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On some functional equations containing iterations
of the unknown function

by M. Kvozma (Krakéw)

In the present paper L give o construction of the general solution,
and general continuous solution of some functional equations containing
iterations of the unknown funetion. The unknown function will be denoted
in this paper by ¢(z), ¢*(®) will denote the n-th iteration of the function
7). ,

§ 1. Let X be a space of arbitrary elements and let g(#) be a function
defined in a subset I of the space X and assuming values from X. Further,
let B be an arbitrary subset of the space X.

DEFNIION 1. We say that a function ¢(z) (defined in F and as-
suming values from X) sabisfies the functional equation

(1) (@) = glp()]

in the set ) if for cach x ¢ B the expressions ¢?(z) and glp(2)] have a mean-
ing and both these expressions are equal. Every function g(x) satisfying
cquation (1) in the set B will be called a solution of egquation (1) in E.

In the simple case g(z) = @ equation (1) has been treated by S. Golagb
[2] and G. M. Bwing and W. R. Utz [1] (cf. § 4 below).

DuriNmron TI. We denote by ¥ the class of all sets ¥V such thab
(2) gVYCVCEATF.

LinmMA T, If a function o(x) satisfies equation (1) in I, then the set
@(H) belongs to the class V.
Proof. Tt y, € p(f). It means that there exists an @, ¢ I/ such that

@) P (Ya) = (%) -
Consoquently y, ¢ B and v, € F, i.e. y, ¢ B ~ I. Hence

¢(B)YCEAT.
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Moreover it follows from (3) that g¢(¥,) € ¢ (H), whence

glpE] Co(@),

which completes the proof.

The following corollary is an immediate consequence of the above
lemmas

COROLLARY. A necessary condition for equation (1) to possess a solution.
in B is that the class V be non-emply.

We shall show that the above condition iz also sufficient.

DErINITION ITI. For an arbitrary set VeV we denote by Hp the
class of all functions h(«) that are defined in #—V and fulfil the condition

(4) WE-TV)CV.

‘We shall prove the following
TaEOREM I. The general solution of equation (1) in X is given by the
formula
. g for zeV,
®) (@) = {h(w) for weB-V,

where V is an arbitrary set from the class V and h(z) an arbitrary function
from the class Hy.

Proof. Inclusions (2) and (4) imply that the function ¢(z), defined
by formula (5), satisfies equation (1) in E. Moreover, we must show that
every solution of equation (1) in & is contained in the family of functions
determined by formula (5).

Let @(2) be an arbitrary solution of equation (1) in # and let us put

(6) LETIR
Lemma I implies that V e ¥. It follows from relation (3) that for z ¢V

p(@)=g(z).
Further, we have by (6)
p(E-V)CV,

which proves that function @(v) restricted to the set B—V belongs to
the class Hy. This completes the proof.

§ 2. Now let A" be the space of real numbers and let the set & bo an
interval (). Further, let the function g(x) be defined and continuous in
an interval F. Since we are going to give the general continuowus solu-

() By an interval we shall also understand a half-axis, the whole space X, or
a point. :
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tion of equation (1) in B, we have to modify a little the definitions of
the classes ¥ and Hp.

DEFINITION IV. We denote by <V the class of all intervals ¥ ful-
filling condition (2). For an arbitrary interval Ve and an arbitrary
function f(#), defined and continuous in the interval ¥, we denote by
Qy,y the class of all functions %(x) that are defined and continuous in
the set B—intV and fulfil relation (4) and the condition
(M h(u)= lim f(z)

. T, TEV
for each eV ~ BE—intV (¥ denetes the closure of the set V). If for some u
of this kind limit (7) does not exist, we consider the class Uy,s to be empty.

Since the image of an interval by a continuous function is an interval,
o(H) €Y for every continuous solution ¢(z) of equation (1) in E.

Similarly to theorem I, we can prove

TEEOREM II. The general continuous solution of equation (1) in B is
given by formula (B), where V is an arbitrary interval from the class <V and
L(x) an arbitrary function from the class Wygp (g|V denotes the restriction
of the function g(w) to the set V).

§ 3. Equation (1) is a particular case of the equation

(8) o™(@) = glo(@)] -

By an argument similar to that of §§ 1-2 we obtain the following
TueoREM III. The general solution of equation (8) in E is given by
the formula
zeV,
® wio =

zeB-V,

p(@) for
h(z) for

where V is an arbitrary set from the class V, y (%) an arbitrary solution of
the equation ) )

(10) yw) = g(x)

in V and h(z) an arbitrary function from the class Hy.

In the particular case where X is the space of real numbers, the set T is
an interval and the function g(x) is continuous in an interval F, the general
continuous solution of equation (8) is given by formula (9), where V is an
wrbitrary interval from the class 9V, w(w) an arbitrary continuous solution
of equation (10) in V and h(z) an arbitrary function from the class Hpp-

The above theorem enables us to reduce the solving of equation (8)
to the solving of equation (10). The general solution of equation (1Q) in
a set V such that g(V) =V has been given by S. Lojasiewicz [8]. As far
a8 it is known to me, the general solution of equation (10) in a set ¥ such
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that g(V) CV as ‘well as the general continuous solution of equation (10)
have not been given till now. They will be the subject of one of my next
papers. (In the simple case where g(@) = x the general continuous solu-
tion of equation (10) can be found in paper [1]).

§ 4. Equation (8) is 2 generalization of the equation
(11) pH{(@) = (@)
the general continuous solution of which is given by G. M. Ewing and
W. R. Utz [1]. Bwing and Utz also show by an example that the equation
(12) B i) = ™)
can have a solution which ig not a solution of equation (11) for any iterative
exponent n. We may ask how to construct the general solution (or general
continuous solution) for equation (12) or for a more general equation
(13) p™(w) = glo™@)],

At first we shall show

Levva II. If o(B) C E, then for every positive integer &
(14) ¢FHUE) C (B .

Proof. Let y, e@*+}(B). It means that there exists an #, e such
‘that g, = ¢F+1(m,). Let us put 2 E g(a,). Bvidently 2 e B and yo = ¢¥(2o),
whence 7, ¢ ¢*(B). Consequently relation (14) holds, which wags to be
proved. ‘

Now we shall define a class of functions Hy". For a fixed set VeV
we assign to the class Hy' all the functions h(z) (detined in E—V) formed
in the following manner (2): ' ‘

Let U, ..., U, i <m, be sequence of sets such that

UD = E, U; = V, Uk+1 C Uk, Uk+1 #= Uy for

m<n.

=0, ..,4—1.
We impose the function k() arbitrarily on each of the sets Up— Uy,
k=0,..,4—1, but in such a manner that
W Up~Ug41) C Upgr  for k=0,..,0—1.
Now we can prove
TEEOREM IV. The general solution of equation (13) s given by for-

malla (9), where V is an arbitrary set from the class V,p(w) 48 an arbitrary
solution of the eguation -

(15) y™() = g (@)
in V and h(z) is an arbitrary function from the class HY.

() If V = I the.class Hy is of coursé understood to be empty.
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Proof. It can easily be verified that every function ¢(z) defined
by formula (9) satisfies equation (13) in B. On the other hand, let ¢(x)
be a solution of equation (13) in E. We put ¥V gzp’"(E). One can easily
verify that V e V. Similarly it is evident that for #eV ¢(x) = p(z), where
y(x) satisfies equation (15) in V. It remains only to prove that in the case
V s B the function ¢ () restricted to the set E—V belongs to the class Hy'.

Let us put

U8B, U EgiE),

Nince ¢ (#) satisties equation (13) in E, (&) C E. Thus we have by lemma 1T

k=1,2,..

Uiy C Uy Moreover, if Uy, = Uy, then Uy = Uy, for all k> k.

Consequently there exists an index 4, 1 <7 <'m, such that

Uppr £ U for  k=0,..,i-1
and
U;=V.
Hvidently
(U= Ugr) C Uy for  k=0,..,i—1

Thig completes the proof.

§ 5. Now let X be the space of real numbers, H an interval and let
¢(2) be a function defined and continuous in an interval F. For an arbi-
trary interval ¥ « QY and an arbitrary funetion f(#), detined and continu-
ous in the interval V, we denote by 95, the class of all functions h(x)
(defined and continuous in F—intV), formed in an analogical manner
to the functions from the class Hy, but with the following additional
conditions:

1° The sets Uy, k =0, ..., 4, are intervals.

2° For each eV ~ H—intV condition (7) is fulfilled.

Then one can prove

THEOREM V. The general continuous solution of equation (13) in B is
given by formula (9), where V is an arbitrary interval from the class Y,
w(w) an arbitrary continuous solution of equation (15) in V and h(z) an
arbitrary function from the class Ay,
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