark 2.1. The functions &(n), u*(n), and I(n) are multiplicative.

THEOREM 2.1. The system R is a commutative ring with identity
element e(n). The multiplicative functions of B form a semigroup relative
to the unitary product.

Proof. Clearly
G-9h= D@ D @@= 3 Hag@)he),

. De=n dd=D dde==n,
(D,e)=1 (d,8)=1 (2,0) = (d,0) = (9,€) 1
go that (f-g)-h = 7-(g-h), which establishes the associativity of the unitary
product. The other ring properties are easily veritied. The second half
of the theorem is a restatement of [1], Lemma 6.1.
Let £(n) and xn(n) denote functions satistying
(22) D) E@n(3) = e(n);
dé=n
(d,8)=1

that is, £(n) is an invertible element of R’Wii‘:h inverse #(n).

- ©
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THEOREM 2.2. If £(n) and n(n) satisfy (2.2), then

(2:3) i =3 E@g@)=gm) = D n(@ie) .
dé=n dé=n
(,8)=1 (d,8)=1

Proof. By (2.2), £ has the multiplicative inverse &1 =17 in the
ring R; similarly, n=¢ Hence f=&-g—>g=&1.f=19.f, and con-
versely, thus proving (2.3). ‘

Next define »,(n), for positive integers %, to be 1 or 0 according as n
is or is not a k-th power. Also let uf(n) = u*(m) or 0 according as n is
or is not of the form mk.

LeMmA 2.1.

(2.4) D) @) uk(d) = e(n) .
ds=n
{d,8)=1

Proof. Evidently the leff member of (2.4) is 0 unless » is a k-th

power. Placing n = m¥, it suffices then to show that

(2.5) Amy= D u*o) =e(m),
e
a fact proved in [1], Corollary 2.1.2. To see (2.5) in another way, note
that the left member of (2.5) is 2 = u*-I. By Remark 2.1 and the second
half of Theorem 2.1, it therefore suffices to prove (2.5) in case m is of
the form, m = p¢ p prime. But A(p¢) = 1 or 0 according as ¢ = 0 or ¢ # 0,
thus proving the lemma.
THEOREM 2.3.

(2.6) fn)y= X g®)=gm)= D wH@)f(5).
&5 &on

Proof. By (2.4), this result is a consequence of Theorem 2.2, with
E(n) =w(n) and 7n(n) = ukn).

3. Estimates for 7.,(z,r) and T%(z,r). We first introduce
some notation and recall several known facts that will be useful for the
later discussion. The Mobius function x(n) has the characteristic property,
(3.1) Dl u(d) =e(n),

dad=n |
80 that u(n) and wp*(n) play analogous réles (see (2.5)) for the Dirichlet
and unitary products, respectively. The Legendre funection ¢(z,n), which
denotes the number of positive integers < # prime to #, has the property

(1], (3.9)),

(3.2) o, m) =2M2 1 ooy,

where @(n) = @(n,n) and 6(n) denotes the number of unitary divisors
of n, the relation being uniform in «.
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The genera.]jzed totient g(n), ¢ real, is defined by

= Yu@o=n][1-p=,

ds=n pin

(3.3)

where the produet ranges over the prime divisors p of n. In particular
pu(n) = p(n). With ((s) denoting the Riemann zeta-function, we have
also

"1/1'("0) “
£ m L8,
n=1
(n,r)=1

The proof of (3.4) is similar to that in the case s = 2, sketched in [1],
Lemma 5.1.
Tinally, we recall the important estimate ([5], Theorem 8)

=St =

1
(s~1)m«fi+0<2u3
n<r

(3.4) (s>1).

(3.5) Nz ), §>0, 871,
This estimate may be generalized as follows.

Levmya 3.1, If s>0,8# 1,5 > 1, then

L 6
@9 Nefayr) = 2; %_1_5_:“3);5 (o)‘r(sf(l";)whl'i”o( g‘l)) .
n<e
(n,r)=1

Proof. By (3.1)
Nw, 1) = Zg—@ﬂ= 2—1— 3wy

ne ne
n<z n<z d(n,r)
=M,
p(d H(d) 5 )
. - 2 Z @ Tc\d
dlr dir

Application of (3.5) leads to
Nz, ) ={(s) Z‘“ds —

#(d) (00
w" (s— 1)1 2 d "o |’
dir
and (3.6) results on the basis of (3.3).
Tt is convenient to write ¢ = a-+b, g = bfa, o = a/b, and to define

@ () ps(7) )

(3.7) i

¢(3; ) =

We are now ready to prove the following result concerning z4s(n).
TEEOREM 3.1. If b > a>1, then for o >1

(3.8) Top(@, 7) = aatlat B,a +0 (@66 (r) + 0 (6%1)

where a, = (@)@ (g, 7) ond By = (o) P(0, 7).

icm®
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Proof. We have

abm 7‘

= Dty = D 1,

<L assv<z
(n,r)=1 @m)=@.n=1

and since, in the latter summation, ¢ and é cannot simultaneously assume

Sis Y1 13455

a<alic a<<alic d<alit
dgxllc

(3.9) Toplz, ) =

where, in each summation, it is understood that d*5° <
One obtains then
Q b
DICIDIPIE I i L
a<zl/c s<(xldyLd a<alic
@n=1 (4r)=1 @n=1

@, (&, 7) = (‘57 ) =1.

so that, on applying a similar argument to . and Yy,
(310) Y, =Loan(ate,r), D, D = gFatie, )

where

61 L= > o(Z),

= ILg,wu.z(m”‘, ),

§>0,s#1,y>21,2>21.

n<y
(na)=1
By (3..2)
Loy, 1) = ) Ny, )+0(y0(1‘)) )
and hence by Lemma 3.1,
(312) Lya(y, 7) =C(s)z@(s,r)—ﬁ%+o(zﬂ( ))Jro(ye(,,))‘

From (3.10) and (3.12) it follows then that

(3.13) 21 = Bt — tp(('r) +0( atled(r)) ,
2 fc
(3.14) 22 = ayatle— W((g)jl) +0(wto6(r)) .

Again by (3.2) and (3.10)

D= (“/‘W +0(0(r) )) ,
which becomes (since ¢(r) <)
D =T L0 a0 (r) + 0 (6%r)

The theorem results on the basis of (3.9), (3.13), (3,14), and (3.15).
Acta Arithmetica VIL 3
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The case 7 = 1 of the theorem yields

CorOLLARY 3.1.1. (Franel-Landau [3],[2], p. 318). If b>a>1,
then for = > 1,
(316) D taaln) = L(Q)atle+ £ (o) 2+ O(ahe) .

n<y

The consideration of T%,(x) is reduced to that of Tp(x) by virtue of
the following relation.

LevmA 3.2. If a, b are positive, then
(3.17) waln) = D) p(d)tas(d) -

des=n
Proof. By (3.1),

wam) = Y el@ )= Y D ud=_ D D)

asgb=n A%¢0=n DA=d DAL E =,
DE=e
= Y uD) Y 1= 3 u(Dyrans)
Des=n ASEb=8 Ded=n

The lemma is proved.
LevmA 3.3. For all s> 0 and all 7,

(3.18) |B(s, )| <1.
Proof. Actually, 0 < &(s,r) < 1, if r > 1 because by (3.3),

(3.19) B(s,7) = T)”( -5), r>1.

olr

Analogous to &(s,r), we define

(3.20) @5, 7) = %%‘P(ﬁr()i) (8 #—1).

THEOREM 3.2. If b> a =1, then for » > 2,
(3.21)  Tip(@,r) = afa'le+ BrarP+ O(6 (r) aVelogw) + O(0%(r)atle) ,
where
= ((o)/tle+1)*(e,7) and
Proof. By Lemma 3.2,

= ({(0)/e (0 +1))B* (0, 7).

Tip(w,r) = Zra, = D w@e),
A=<
(n r)=1 (@) =(8,7) =
from which
(3.22) Zisloyr) = D) win) Toaf3s, 7).
n<apt/c
(1)l
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Application of Theorem 3.1 gives

T;",b(a,‘, r) = a,.a}lla %ﬂ.}.ﬂrﬁlm "M.)

pot+l
n<azl/ n<glie
(n,n)=1 (n,r)=1
1
I = 2 1/
+0(0(r)m” E n)+0(6 (r) aMle) .

n<gl/c

By Lemma 3.3, a, and 8, are bounded as functions of . It therefore follows
that

A N 1
Tip(@, r) = aalle ’:ﬁz-{- 0 (a;lla 2 n——rﬂ) + Buvth 2 "E’ji

n=1 n>xl/e n=1
(n,r)=1 (n,r)=1

+0 (mllb > n—l+-1) +0(6(r)a*loga) + O{6r) ™) .

n>gl/e

The first two O-terms in the latter expression are O(x¥¢). The theorem
results by virtue of (3.4).
COROLLABY 321 (r=1). I;f b>a> 1 then for x> 2,

(3.23) ,,‘;;T:’b(n) = (C é(_f_) 1)) wlla ( (i(_*_) 1)) o 4 O (glelog @) .

4. Estimates for §,;(z) and S§}3(z). The notation of § 3 will be
retained in this section. We first prive some lemmas.

LemMA 4.1. For s> 0,
" - _ptp—2
(4.1) @* (s, 7) —l;](l e )

Proof. By (3,3) and (3.20)
LeMMA 4.2. For all s> 0 and all 7,

(4.2) |@¥(s, )| < 1.

Proof. As a matter of fact, by (4.1), it is easily verified that
0< P*s,r)<1if r>1.
Define now

(4.3) Ry(g) = Z”‘ M, 550, ¢>1;

n=1
the series converges absolutely in view of (4.2) and the boundedness of
u*(n). We now express R(g) as an infinite product.
3*
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LEvMA 4.3. If s> 0, ¢ > 1, then Ry(q) = ((@){(s+1)Js(q), where

2 1 1 1
o= ] (1= Gt ot o)
»

the product ranging over all primes .

.Proof. By the multiplicativity of w*(n) and by (4.1), it follows
that (cf. [4, § 17.4])

= [Jh-(-55) 2 W}
»
- [Tb- Tt (-5 33
- [ - ) ()

and (4.4) results on factoring out [](1—p=-1)2(1—p-0)" = &(s +1)¢(g).
LeMMA 4.4. For all e >0, 6(n) = O(n®).

Proof. It is well known ([4], Theorem 315) that z(n) =
7(n) =1,(n). Hence the lemma.
Place & = ab and define

(45) :"a,b('”/) = {

(4.4)

0(ne) where

1 (neSu),
0 (né 8y,

Our estimation of S,p(#) will be based on the following relation ex-
pressing jop(n) in terms of wiy(n).

Lemma 4.5. If b>a > 1, (a,b) =1, then

(4.6) fan(n) = D) w*(@)78u(0) .
dkd=n
(@,8)=1
Proof. We evaluate the sum,
%)) fas(n) = 2 Japl®) = ) W@ anld) .
dks=n ddmn,
(d,8)=1 (d,8)m1

Since wi(n) and jou(n) are evidently multiplicative, it follows by
Theorel.n 2.1, that f,p(n) is also multiplicative. Therefore, it suffices to
determine f,5(n) in cage n = p¢, p prime, ¢ > 0. Tt is easily verified that
fap(p®) = 0,1, 2 according as ¢ is divisible (i) by neither o nor b, (i) by
exactly oune of the pair a, b, (iii) by both @ and b. Thus fop(n) = vas(n),
and (4.6) results from 4.7 by Theorem 2.3. ' ’

icm®
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We now prove
THEOREM 4.1. If b>a>1, (a,b) =1, then for > 2,
(4.8) Sop(2) = Axtlat Byl 4 0 (at/clogz)
where A = E(0)(b)Ty(b), B = L(0)L(a)Js(a), and JLq) is defined by (4.4).
Remark 4.1. The estimates in (3.21) and (4.8) are valid on the
range 1 <o <2, if the logarithmic O-terms are all replaced by O(1)
for this range.
Proof. By (4.6) we have

Sapl@) = D dasln) = ) u*(@)750(8) ,
n<z dks<e
(d,8)=1
go that
(4.9) Sopl@) = > utm) Tﬂ,,( - 'n)

n<glk

Applying Theorem 3.2, one obta,ins, since |u*(n)| <1, (cf. Remark 4.1)

(o) atle ,u*(" 05* (e, m) | L(o)aP P () P* (o, )
Sap(z
o5(2) c(e+ )ng;k (a+1) e na
[/ 62(n
-+ O(mllclogm Z n(':llc)) - O(mllc Z n(’:c)) + O (') .
n<(z/2)'k n<gil®

As k> ¢, it follows by Lemma 4.4 that the O-terms are 0 (xYcloge).
By the boundedness of ®*(s,r) as a function of (Lemma 4.2), we find
then

1
Saala) = o s BB+ s Rfa) w-+ofore D) m)
+ O(wllb 2 %&) + O (xVelogw) .

The first two O-terms are O(z'*), and therefore the theorem is a conse-
quence of Lemma 4.3.
Corresponding to jqp(n), we define jz5(n) to be 1 or 0 according

as # is or is not contained in S%,. We have the following analogue of

Lemma 4.5.
LEMMA 4.6. If b= a1, (a,b) =1, then
(4.10) ftoln) = ) u*(@)jan(d) -
akd=mn
(d,6)=1

Proof. As in the proof of Lemma 4.3, one may show that

D i5a(8) = jap(n) 5
dké=n
(a,0)=1

and (4.10) results by the inversion relation (2.6).

(4.11)
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An estimate for Qp(x) can now be eagily deduced.
THEHEOREM 4.2. If b>a>1, (a,b) =1, then for > 2,

(4.12) S*y(x) = A*pMa 4 B*34o 4 O (sMelog @)
where A* = A;(b)U(b), B* = B (a) U(a), and

2
4.13 U(s) == (1— ——) 1.
(4.13) (5) ],,7 o) o>

Proof. By Lemma 4.6, it follows that (ef. (4.6))

(4.14) iala) = ) ik = ) wH(n)Bap (%),

n<e n<alik

and hence by Theorem 4.1 and the boundedness of u*(n) (¢f. Romark 4.1),

n<gl/k n<al/®
+0(m1/clogw —1—/5)4- O (1),
ns(z/ml/’ﬂn
By an argument similar to that of Lemma 4.3, it is seen that
i *
415 wm) _ _2
(4.15) 2w C(S)I;Il 25) s>1.

The proof now proceeds like that of Theorem 4.1.
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Zeta functions of quadratic forms
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K. G. RAMANATHAN (Bombay)
Dedicated to the memory of Dr. R. Vaidyanathaswamy

§ 1. Introduction. The Riemann zeta function has been gener-
alized in two directions; one generalization concerns the zeta functions
of algebraic number fields and algebras and the other concerns the zeta
functions of Lerch-Epstein associated with definite quadratic forms and.
of Siegel associated with indefinite quadratic forms. Our object in -this
paper is to study the zeta functioms associated with quadratic forms
over involutorial algebras. We deal here with commutative algebras
only reserving the non-commutative case for the second part.

Let K be an algebraic number field and ¢ an automorphism of K
whose square is the identity. Let & be the fixed field of o. Then (K: k) =1
or 2 according as o is or is not the identity automorphism. For any matrix 4
of m rows and columns with elements in K let A° denote the matrix,
(af;) where A = (a;). We say that A is symmetric (hermitian) if o is
{or not) the identity and 4’ = A°. If a is a m-rowed vector with elements
in K we call o’4da® the quadratic. (hermitian) form associated with A.
Tet first o = 1 the identity automorphism. Let S be symmetric, m-rowed
and non-singular over K. Let K have r; real and r, complex infinite prime
spots and let 8 be definite at r,—1 of the real infinite prime spots of K,
0<1<r. For every g # 0 in K which can be represented by S we
a8s0ciate o vector &= (&, ..., &), & = L1 where & = g®/|g#| = sgng®.
We call ¢ the signature of g. With each ¢ we associate the zeta funection

M(8,a,9)
Cs(s7 a,s) = Na* - 5
Z (gl

where a # 0 is an ideal of K, M (S, a, g) is the measure of representation
of ¢ by 8 (see §4) and the summation runs over all ¢ with signature ¢
which are representable by S such that for no two ¢y, g, in the summation
g, = &%g, holds, ¢ being a unit in K. There are clearly 2 guch Dirichlet
geries. Tt is shown (§ 3) that they converge for o> m/2 and define in
this half plane regular analytic functions of s. By generalizing suitably
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