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On the continuous dependence of solutions of some
functional equations on given functions (I)

by J. KorpYLEWSKI and M. Kuczma (Krakéw)

In a series of our papers ([2], [3], [5], [6]) We have proved that under
some assumptions concerning the given functions f(«) and G(z,y) the
functional equation

1) plf(2)] = &z, 9(2))

posgesses exactly one solution ¢(z) continuous in a one-sided neighbour-
hood of the point x = b such that f(b) = b. The question arises in what
manner this unique solution of equation (1) varies with the change of the
given functions. The example of § 2 below shows that this dependence
need not be continuous. In the sequel we shall prove, however, that under
suitable assumptions the above-mentioned unique solution will vary
in a continuous manner.

Equation ¢[f(2)] £ ¢(z) = F (2)

§ 1. Now we shall consider the particular cases of equation (1)

(2) elf (z)]1+¢(@) = F(2)
and
(3) olf(@)]—plx) = F () .

In the sequel we shall assume that

(i) The function f(z) is defined, continuous and strictly increasing
in an interval <a,d> and f(z)> x for ze(a,d),f(b) =b.

(ii) The function F(») is defined and continuous in the interval
{a, by and F(b) = 0.

LzmmA I Under hypotheses (i) and (ii):

1° Bquation (2) possesses at most one solution continuous in the interval
(@, b>. This solution, provided it exists, has the form (%) .
p@) = Y (—1'FIf(@)].
ve=0

(*) Throughout the whole paper the symbol j*(x) denotes the voth iteration of the
function f(z).
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2° Hquation (3) possesses at most one solution continuous in the interval
(@, by and fulfilling the condition ¢(b) = 0. This solution, provided it exists,
has the form

p(a) = — D FIf(@)].

»=0

The proof of this lemma is to be found in [1], [5].

In the sequel by the solution of equation (2) resp. (3) we shall under-
stand the solution fulfilling the conditions mentioned in the above lemma,

The next lemmas give some sufficient conditions of the existence
of the solution of equation (2) resp. (3).

LemMA IT. If hypotheses (i) and (ii) are fulfilled and the function
F(z) is monotonic in (a,b), then the solution of equation (2) necessarily
ewists.

The proof of this lemma is to be found in [5].

LemmA III. If hypotheses (i) and (ii) are fulfilled and if there emists
a bounded function G(x) such that |F ()| < G{x) and
G ()]

(4) —=<d<1  for

TE) we(b—n,b)

where n is a positive number, then the solution of equation (2) ewists as well
as the solution of equation (3).

The proof of this lemma is to be found in '[5:[ (this proof has been
carried out there for equation (2), but it is also valid for equation (3)).

Levwa IV. If hypotheses (i) and (ii) are fulfilled and if, moreover,
the functions f(x) and F(x) are of class O' in <{a,d) and f'(b) # 1, then
the solution of equation (2) exists as well as the solution of equation (3).

Proof. Since f(z) > w, we have f(b) < 1. Consequently there exist
positive numbers 5 and &, ¢ < 1, such that f'(») < @ in (b—n, b>. From
the mean-value theorem it follows that

(3) [F@)—f(b)] < H|a—b] for we(b—mn,bh).

Since F(z) is of class C*, |[F(x)] < Clo—b| for 4 € <a, b>, where ¢ is a con-
stant. The function G(z) % Clo—b| fulfils condition (4), because we
have by (5)
Glf ()] _ Olf(@)—b]
G(2) Clo—b]

< B

Consequently the existence of the solution of equation (2) resp. (3) follows
immediately from lemma IIT.

e _©
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§ 2. Now let us consider the sequence of equations

(6) Plfn(@)]+ (@) =Fu(x), n=1,2,3,..
and
(7 Plfn(@)]— (@) = Fo(w), n=1,2,3,..
‘We shall show by an example that the conditions
(8) Folz) = Flz), fal) = fx)
<a,by {a,by

are not sufficient to ensure the convergence of the sequence of the solu-
tions ga(@) of equations (7) to the solution ¢(x) of equation (3). An analo-
gical example can be constructed for equations (6) and (2).

Bxawerr. Let f(#) be an arbitrary function fulfilling hypotheses (i).
Let us take an arbitrary , ¢ (a, b) and let us write a,2= f'(z,), v= 1, 2, ...
The sequence #, is (cf. [5]) increasing and converges to b. Further, let

" for wela, tn),
Fo(w)-2 T — &
w(®) n(m.n”—— - for @e (@, @), n=1,2,..
0 for welan,b),
@) (@), n=1,2,..
and
F(x)=0.
Relations (8) are evidently tulfilled. 'We have further
©0 B n-1
% Y Q 7 1 )
gulo) == D Flfe)] == D) Falw) =— D' T=1, n=1,2,
=0 v=0 »=0
and
P (%) =0,

where @u(z) and ¢ (x) are the solutions of equations (7) and (3) respectively.
Consequently @n(wz,) does not tend to ¢(z,). By a slight modification of
the definition of the functions Fn(x) we can make them of clags C'. Simi-
larly we can easily construct an example in which |pa(2,)|—>c0 while
@(@) = 0.

§ 8. Now we shall prove the following

THEORBM I. Let us assume that the functions fu(x), f(2) and Fn(x), F(2)
Julfil hypotheses (i) and (ii) and relations (8). Further, let the functions Fy(x)
and F(x) be decreasing (increasing) in (@, b). Then

(9) qzn(w)<=>b>zp(m) for every ce(a,bd)(?),

where pu(z) and @(x) are the solutions of equations (6) and (2) respectively.

(%) In the case f(a) # a, ¢ may also equal «.
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Proof. Let us suppose that the functions Fu(x) and F(x) are decreasing
(if they are increasing, the proof is quite analogical). The solutions ¢n(x)
and p(x) exist on account of lemma II. Further, by lemma I, we have

0

pal) = ) (= Bl fa(a)] -
=0
Since the function Fn(z) is decreasing, we have the inequality (%)
2p+1 2p
10) D (—1VFulfin)] < gule) < D —UR@],  p=1,2,..
y=0 pam

The finite sums oceurring in inequality (10) converge ag % ->co uniformly
in <¢, b) to '

2w+l 2p
(11) Z (—1F[f(x)] and 2 (— 1R (@)]

v} yma]
respectively. Both expressions (11) converge as p-+oco uniformly in <c, b)>
(cf. [B]) to

plo) = D) (—1FIf @]
va=0
Consequently, for an arbitrary number &> 0 we can find an index N
such that for n, p > N and z € {¢, b both expressions in (10) differ from
o(z) by less than 2. Hence it follows that for n > N and xe ¢, b)
lon(@)—p(2)] <&,

which was to be proved.

TEROREM IL. Leét us suppose that the functions f(x) and Fa(z), F(2)
fulfil hypotheses (i) and (ii) and

fulw) = f(@) for xela,b),
Fn(w)<=>b>F(m) .

no=1,2, ..

Moreover, for each » € (a, b), let the sequence Fu(x) be decreasing (increasing ).
If the solutions gn(z) and @ (x) of equations () resp. (3) exist, then relation (9)
holds.

Proof. Let us suppose that the sequence Fu(x) is increaging for
each 7 ¢(a,d) (if it is decreasing the proof is analogical) and that the

(*) From the monotoﬂit,v of the functions fu(z) and Fu(x) it follows that the
sequence Fy[f,(x)] is — with fixed » and n — monotonic and consequenily the series

20 (= VP lfn(®)] is alternating.
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golutions ga(x) and ¢(x) exist. The hypotheses of the theorem imply that
for each x e (a,b) the sequence gu(z) is decreasing and

pu(t) Z@(@), n=1,2,..

Consequently the sequence pu(#) converges. Passing to the limit as n—o0
in the relation

p—=1
Pal@) — @l fP(@)] = — O Fol ()]

pe=(
we obtain
. n—1
limgu(e) ~ limgal/"(@)] = — 3 FIf(@)].
N—+00 Nr00 =0

Now passing to the limit as p-+co in the above relation we obtain on
account of the inequality

plf7(@)] = eal1"(2)] 2 [ (@),

the relation.
limga(2) = () .
N0

n=1,2,..

Since the sequence ¢u(®) is decreasing and the functions gn(z) and @(z)
are continuous, the convergence is uniform in <¢, by for every c e (a, D).
This completes the proof.

§ 4. The theorems of § 3 concerned only equations (6) and (2) or (7)
and (3). Now we shall prove theorems valid for equations (6) and (2) as
well as (7) and (3).

TrauorEM IIL. Leét us assume that the fumctions fu(x), f(@) and Fa(z),
F(x) fulfil hypotheses (i) and (ii) and relations (8). Let us assume, moreover,
that there ewists a bounded function G(xz) such that

120 |F@)| < G®), |Fuo)<@@) for wela,dy, n=1,2,..
and
(13) %%ﬂ<ﬂ, g%‘%”)”—)l<w, <1,

for we(d—n,b), n=1,2,..(

where 7 is a positive number. Then relation (9) holds, where pn(w) is the
solution of equation (6) resp. (7) and p(w) is the solution of equation (2)
resp. (3).

(4) In [4] we have proved that the function G(x) cﬁn always be chosen decreasing.
Consequently if the sequence fn() is monotonic, then it is suificient to assume the re-

lati
o Gl _, o CUEN_4
Gw) G (@)

according to whether the sequence fa(x) is decreasing or increasing.
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Proof. The solutions () and ¢(x) exist on account of lemma IIT.
Evidently limG(z) = 0. Consequently for an arbitrary &> 0 we can
xb

choose 7, > 0, 7, < 7, such that

(14) G(z) < e(1—9)/4 for e(b—m, b).
We can also find for an arbitrary ¢ e(a,b) an index N; such that
(15) Fl@)e(b—mn, b) for wele,b), vzEN,.
We can find at last an index N, > N, such that
(16) fulw) e b—m, b) for welo,b), mn,vz=N,.
We have
o) — (o] < O ILfalaN TP
whence o "=
a7 |pn@)—p()] <v20 Bolfa(@)) — PLF@)]] +

-+ 2 | Bl )] | + Z [BLf ()] -

r==Ng e Ny
We have further by (13), (15) and (16) for = e (¢, b) and n,v = N,

[Palfa@)]] < &G @)

\BIf ()] < ﬂ'”"N’GUN’(w)J ,

whence, by (14), (15), (16) and (17)
Na—1

(?) Ipala)—p@)] < Y |Pulisloll~FLF @] + 5

y=0

and

On account of relations (8) we can find N > N, such that
[ Bl fa(@)]—F[f(2)]] < /2N, for wmele,by, n>N, »=0,..,N~1.
Hence we have by (18)
len(e) ~ (@) <& for welo, by, n>N,

" which was to be proved.

TarorEM IV. Let us assume thai the functions fu(m), f(a) and Hu(),
F(x) fulfil hypotheses (i) and (il) and relations (8). Let us assume, moreover,
that these functions are of class O in <a, bd, f'(b) 5 1 and

(19) fal2) = f'x), Fplz) =>F().
<a,b> {ab)

Then relation (9) holds, where pp(:) 28 the solution of equation (6) resp. (7)
and p(@) 4s the solution of equation (2) resp. (3).
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Proof. The solutions pu(2) and ¢(2) exist on account of lemma IV.
According to (19) there exists a constant ¢ such that

|Fr(@)] < ¢ and [F'(2) < 0 for e {a,b>, n=1,2,..

Similarly there exist numbers 5 and ¥, ¢ < 1, such that

[fa(@)—b] < H|lo—b] and  |f(z)—b| < Oz—b]
for  @e(b—n,b) and n suificiently large .
]Icn(*e it follows, as in the proof of lemma IV, that the function
@ (x)® C|a—b| fulfils relations (12) and (13). Thus, on account of theo-
rem ITI, relation (9) holds, which was to be proved.

Remark. Tt is apparent that if in the example of § 2 the functions
Fyp(x) and f(a) are of class C', f(b) %= 1, then all the hypotheses of the
above theorem will be fulfilled with the only exception that the conver-
gence Fy(x)—F'(x) will not be uniform! :

§ 6. Up to now in our considerations we assumed that

(20) F(b)=0 and Fub)=0, =n=1,2,..
For equations (3) and (7) this assumption is necessary. But one may
agk whether for equations (2) and (6) the theorems proved above remain
valid when conditions (20) are not fulfilled.

Let () and ga(z) be the solutions of equations (2) and (6) respectively.
Then the functions () () — 3F (b) and wu(x) <L pu(x)— 3 Fu(b) are the
solutions of the equations

plf(@)]+y(w) = F(z)—F(b)
and

Plfale)] + v (@) = Fu(w) —Fn(b) ,

respectively. Since under the condition Fa(b)—F(b) the convergence
on(®)= @(x) iy equivalent to the convergence yn(x)=>p(x), we see that
the case of arbitrary Fy(b), F(b) may always be reduced to the case in
which relations (20) are fulfilled.

References

[11 A. Bielecki et J. Kisyiiski, Sur le probléme de B. Goursat velatif & Véquation.
2*2[0x2y = f(w, y), Ann. Uniy. M. Curie-Sklodowska, Sect. A, 10 (1956) p 99.126.

[2] J. Kordylewski, Continuous solutions of the equation @[f(®)] = G (2, ¢(®))
with the fumotion f(x) deoreasing, Ann. Polon. Math. (in press).

[3] — and M. Kuczma, On the functional equatum Pz, p(@), of()]) = 0, Ann.
Polon. Math. 7 (1959), p. 21-32.



GUEST


' : ©
48 J. Kordylewski and M. Kuczma lm

[4] — O pewnych réwnamiach funkeyjnych, Zeszyty Naukowe Uniw. Jagiell,,

Prace Matem. 5 (1959), p. 23-34. ‘
[5] M. Kuczma, On the functional equation (x)-+-@lf(®)] = F(z), Ann. Polon.

Math. 6 (1959), p. 281-287. )
6] (—- On the form of solutions of some functional equalions, Ann. Polon. Math.

9 (1960), p. 55-63.

Regu par la Rédaction le 23. 3. 1960

ANNALES
POLONICI MATHEMATICI
X (1961)

Sur les périodes des solutions de 1’équation différentielle
" +g(@) =0

par Z. OpiaL (Krako6w)

1. Considérons V'éguation différentielle non linéaire du second ordre
(1) o (@) =0
olt — comme {’habitude — 2" = d%z/d®. Supposons que la fonction g¢(z)
soiti définie et continue dans tout lintervalle (—oo, +o0) et telle que
Yon ait
(2) xg(x) >0,
quel que soit @ 7 0. Il en régulte, en particulier, que ¢(0) = 0. Désignons
par G(z) la fonction primitive de ¢g(z) qui s’annule pour # = 0. On a donce

¢(@) = [ g(s)ds
[

et, en vertu de l’hypothé.se (2), G(x)> 0 pour tout x 7 0. Supposons
de plus que l'on ait

(3) limG(z) = + oo .

Jaz| ~> 00

Dans ces hypothéges I’équation. (1), équivalente au systéme de deux

" équations différentielles du premier ordre

(4) o=y, y=—9@

n’a qu'un seul point singulier, & savoir lorigine des coordonnées. Les
golutions du systéme (4) sont les lignes de niveau de la fonction y*+2 @ (),
dont chacune est déterminde par 1’équation

(8) r+G) =C

ou C est une constante non négative. 8i ¢ > 0, toutes ces courbes sont
fermées (en vertu de (3)), symétriques par rapport & l'axe des et con-
tiennent ’origine des coordonnées dans leurs intérieurs. Pour tout s > 0,
la courbe (5) qui correspond & O = G(s) détermine une solution x(¢;$)
de I’équation (1), telle que

(6) ‘ #(0;8) =8, «'(0;8)=0.
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