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Investigation of some measures and sequences related
to the extreme points

by A. Szysrax (Krakéw)

I. Introduction. Let X be » Hausdortf space. We shall denote
the points of this space by a, @, y,... Let @ be a function defined on
X x X and satisfying the conditions

1. D@, y) = D(y, ).

2. D(x, ) = ~co.

3. @ (@, y) is continuous on X x X.

We ghall name this function @ a Fkernel. The function w(w,y)
= exp (—P(z, y)) (where by exp(—oo) we mean 0) will be named the
generating function.

We fix in X a compact set . We choose on F n+1 points 2y, ..., Zn
and we seek

i b .\ @
(;{éfE é; D(w;, 25)
o<t f<sn

sup ” w(®;, w) .
dCE a7
o<i<isn

or, which is the same,

By the above conditions on @ and F there exists at least one system
of points {75, ..., yu} such that

min D' G(ai, ) = D B, 7).

{ICH {4f i%]
This system {57, ..., #y} will be named the n-th exireme system of E with
respect to the kernel #. The object of this paper is the investigation of some
measures and sequences obtained by the extreme points. In the classical
extreme points theory, formed by M. Fekete and developed by G. Polya,
G. Szegd and T. Leja, the extreme points have been used for the con-
struetion of some polynomials, X being the complex plane. Some sequences
related to those polynomials converge to some functions which give the
solution of the Dirichlet problem or are useful in the theory of double
power series.
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In the present paper we extend these investigations to the more
general Hausdorff spaces. We base ourselves here on a different method
of work, connected with the measure theory, which has been introduced
in the potential theory by J. Radon and O. Frostman. Especially the
last part contains the solution of the problem of convergence of a number
sequence which is used in the classical extreme points theory and has
not been solved by any other method.

II. Radon measures. Let X be the space described above. We
denote by € the set of real functions which are continuous and have
compact carriers. _

We define a measure u as a functional on ¢ whieh satisfies the follow-
ing conditions:

1° linearity condition:

ulaf+bg) = aulf]+bulg]

for every pair of real numbers ¢ and b and f, ¢ e (’;
2° non-negativity condition:
fz0 wlflz0.

A genmeral, not necessarily Radon measure is defined as a real agore-
gate of two positive Radon measures.

In the following we shall deal chiefly with the non-negative meagures.
Therefore by the term measure we shall mean a non-negative one if the
contrary is not required. Of course in place of u we shall also use other
symbols.

Let us fix the functional u. We shall extend it to the class of lower
semicontinuous functions. We shall denote this class by '». We detine
for fe®

implies

wlfl=supulg]l where geC, g<f.
0

Further, we denote the class of the upper semicontinuous funetions by ¢.
For fe@ we put

plfl=infulg] where g¢g=/ and gen.
g

For an arbitrary function f defined on X we put
(@) = max(0, f(a) ,  17(@) =" (@)~ F(a) .

Of course (@) > 0,1 (x) <0 and f(w) = f (w)—f (). For an arbitrary
function % > 0-we define

E[h]=31’lPM[f] where f<h, fe(,

ulh] =infulf] where 210,
'
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It ulh] = w[h] we say that h is infegrable and we write
ulh] = pIh] = G[h] .

In the general case, where h is not necessarily non-negative, we decompose
it into AT and A~ in the manner indicated above and we put u[h]
= u[hT]—u[h7], assuming of course that the right-hand members have
their sense.

The value of a functional g for a given function f will be named the
integral. 'We shall use for it also the common notation [ f(z)du(z) or
I tau.

We shall denote by ¢, the characteristic function of an arbitrary
set 4. If ¢4 is integrable, we say that A4 is a measurable set and we write

u(d) = f tally = ploq] .

The number w(4) we name the u-measure of the set A.

Since the characteristic function of an open (resp. closed) set is
lower (resp. upper) semicontinuous, the u-measure of those sets is well
defined. u-measure considered as a function of a set is monotonic and
completely additive. The proofs and details are to be found in [2], for
instance.

A sequence of measures {un} will be named weakly convergent or
simply — convergent to a measure u if for every function fe @ we have
lim pa[f] = ulf].

We shall now seek a norm of the functional u, i. e.

Bup Al

where ||f|| denotes the norm of f in €: ||| = sup|f]. The complementary
of the sum of all open sets of y-measure 0 will be named the carrier of w.
The w-measure of this carrier will be named the fotal mass of w.

LeMMA 1. If 4 s @ measure of the compact carrier K, then
3° w is monotonio, d.e. the inequality | 3= g implies

ulf] = wlgl;

4° the norm of the functional w 48 equal to u(XK).

Proof. The first proposition, 3°, follows directly from the linearity
and non-negativity of . 3° yields directly

| [ fau| < [ (flau < [1f1au = 171uE)
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and hence
(1) ol < p(XK) .

By Uryson’s lemma there exists in € a function f, which is equal to 1 on K
and satisfies the condition 0 < fy(z) < 1. Of course

S ot = [ 1dn = 1ol w(H0)

and in view of (1) we conclude that ||| = u(K).

TuRoREM 1. (The principle of choice). If we have @ sequence of
measures {un} their carries being contained in a common compact K and
their norms being bounded by o wuwmber 1, then there exists a subsequence {u,,}
which converges weakly to some measure py. The carrier of u, is also contained
i K and || gl <1

Proof. This theorem follows directly from the general theorem
which states that if 8* is an adjoint space over a linear space § then
the unit sphere in §* is & compact set. In our case § is € and {u|||g| <1}
is a subset of a unit sphere in C*.

We shall prove some theorems on the convergence of the integrals.
We consider a sequence of measures {u,} which converges to some measure u.
We assume that the carriers of all the measures u, are contained in a com-
“mon compact K and ua(K) << 1. Denote by i the clasy of the lower
semicontinuous functions on K. Taking into consideration f(a)—minj ()
instead of f(x) we may restrict ourselves to the investigation of the non-
negative functions only.

THEOREM 2. If f e Dg, then un—u implies

tim [ fdpn > [ fip.

Proof. By definition we have

Jftpn=sup [giu, g<f, geC.

Suppose that there exists in Dg a function f, such that for some sub-
sequence {kx}C {n} we have

1 | o, < [ fodps .
We take ge @, g <f such that

tim [ fodpe, < | godp < [ fockus .
Since we have

1im [ godpn = [ godut,

Investigation of some wmeasures
then for sufficiently large indices k, we have the inequality

J fott, < [ gy, ,

which contradicts to the inequality ¢ <7

THEOREM 3. If G is an open set, then uy—>u tmplies im ua(&) > u(@).
If H is a closed set, then Limpu,(H) < u(H).

Proof. The theorem follows by the fact that the characteristic
function of an open (resp. closed) set is lower (resp. upper) semicontinuous.
To these characteristic functions we apply theorem 2.

Let 4 bo an arbitrary set in the space X. If o4 is integrable, then we
may define the restriction s of the measure p to the set A putting for in-
tegrable f

Tt = pt(7) ™ [ ot iu.

The following theorem gives us a sufficient condition for the existence
of the sequence un(4) and the equality lim pun(A4) = p(4). This condition
had been used by O. Frostmann in his definition of the convergence of
measures. Denote the interior of 4 by A° and its closure by 4.

THEOREM 4. If un-+p end p(d—4°) =0 then Hmuu(d) exists and
equals to w(d). "

Proof. Applying theorem 3 we have

(@) w(A°) < limpn(A°) + limpn(A) << Himpn(4) < Hmpa(d) < p(d) .

Because _ _
, ()= u(4%) = w(A— 49 =0
we conclude ﬂmt all the members in (2) are equal.

THEOREM 5. If {fa} 48 a sequence of funciions of C which converges
uniformly to the function f, then un—u Implies

lim J Fnpn == f‘f{l‘u.
Proof.

[ Gty aen + [ Fipan = [ fu|
< [ Vo flaw+ | [ fapn— [ fau].
The lagt member of this inequality may be made arbitrarily small
if we take a sufficiently large n. Hence follows our proposition.

Let {f,} be a sequence of functions from Dg. We assume that each f
iy continuous outside the set {®|fu(®) = oo}

| [ tuen— [ ftu
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THEOREM 6. If the sequence fu is convergent to a function f uniformily
on the set K — {x|f(#) = oo}, then un—>u implies

(3) ﬁfﬁffndﬂn >ffd/4 .
Proof. Let us put
(%) = min(M, f(2)) .

We take a number ¢ > 0 and M so large that

ff‘Md,u > ffdu—a .
We have
tim [ fudpn > Tim [ fildpn = [ 1"ap > [ fdu—c.

Since ¢ is arbitrarily small, our proposition is valid. In a similar way we
prove the theorem in the case where [fdu = oo.

In the following we shall make use of this theorem in the case fu(x)
= Q(ym w) .

Under the conditions of theorem 6 we shall prove

TurOREM 7. A necessary and sufficient condition for the equality

lim [ falpn = f fau

is that for every e > 0 there exist an open set Z, such that f is finite on the
set K—2Z, and that
Tim f]".n[i,un <e.
Z

8

Proof. Sufficiency. On K—Z, almost all the f, are continuous
and the convergence is uniform there. Then by theorem 6 we have

[ fau+e

]j_mffnflﬂn <iﬁﬁ f f1zflltn+ &<
k7, K-z,

and hence by e—0 we obtain

mffnd,un :gff‘d,u,,

which, compared with the opposite inequality (3), gives our proposition.
Necessity. If the condition of our theorem is not satisfied, then
for some &> 0 and suitably chosen Z, we have

0 [ fudpn— [ fdu
Stim| [ fadua— [ fodul+ 55 [ [ fudun— [ fau] > 0.
K Z, E-2Z, Z, Zg

icm®
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III. On some measures obtained by the extreme points.
Now we turn to the notations nsed in the introduction. i a fixed compacst
in the space A7, @ is a kernel which satisties the conditions 1,2,3,{n, ..., 70}
denotes the n-th extreme system with respect to the kernel &, It hag
been proved in [1] that the sequence

o0k, )y =A( [T wat, mf )

0<i<ign

P - X
{exp (2 T 1)t Z
osi<ign

is a decreasing one. It converges to a nonnegative limit which is named
the span of B with respect to the generating function o and it is denoted
usnally by o(H, w) [1].

In the following we shall assume that (B, w) > 0.

Transferring the above propositions into the formulae with @ we
see that the sequence

{nt1)™ Yo, )
%]

converges to log(@('E, co))_l. We denote this number by 4.

Let © be a measure which is defined for the continuous functions
by the formula

n
wlf] = j fdpy = z’ foin™
=0
we put
0 for x=y
Dy, y) = Y,
o ) ‘Q)(W;LII) for @£y,

.

The sequence {uy} contains a convergent subsequence {u,,} and we denote
its mit by u.. Our nearest purpose will be to prove the existence of

lim. [ [ @@, y) o, (y) Apenf)
and to prove that Mo Tealizes
(4) inf { [f ®@, y)auty) au (w>}
. I
when u varies over the set of positive Radon measures whieh have their

carriers contained in % and their total masses are equal to 1. The class
of these measures we denote by M.

LuMMa 2. If we M, then for every emtreme sysiem we have

Wt 1) o, o) < [ o, paumape) .
i#]
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Proof. Let g, ..., s be an arbitrary system of points of the set H.

By the definition of the extreme system we have

N, i) < Z@(Jh‘ia’;)‘

< i<i
Let u be a measure of M. We apply to the both members the operator
[ ) du(xy) ... du(m). This yields

Soop, iy =[ o [ X @0, i aua) ... dulzn)

i<i i<y
< [ [ D o, @ au(ay) .. dulan)
i<y
=) [ ® (@, 2 dp(e) duizy

=3 +1)n [ [ D, ) du(y) du(a)

which gives directly owr lemma.
CoROLLARY 1. The constant y 48 not larger than the lower bound (4).
LeMMA 3. The measure u, of every one-point set is equal to 0.
Proof. By the monotony of measure treated as a function of th.e
seb it suffices to prove that every point has a neighbourhood of t.he arbi-
trarily small u, measure. Let a be a point of E and let U be its open
neighbourhood. We put
Hm®(z,y) = 0.
EXE
We have
y—0 = lim [ [ (@@, y)—8) due, () Aty (2)

>im [ [ (@ 8) Apta,lpe,
UvvU

> lim (ﬂ%(U)]z(gil‘g@(:v, y)—9)
9 - 5
> (uU)( fnt D (@, 1) =9) ,
which yields
(5) #f U) < ((y~r5) (gl,}qu)(m’ y)_d)ﬂ)x/e‘

In view of properties 2 and 3 of the kernel @ the quantity inf®(w,y)
is as large as we like if we cheose the neighbowrhood U suitably. Then
by (5) follows our lemma.

icm®

Tuvestigation of some measures 287

COROLLARY 2. Since, for every » ¢ B, @, differs from @ ouiside a set
of the points y with the u.smeasure 0, we have

J oo, pyuty) = [ 6@, y)audy) ,
S ®a, vydudy) duao) = [ [ 000, y)au(y)aua) .

THEOREM 8. The measure u, vealises the lower bound (4) and this
lower bound is equal to y = log(v(E, w))™.

Proof. By theorem 2 and corollaries 1 and 2 we have

I ®apeie = tim [ [ &ydueiu, = 5 < it [ [ Saudp < [ [ dapip, .
He ]

This immediately yields our theorem.

The uniqueness of the measure realising (4) obtained by the above
method as & limit distribution of the extreme points has not been proved.
In order to study this problem see e.g. [4].

We denote the carrier of the measure u, by .. Evidently E,C K.

We take into consideration an arbitrary compact F in X. If there
exists no measure » of the positive total mass and no carrier contained
in F sueh that

f Ddvdy < co

PP
then we shall name F a polar set. A set of type F, will be named polar
if every compact contained in it is polar.

THEOREM 9. The u.-measure of every polar set is equal 1o 0.

Proof. Suppose that there exists a polar set H such that u(H) > 0.
Putting inf @(z, y) = 6 we have
ExE

o> [ [(®—08) duadppa > [ H[ D Apaa— 0 (uo H)),
H

which contradicts the definition of the polar set.

THEOREM 10. The function wu(x) = f D(w, y)dudly) 1s lower semi-
continuous on X.

Proof. We take a point # ¢ X and any sequence of points z,—z.
By theorem 6 we have

lim [ & (an, ) dpay) > [ D@, 9)Bualy) .

TeeoREM 11. On E, (the carrier of u.) we have u(x) < y and strong
inequality holds at most on a polar set.
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‘Proof. Suppose that there exists a non-polar set H C ¥ on which
we have u(z) < y. By the semicontinuity of w the sets {m|u(x) <y—¢}
are F, sets for an arbitrary positive e. Of course

H= L>Ja{m]u(m) < y—e}.

Then there exists a non-polar compact K and £ > 0 such that on K we
have the inequality

J 0@, p)audy) < y—2.
Let » be a positive measure of the carrier contained in X and of the total

mass 1 such that [f ®dvdr <oco. By the equality [ [ D dpodus =y 1'“5 follows
that there exists on E, such a point a that «(a) > y—& and by the semi-

continuity of « this inequality remaing valid in some neighbourhood U

af a. We write u.(U) = m and we define a new measure ¢ putting for f e

olf] = mv[f]l— paLwrf] -

Of course o i3 a signed measure (it is not non-negative!) and its total
mass is equal to 0. Let ¢ be a positive small parameter. Then u,+to
is a positive measure and has the total mass 1. Consider the difference

At) = [ [ Pdpadpa— [ [ Oapatto)i(ua+10),
whieh is non-positive by theorem 8. By a simple computation we find
A(t) =2t [ u(@)do(w) ¢ [ [ ddodo
2t(2m(y——E)——2m(7x—-2'é)——tff@dcr(lc)
“ = 1(2me—t [ [ Baodo)

It ¢ is sufficiently near 0, then the last term of this inequality is positive,
which contradicts theorem 8. Then the strong inequality (x) < y holds
aft most on a polar set. Suppose.now that there exists a point b ¢ H, such
that #(d) > y+&>y. By the semicontinuity of w this last inequality
remaing valid in some neighbourhood V of the point b and u(V) > 0.
We compute
y = fu(w)d,u,,(w) = f ud,ua—i-f U Qha
v

2 p(B=V)+ @y +e)u(V) =y +eu(V),
which is absurd. Thus our theorem is proved.
Let € be a compact set such that «(z) is continuous on C.

TreorEM 12. For an arbitrary number &> 0 there exists am index N,
such that for n> N, and % < ¢ we have f@(w, Y) Apa, (Y) > w(2) — .
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Proof. Suppose the contrary. Then there exist a sequence {#,} e O
and a sequence of indices %, such that we have

(6) T Oy, 1) dfy) < () —s.,

Assuming that @, converges to some point @, we obtain by theorem 6

(@) < lim [ (o, y) du(y)

which compared with (6) is absurd.
TuEOREM 13. The sequence | [ u(w)dua,(w)} converges to .
Proof. By theorem 2 we have

(M) lim [ wd, > [ wdps =y .

Suppose now that we have Iim [ %@, In order to avoid the new no-
tation we assume that lim f UQpa, > y. We write

E; ={wu(z)=y}~nE.
It follows ecasily by theorem 10 that E; is an F, set and

f@tdﬂ(,:'y,

By

Let & be a positive number. We choose a compact ¢ C B, such that
to(B— C) < &. Then by theorem 12 we have for sufficiently large m and
& ¢ ¢ the inequality

[ @@, y) dpafy) > y—s.

Hence we obtain by integration
ff Q)O dlu“yldluﬂu > fd/‘an(y) j‘@ﬂ(w} y) d:“’“n(m) > fud:u"'n— €,
¢ b ¢

which yields in the limit
y > limj U o, — €
(o]

Sinee ¢ is arbitrary and [ approaches [ as near as we like, we conclude
¢ )
that
H-lﬁf Uhpha,—€ .
This inequality together with the opposite one (7) gives our proposition.
Annales Polonlei Mathematiel X 20
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IV. On some number sequences. Let i, denote the measwre
defined for f e C by the formula

[ = X 1o

It is easy to see that fi., converges to we« and that we have

(8) tim [ wdf,, =y

(theorem 12).
We introduce the notation
)

el

o<rsn

Dy = D (s ) -

We numerate the points #} in such a way that

(9) Dy = max Dy .
0<<F<n
Evidently
DY = [ @, y) k) .
LeMMA 4.

n
D} = min 2!15(7/0", mn .
. zel oy

Proof. The proposition follows by the definition of the extreme
points and by the representation

1 \" n \ 7 N
521 (0t ) = Z ®(ni, n7)

i#F o<i<i<n

7 \ | n
= nDP - L D(ni, j) -

1<i<j<n

THEOREM 14. The sequence Dj converges to the number y.

Proof. Suppose the contrary. We choose a sequence of indices {f.}
such that us, converges to some measure ws and limD* # ». In view
of lemma 4 we have by z e ®

D < [ 0(@,y) i () -
The integration of this inequality by dus(2) yields
Dl < [ [ B ug,
and in view of (8) we have

(10) ImDi < y.

icm®
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Now we choose on E, a point d such that u(d)=y. Let ,717’.: be
a sequence of extreme points which converges to d as n—oo. Using theo-
rem 6 we obtain

= u(a) <Tim [ @ (o, y) dpus,(y) = lim Dl
In view of (9) we have D > Df{; and in consequence
]iT_“Dg" 2y,

which in view of (10) yields lim D§* = y, which contradicts the hypothesis.

Using the notation which has commonly been used in the theory
of the extreme points (see e. g. [1]) we write A) = exp(—n.DY). Theorem 14
translated into these terms states that

lim 4% = o(B, 0) = 6.

In this form the theorem has been used in the papers of Leja and Gorski
concerning the Dirichlet problem and related.

THEOREM 15. If the sequence of the ewtreme poinis 73" converges to
a point b such that w(db) = y, then lim Dt = y.

Proof. By theorem 14 we have

limD7 < limDy" =y,

and by theorem 6 lim D7 > u(b) = y.

THREOREM 16. If ¢ is such a point of E that w(c)> y, then ¢ is not
an accumulation point of the ewireme poinis.

Proof. The supposition that there exists a sequence 75 which
converges as n--co to the point ¢ in guestion leads to a contradiction
becaunse

y = limDy" = lim D" = u(c) > vy .
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