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Thug in- virtue of lemma 10 and (67) with v == Ap, lemma 11 im-
mediately follows. ‘

Our main theorem is a direct consequence of the above proved
lemmas. Indeed, from lemma 2 it follows immediately that this theorem
is a consequence of (11), (12), (13), and (14), and these, in turn, follow
from lemmas 7, 10, 9, and 11 respectively.

;
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On the asymptotic coincidence of sets filled up by
integrals of two systems of ordinary differential
equations

by C. OLEOH (Krakéw)

Introduction. In many papers concerning the asymptotic beha-
viour of solutions of ordinary differential equations the following problem
hag been congidered.

One has a system of differential equations

{0,1) dy/dt = F(y,t)+e(y, 1)

(y i8 a vector ¥y, ..., Yn, ¥ is real variable, F(y,t) and e(y, t) are vector-
functions) which arose from the perturbation of the system

0,2) - de|dt = F(x, 1) .

The Dbehaviour of solutions of (0,2) is supposed to be known by some
means (often system (0,2) is a linear one) and the perturbation e(y,1)
becomes small ag ¢—--oco. The problem consists in establishing, under
the appropriate assumptions concerning the perturbation, asymptotic
relations between the solutions of (0,1) and those of (0,2). More exactly,
one wishes to establish that for every solution #(f) of (0,2) there is
a solution y(¢) of (0,1) which is, what we may call “agymptotically
near” to x(t) (as t—+o0). Of courge the term ‘‘asymptotically near’
hag different meanings according to the aims we have in particular
considerations.

For instance, we may say that «(t) is asymptotically near to y(¢) if
their characteristic numbers are equal, i.e. if

(0,3) lim sup (In|y ()ift) = Lim sup (In|a@®)]1)

(see [2] and [4]), or if the following condition is satisfied
(0,4) y(t) = @(t)+n(t) where |5(t)] = o(la(t)])

(see [9]) or, in the case (0,2) ik a linear system, |n(t)| = o(#'¢*") where u
and o are constants determined by z(t) (see [3]).
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The term “asymptotically near’” may also expross that more exact
asymptotic conditions concerning some components of vectors a(f) and
4(t) are satisfied (see [7]).

At last, T. Wazewski has introduced a notion of agymptotic eoinei-
dence of solutions of two systems. His notion gives another example of
the meaning of the term “asymptotically near’.

Wazewski’s way of comparing asymptotic behaviowr of solutions of
the two systems differs essentially from the others mentioned above.
Tirst of all it has a qualitative character, it is an invariant of topological
mapping. On the other hand to any solution «(i) of the one system there
may exist at most one solution y(f) of the other which coincide axympto-
tically with @(f) in the sense of Wazewski. While in the other cases
mentioned above there may exist more than one solution of (0,2) satisfying
with some solution of (0,1) the condition (0,3) or (0,4). In fact, using (0,4)
as a definition of asymptotic nearness, we do not compare single soln-
tions of (0,1) and (0,2) but rather some sets X and ¥V of solutions of (0,1)
and (0,2) respectively. These sets are such that each solution from X is
asymptotically near to every solution from Y.

The purpose of the present paper is to present a qualitative way of
agymptotically comparing of sets filled up by solutions of the two
systems. With this view we will introduce the notion of agymptotic coin-
cidence of sets filled up by integrals. Our notion is a direct generalization
of that of Wazewski concerning single integrals.

We formulate the asymptotic coincidence proporty in termus of filters
theory (see acknowledgments at the end of the paper). Thuy section 1
deals with filters and their properties. Section 2 and 3 concern the intro-
ductory notions such ag sets and filters filled up by integrals and the
asymptotic boundary of a filter filled up by integrals. In section 4 we
define the agymptotic coincidence of filters and sets filled up by integrals.
The next sections present the main results of our theory. The last ones
concern their applications.

1. By E" we denote the n-dimensional Buclidean space and by # the
Cartesian produet E"x R, where B is a real line. By @, ¥, 2, wo denote
the points of E", by t the real parameter.

DrriNmrionN 1 ([1], p. 32). We shall call a filter on E" (or H) every
family § of subsets of E” (or E) satisfying the following conditions:

(1,1) if AeF and 4C B then B,
(1,2) if A< and BeF then 4 ~ Be§,
(1.3)  the empty set 0 does not belong to §.

Examere 1. The family of all subsets of E" countaining cortain
neighbourhood of a fixed point # of B™ is a filter on B
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EXA‘MPLE 2. Let «(t) be a vector-function defined on (0, + oo).
The family § of all subsets of ¥ such that if 4 ¢ then there exists £4 > 0
such that (#(f),?) € A for t> 14 is a filter on 5.

]?EFINITION 2 ([1], p. 33). We say that the filter & is stronger than
the filber ¥’ (or §' is weaker than §) if F CE. .

If § is stronger than § and § is stronger than § than the filters ¥
and § are identical.

. EXAM'PLE 3. Let § be the family of all subsets of E* containing
a fixed point # of . Then §' is a filter on E” and it is stronger than the
filter § given in Example 1.

PEFINIT?ON 3 ([11, p. 35). We say that the family B of subsets
of B Ef)r E) is a base of a filter § on E™ (or B) if § is composed of all sub-
sets B (or B) containing at least one set belonging to B. The filter § is
called a filter generated by the base B.

A filter is. at the same time a base of itself. Each base B generates
exactly one filter and one filter may be generated by many different
bages. Thus filter § is uniquely determined by any of its base.

EXAMPLE? 4. The family of neighbourhoods of a fixed point # presents
@ base of a filter and it generates the filter given by Bxample 1.

ExAMPIE 5. Let B be a denumerable family of sets 4, such that

An={®,1): 0 =a() and t>n} (n=1,2,..).

Then B is a base of the filter presented in Example 2.
) PROPOSI’.I.‘IOI.\T 1 ([1], p. 35). The family B of subsets of E" (or B)
s @ base of a filter if and only if the following conditions hold
(1,4)  the product of any two sets of B contains another set of B,
(1,5)  the empty set O does not belong to B.
PROPOSITION 2. 4 base B generates the filter T if and only if BCF
and for each set A €§ there emists a set B e B such that BC A.
PROPOSITION 3. Let B be a base of filter and let A contain a set belonging
t‘o SB..Then the family B4 composed by these sets of B which are contained
n A ds also a base of filter and the filters generated by B and B 4, respectively,
are identical. ’
‘PROPOSITION 4. The filler § generated by a base B is sironger tham
thel filter §' generated by a base B’ if and only if for every set B ¢ B there
ewisis a set B’ e B’ such that B' C B.
‘ DEFII\.TITION 4 ([11, p. 49). We say that » is an adherent point of a filter §
if fazuch neighbourhood of # meets every set of §. The set of all adherent
points of § is called the adherent set of .
The adherent set of a filter is always closed.

4%
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2. Let us consider a system of differential equations

(U dejdt = U(z,t), where «¢X” and U(a,1) e "

for (x,1) e B. . .
We suppose the following conditions concerning the system (T).
Hyporaesis H,(U). 1° The vector-function U(w,?) is continuous
on E. i
9° There exists a unique solution of (U) passing through a point
M = (#y,ty) e B and it may be continued on the whole half-line
<tM7 +OO)
Denote by

(2,1) z=ult, M), where M = (ay,ty)el,

the solution of (U) passing through M, i.e. w(ty, M) = ay.

By the integral of (U) we will mean the image of (2,1) in B considered
in the longest interval in which the solution (2,1) exists. The integral
of (U) passing through M we denote by Iy(M).

The part of Iy(M) corresponding ¢ > iy we denote by IH(M) and
we call it the right hand half-integral of (U) issuing from M. Similarly,
by the left hand half-integral of (U) issuing from M we mean that part
of ITy{M) which corresponds t <ty and we denote it by Ig(M).

DEFINITION 5. We say that a subset of F is filled up by integrals
of (U) (or by left hand half-integrals or by right hand half-integrals
of (U)) it for every point M ¢ 4 we have

Iy(M)yCA (or Ig(M)C A or IH(M)C A).

Now let 4 be an arbitrary subset of H. We denote by Zy(4) the
zone of emission of A with respect to gystem (U) and it is the smallest
set containing 4 and filled up by integrals of (U). Similarly, we denote
by Zg(4) and by ZH(A) the zone of emigsion of A to the left and to the
right, respectively.

‘We point out the following relations which are eagily seen

(2,2) Ziy(4) =MLEJAIU(M) '
(2,3) Zu(LAJ 4h = LAJ Zy(4Y),
(2,4) ZU(Q 4hc N Zy(4Y).

The relations (2,2)-(2,4) are still true if symbols Zy, Iy are replaced
by Z§,I$ or Zy, Iy, respectively.
Also the following proposition is easy to verify.
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PROPOSITION 5. A subset A ds filled up by integrals (or by left hamd
half-integrals or by right hand half-integrals) of (U) if and only if

(2,5) Zo(d) =4 (Z5(4) = A or ZH(4) = 4).

DEPINITION 6. We say that a filier § on B is filled up by integrals
of (U) (or by left hand half-integrals or by right hand half-integrals
of (U)) if it is generated by a base B composed of sets filled up by inte-
grals of (U) (or by left hand half-integrals or by right hand half-in-
tegrals of (U)). Such filter will be denoted by v (or F& or Fz).

ExAMPLE 6. Let § be an arbitrary filter on E". The family of zones
of emision with respect to (U) of all sets belonging to ¥ satisfies, on the
bagis of (1,2), (1,3), and (2,4), the conditions (1,4) and (1,5). Hence it is
a base of a filter and, owing to Definition 6, of a tilter filled up by inte-
grals of (U).

8. Let us consider a system (U) and let us suppose Hypothesis H,(U).
Let 4 be a subset of H. For arbitrary v> 0 we put

A, ={(@,1): (#,1) e 4, and t>7).

One eagily verifies that 4, = 4 ~ B, and

(3,1) if ACA* and v> v* then 4,C 4%,

Consider now a filter ¥y filled up by integrals of (U). Let B be an
arbitrary base of v, and let § be an unbounded set of positive numbers.
Put :
C(B;:8) = {4,: A eB and veS}.

‘We will prove that the family €(B, 8) is a filter base. Indeed, by
(3,1) we get that €(B, 8) satisfies (1,4) and by Hypothesis Hy(U) each
4.¢C(B, 8) is not empty, hence (1,5) also holds, and thus €( B, 8) is
a base. It may be also easily seen that any two such bases are equiv-
alent, it means that they generate the same filter.

DErFINITION 7. The filter generated by the base €(B,S), where B
is & base of filter {y and § is an unbounded set of positive numbers, we
call the right hand asymptotic boundary of the filter filled up by integrals
of (U) or shortly the asymptotic boundary of §y. We denote it by

Tt Fy) .

Remark 1, The agymptotic boundary of a filter filled up by inte-
grals is closely related to the Wazewski’s notion of the asymptotic end
of an integral. Consider an integral Iy(M). Let M, = (@p,1,) ¢ Iy(M),
iy <tpyr (p =1,2,...) and lim{, = +oco. Further let ¥, be a neighbour-

p—»co
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hood of M, and suppose
ZH(Vp) CZ5(Vpr)) (2 =1,2,...), QIZU(Vp) =Iy(M).

Following Wasiewski we denote by [{Z5(V,)}} the family of all
increasing sequences of sets {D,} which are equivalent to the sequence
{Z#(Vp)}. The last means that every set .D, contains at least one set
Z§(V,) and conversely every ZH(V,) contains some D,.

The family |{ZH(V,)}} Warewski called the asymptotic end of

+
Iy(M) ([11], p- 199) and he denote it by Bxtr (Iy(H)). On the other hand
)

let us consider the filter Fy(M) generated by the base compoged of the
zones of emigion of all neighbourhoods of M with respect to system (U).
It may be easily seen that the sequence {Z'{;('Vp)} (or any other equivalent
to this one) is a base of the asymptotic boundary of Fp(M). Hence the
agymptotic end of an integral as well as the asymptotic boundary of
Fu(M) are uniquely determined by the same sequence {Z{H(V,)}, though
their logical structures are different.

Now we are going to give some simple facts concerning the asymptotic
boundary of a filter filled up by integrals.

PROPOSITION 6. The asymptotic boundary of a filter filled wp by inte-
grals of (U) possesses a base B satisfying the following two conditions
(3,2) for arbitrary T > 0 there ewists B € B such that B C By,

(8,3) for every BeB there is a T >0 such that Iy(M)~ Bp CB for
each M e B.
Proposition 6 is a direct consequence of Detfinition 7.

PROPOSITION 7. Suppose a filter & is gemerated by o base satisfying
(3,2) and (3,3).
Then there i3 a filter Fyy such that

6 = Frt(Fu) -

Proof. Denote by Zy(B) the family of sets Zy(B) where B « B and B
i3 a base of ® satisfying (3,2) and (8,3). Of course Zy(B) is a base of
a filter filled up by integrals of (U). Denote the filter generated by Zy(B)
by v By (3,2) and (8,3) there exists an unbounded sot of positive num-
bers § such that B = G(Zy(B), 8). This finishes the proof of Proposi-
tion 7. ‘

PROPOSITION 8. Suppose filters Fy and Gy are filled up by integrals
of (U). If Fu is stronger than Gy then Fu+(Fy) is stronger than Fr+(Gy)
and vice versa.

This proposition follows from Definition 2 and (3,1).

icm
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4, Congider now two systems

L)) do/dt = U(z,t),

(V) doldt =V (2, t)

and suppose the Hypothesis H,(U) and H,y(V), respectively.

DErFINITION 8. We say that filter Fy is asymptotically ineident into
the filter ®p if the asymptotic boundary of Fy is stronger than the
asymptotic boundary of ®p ie. if

it (Gp) C FiH(Fy) .
We say that §u asympiotically coincides with ®p if Fy is asymptotically
incident into Gy and vice-versa, hence if

I (Fy) = Fri(Gp) .

In the applications we give in Sections 10 and 11 we are interested
in asymptotic coincidence of sets filled up by integrals. Now we are going
to make this notion precise.

PFirst we need some preliminary notions.

DEFINITION 9. We say that a filter F' is open if it admits a base
composed of open sets. Similarly, a filter Fy is open if it admits a base
composed of open sets, and filled up by integrals sets.

Consider now the sets P and @ filled up by integrals of (U) and (V),
regpectively. .

HyporHESIS H,(P,U). Suppose P is a set filled up by integrals
of (U) and suppose it is & compact set of integrals; it means that for suf-
ficiently large T the section of P by the hypexplane ¢ = T is a com-
pact set. :

DEFINITION 10. We call Fy(P) the filter of neighbourhoods of a set P
filled up by integrals of (U) if it admits a base B(P) composed of sets
filled up by the integrals of (U) and open and such ones that
(4,1) if Be B(P) then PC B,

(4,2) BE%(P)B =P.

For instance, the filter Fu(M) appearing in Remark 1 is a filter of
neighbourhoods of a set P composed by a single integral Ip(2M).

Remark 2. By (4,1) and (4,2) we eagily obtain that P is the ad-
herent set of Fy(P). On the other side if we suppose P satisfies Hy(P, U)
then Fu(P) is unique and it is the weakest filter for which P is the adherent
get. This does not hold if we allow P to be a non-compact set of integrals,
bhut only closed.

Now congider two sets P and @ and suppose they satisfy Hy(P, U)
and Hy(Q, V), respectively.
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DEFINITION 11. We say that P coincides asymptotically with @ if
the filter Fu(P) coincides asymptotically with Fp(@); in other words, if
the filter of neighbourhoods of P coincides asymptotically with the filter
of neighbourhoods of Q.

Remark 3. If P and @ reduce to the single integrals Ty(M) and
Iy(N), respectively, then the agymptotic coincidence of P and @ becomes
the asymptotic coincidence of Iy(M) and Ip(N) in the strong sense of
Wazewski (8. [11]). Indeed, owing to Wazewski the integrals Iy (M) and
Ip(N) are said to be asymptotically coincident if

Btr (Tp(M)) = Extr (Ip(X)).
023} )
On the basis of Remark 1 the last equality is equivalent to the follow-
ing one

Fr(Fu(I) = FrH(Fr(N)) ,

where by Fp(M) and Fp(N) we denote the filter of neighbourhoods of
Iy(M) and Iy(N), respectively.

Thus our notion of asymptotic coincidence of sets filled up by inte-
grals of two systems is a direct generalization of Wazewski’s concept..

Remark 4. Owing to Remark 2 the property of the asymptotic

coincidence of P and @ is not only the property of s.ts bub also of the
systems in neighbourhoods of P and @.

5. In this and the next sections we are going to give some results.
concerning the asymptotic coincidence of filters as well ag of sets filled
up by integrals. We begin with the following theorem:

TEEOREM 1. Besides systems (U) and (V) consider the third system.
(W) dw{di = W (2, 1)

and suppose the Hypothesis H,(U), H(V) and Hy(W), respeciively. Let
Foy Gp and Hw be filters filled wp by integrals of (U), (V) and (W)
respectively.

Suppose Fu is asymptotwally incident into Gp and Gy is asymptotically
incident into Sy .

Then Fy is asymptotwally incident into .

Proof. By the assumptions and Definition 8 we got
FrH(§u) DFrH(Gp) and  Tr+(Gyp) D Frv{$w).

Hence Frt(Fy) D Fr($Hy) which proves Theorem 1.
It follows from Theorem 1 that the following corollary holds.
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CorOLTARY 1. Under the same assumptions as in Theorem 1 if §o
coincides asymptotically with Gp and Gy coincides asymptotically with $m—
then Fu coincides asymptotically with $Hpy.

Hence the relation of asymptotic coincidence has the transitive
property. Because evidently it is reflexive and symmetric, it is an
equivalence relation.

THEHEOREM 2. The filter Fu filled up by integrals of (U) may coincide
with at most one filter Gy filled up by integrals of (V).

Proof. Theorem 2 follows directly Proposition 8, Theorem 1 and
Corollary 1.

THEOREM 3. Suppose Fy 18 open and coincides asymplotically with Gy .
Further, suppose Ty admits a base composed by connected sets.
Then Gy is open and it admits o base composed by connected sets.

Proof. Let 4 be a set filled up by integrals of (U) and suppose it
is open and connected. Then for any v> 0 A, is also connected. (Evidently
A, is open). Indeed, A, is filled up by right-hand half integrals of (U)
and therefore if we could decompose A4, into a sum ¢ D such that
(CAD)u (0~ D)y=0 then 0 and D would be filled up by right-hand
half integrals of (U), also. Then we would have

(Zu(0) A Zp(D)) v (Zu(0) ~ Zy(D)) =0 and A = Zy(C) © Zy(D).

The lagt two relations eontradict the assumption 4 is a connected set.
Thus we proved A, is connected for every = > 0.

It follows from the above that the base €(B, §) where B ig a base
of Fu composed of open and connected sets and § is an unbounded set
of positive numbers, is also composed of open and connected sets. By
Definition 8 €(B, 8) is a base of FeHFy) and by the assumption FeH(Fo)
= Ii+(Gyp) it is a base of Fr¥(Gy), also. Therefore Zy(C(B, §)) is a base
of . This, together with an observation that the zone of em'ssion of
open and connected sets are always open and connected proves The-
orem 3 completely.

The above theorems remain valid if we replace the asymptotic coin-
cidence of filters by that of sets. According to the last notion we mention
here only the following noteworthy consequence of Theorem 3.

CoROLLARY 2. Let the sets P and Q sabisfy Hypothesis Hy(P, U) and
Hy(Q: V), respectively. Suppose that P coincides asymplotically with @ and
suppose P is connected. Then @ is also connected.

6. Now we are going to discuss the following problem.
Suppose Fr is a filter of neighbourhoods of a certain set P satlsfymg:
H,(P, U) and suppose Fp coincides asymptotically with G. Is G a filter
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of neighbourhoods of some set @ filled up by integrals of (V)% The positive
answer for this problem gives the following theorem.

TaeorEM 4. Let P be a set satisfying Ho(P, U). Suppose the filter
of neighbourhoods of P coincides asymptotically with some filter Gy filled
up by integrals of (V).

Then there is a set Q satisfying Hy(Q, V) such that one G is a filter
of neighbourhoods of Q, hence. ‘

Gy = Gp(Q) .

Proof. Notice that every filter of neighbourhoods admits & denumer-
able base B = {B™} satisfying the following condition

(6,1) B® ig open and B®D BV (p=1,2,..).

This eondition is also sufficient for the filter generated by B to be a filter
of neighbourhoods. Now let B be a base of Fu(P) satislying (6,1). Without
loss of a generality we may suppose that BY” ¢ B are filled up by inte-
grals of (U). Then the sequence C, = BP =B® ~ B, is a base of
Bt (Fu(P)) and owing to the assumption Frt (Fo(P)) = Frt(Gy) the
sequence C, is also a base of Fr*(®y). By (6,1) we get

(6,2) Ty C C,p.

Using Propositions 4 and 7 one can show that the sequence ZFH(Cp) is
also a base of Fri(®y) and Zp(Cp) is a base of Gp. By (6,2) we get that

ZV(U‘IH—I) = ZV(Cp+1) c ZV(Op) (23 = 1: 25 o)

The last relation proves that Gy is a filter of neighbourhoods of a set Q,
where
Q= Zp(Cp) .
p=1
Evidently @ is filled up by integrals of (V). ¢ is compact because for
sufficiently large p and 7' the section of B® Dy the hyperplane ¢ = 7' is
bounded. Thus we find Theorem 4 proved.

7. In the present section we prove the invariant property of asympto-
tic coincidence of filters (or sets) with respect to continnous transforma-
tions. First we make precige the kind of transformations with which
we will deal.

Consider two systems

(0) daldi = U(w, 1)
and
(Ty) dylds = U,(y, s)

and suppose they satisty Hypothesis Hy(U) and H,(U,) respectively.
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Further, let us consider the transformation
(T t="h(s), w=0>(y,s).

DEFINITION 12 (see [6], p. 39). We say that T carvies system (T0)
into system (U,) if

1° T is an homeomortism of B onto E (T(H) = E).

2° Between integrals of (U) and (U,) there is a one-to-one cores-
pondence such that to any solution z = w(t) of (U) defined on (a, -+ co)
there corresponds a solution y = u.(s) of (U,) defined on (f, + co) such that
(7,1) w(h(s)) = Bus),s) for p<s< +oo,
(7,2) B((B,+o00)) = (a,+00) .

THEOREM 5. Consider two systems
(v) dajit = U, 1),
(V) dazjdt = V (2, t)
and suppose Hypothesis H,(U) and Hy(V) respectively.

If the tramsformation (T) carries system (UT) into

(U,) dyjds = Uyly, 9)
and system (V) into
(Vi) « dylds = V(y; 9)

and if the filter Fy filled up by integrals of (U) coincides asymptotically with
the filter Gy filled up by integrals of (V) then
(i) the filter T(Fo) is filled up by integrals of (U,) and the filier T (Gp)—
by integrals of (Vy),
(ii) T(Fy) coincides asymptotically with T'(Gy).
Proof. The part (i) follows the definition of (T) and part (ii) is a con-
sequence of the fact: if AC B than I'(4)C T(B).
Remark 5. Under sufficiently general assumptions onme can trans-
form any system (U) satisfying Hypothesis Hy(U) into the trivial system
(B) do/dt = 0,

Theorem 5 allows, in such cases, to reduce the problem of comparing
two systems to that one in which one of the systems is of the form (B).
Thix often may give us a simplification of the problem.

where 0 is a zero-vector .

8. Before wo formulate the main result of this seetion we need some
notions and facts.

DEFINITION 13 ([1], p. 9). We say that the family D of subsets of €
determines on & a topological structure if D satisties the following conditions
(8,1) the sum of an arbitrary number of sets of D belongs to D,
(8,2) the product of & finite number of sets of © belongs to D.
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The set ¢ with a topological structure determined on it, we call the topo-
logical space and the sets belonging to D, we call the open subsets of ¢.

DEFINITION 14. We say that o{C & is a neighbourhood of o if weof
and gl contains a set belonging to D (an open set).

PROPOSITION 9 ([1], p. 11). A set ol is a neighbourhood of every point
belonging to ol if and only if it is open.

It is easy to be verified that the family B(») of all neighbourhoods
of # (z is a point of topological space) fulfills the following conditions:

(8,3) In each subset of ¢ which containg a set belonging to B () also
belongs to B(x),

(8,4) The product of finite number of sets of B(x) belongs to B ().
(8,5) The point « belongs to every set of B(w).

(8,6) If of € B(x) then there is BeB(w), BC A, and for every y e B,
A € B(y).

These properties of B(x) characterize completely the topology on &.
More exactly, the following proposition holds.

ProprosITION 10 ([1], p. 12). If o any point 2 e & there corresponds
a family B(x) of subsets of € satisfying (8,3)-(8,6) then there is a topological
structure on & for which B(x) s a family of neighbourhoods of w.

We define now space of open filters on H. Let € be some set of open
filters on F and let §e . In order to define a topological structure on ¢
it suffices, on the basis of Proposition 10, to determine a family B(F)
of subsets of €, which would satisfy (8,3)-(8,6).

The family B(F), where Fe . The set o« CE will belong to
B(F) it .

(8,7)  there exists an open set A C H such that A eF and if 4 e G e €
then ® e oA.

Lewvwa 1. The family B(F) defined above satisfy conditions (8,3)-(8,6).
Proof. If «f C ¢ satisties (8,7) and if of C 9 then 9B satisfios (8,7),
also. Hence B(F) fultills (8,3). Now let of;e B(F) (=1, ..., k). By tho
definition of B(F) we can find open subsets A°CE (§ =1, .., k) such

X K
that A*e¥ and A satisfies (8,7) with respect to of;. Pubt 4 = (| 4% Tt is
daal

- . . . k
easily seen that A satisfies (8,7) with respect to «f = p ;. Therefore
=]
(8,4) holds for B(F).
The condition (8,5) is a direct congequence of (8,7).

We are now going to prove (8,6). Let of « B(F) and let A be the set
assured by the definition of B(§) and corresponding to «{. Denote by 9B
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the gets of all filters of € containing A. Obviously 9 ¢ B(F) and 93 C of.
Further, for any ® B, 9 eB(G) and therefore f ¢ B(G) for any
® ¢ 93. The last proves (8,6) for B(F) and at the same time finishes the
proof of Lemma 1.

We may propose now the following definition.

DEFINITION 15 (see also [13]). A set ¢ of open filters on B with the
topological structure given by the family of neighbourhoods B(F) cor-
responding to any § ¢ & we will call the filter-space.

DEFINITION 16. We say that the mapping o' = f(z) of € onto & is
continuous for @y e € if for arbitrary neighbourhood <V’ of f(z,) we may
find a neighbourhood )V of a, such that for every » eV, f(x) eV’ or that
FY)CY'. It &' = f(») is continuous for every ze¢ then we say briefly
that it is continuous.

PrOPOSITION 11 ([1], p. 29). The mapping ' = f(z) of & onto & is
continuous if and only if for every open subset <’ of &' there is an open
subset A of € such one that o’ = f(A).

‘We are now ready to formulate the main result of the present section.

TEEOREM 6. Let us assume that (U) and (V) satisfy H,(U) and Hy(V)
respectively.

Denote by & some space of filiers on E which are open and filled up by
-imtegrals of (U).

Suppose for every Fy e € there exists a filter Gy filled wp by imtegrals
of (V) which coincides asymptotically with Fy. Denote such filter by e(Fuv),
hence

(8,8) Gy = ¢(Jv),

and. denote by &' the image of & by (8,1), thus B' = e(B).
Then the relation (8,8) represents a homeomorphism of & onto C'.

Proof. We point out that &' is composed of open filters (see Theo-
rem 3) and therefore we may consider ¢’ as a filter-space.

By Theorem 2 we get that the mapping (8,8) is one-to-one. In order
to prove that (8,8) is continuous we will use Proposition 11. Therefore
let o' be an open set of ¢’ and let o’ = ¢(<7). We ought to prove that of
is an open subset of €. Let §p be an arbitrary element of o and let
©) = ¢(FY). Bvidently GY e o' and sinee <’ is an open set of ¢’ we find
that «{’ is a neighbourhood of G%. Thus there is a set B C B which iz
open and filled up by integrals of (V) and such one that if Be®ye ¢’
then Gp e o’ (see (8,7)). By the assumption Fr+(Gy) = Fr+Fy) there
is a constant 7' and a set A e§y which is open and filled up by integrals
of (U), such that

(8,9) AzpC By,
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Denote by B = {Fu: Fv e € and 4 eFy}. Obviously B is a neighbourhood
of §u. For an arbitrary filter §u « B there exists a set B* e Gy, whore
Gy = ¢(Fy), and a constant T* > T' such that Bfs C Ap. This and (8,9)
shows that Bj«C By and in consequence B*C B. The last means that
BeGp for any Fp eB. Therefore ¢(93) C of’ and BC A. Hence (see
(8,3)) o is a mneighbourhood of every element of itself, therefore of is
open what was to be proved.

To illustrate Theorem 6 let us congider the filter space ¢ composed
by filters of neighbourhoods of single integrals of (U). Hence if §r € ¢ then
there is a point I such that Fy =TFo(M) or, in other words, Fy is a filter
of neighbourhoods of Iy(M). One can easily see that the convergence
in this filter-space means the almost uniform convergence of corresponding
integrals. Suppose now that to every integral Iy(M) there is an intogral
Iy(N) which coincides asymptotically with Iy(M). By Theorem 6 we
conclude that if Iy(M,) tends almost uniformly to Iy(M,) as p-+oco,
Iy(M,) coincides asymptotically with Ix(N,) (p =1, 2, ...) and I'py(M,)—
with Ip(N,) then Iy(N,) tends almost uniformly to Ip(N,) as p —oo.

This consequence of Theorem 6 have been proved by T. WaZewski
(see [111, p. 200).

9. In this section we prove the following theorem.

THEOREM 7. Consider two system (U) and (V) and suppose they satisfy
H(U) and Hy(V), respectively.

Let Fu be a filter filled wp by integrals of (U).

T'he sufficient and necessary condition for Fy is asymptotically coincident
with some filter Gy filled wp by integrals of (V), s that there exist two bases B,
and B, of FrH(Fy) satisfying the following conditions

() If B « B, then B is filled up by right-hand half integrals of (V).

(i) If BeB, then B may be obtained as & product of o set filled up by
left-hand half integrals of (V) and the half-space By (Bp = {(®,1):
T<t,oeE").

Proof. On the basis of Proposition 8 it suffices to show that there
is a base B of Fr(Fy) satisfying (3,2) and (3,3) with respect to system (V).

As a base B lot us take the family of right-hand zone of emission
of sets belonging to B,. Owing to (i) B satisties (3,2) and (3,3). We are
now going to prove that B is a base of WrH(Fy). Since B, and B, generate
the same filter, thus to any B e B, there is B? ¢ B, sueh that B C B.
But because of (i), ZH(B?) C Z#(B!) = B'. Thus we have shown that o
any B¢, there is B ¢ B such that BC B (B = Z§ (B%). On the other
ya.nd to any B? ¢ B, there is B¢ B, such that B'C B2 The last and (i)
implies that B'= Z#(BY)C Z#(B?) = B. Thus to any Be®B there is
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B! € B, such that B* C B. Therefore we have proved that B is equivalent
to B,, hence B is a base of Frt(Fy) which was to be proved.

In this way we proved the sufficient condition, the necessity is
obvious. Thus Theorem 7 is completely proved.

10. In this section we present the first application.
TEROREM 8. Consider system

(W) dwjdt = U (2, 1)
and suppose that
(10,1) [ W(w, )| << g(t)|w]  for t>0 and every z,
where
(10,2) fg(s)ds < +oo.
Under these assumptions every integral Iz{(M) of the trivial system
(Z) dojdt = 0

coincides asymptotically with some set Q (1) filled wp by integrals of (W).
Proof. Bach integral Iz(M) is a straight line

(10,3) €T = g, where (W}]], tdl) =M.

The filter of neighbourhoods of Iz(H) is composed by subsets of ¥
containing at least one eylinder surrounding (10,3) that is the set of the
form |z—ay| < ¢ and t arbitrary, e is a positive number. Similarly, the
family B

B={B.: 0<e<l, 73>0} where B,={(#,t): |e—zy|l<e, t>7}

is a base of Fr'*(Frz(ﬁz(M))), where by Fz(M) we denote the filter of
neighbourhoods of integral Iz(M).

In order to prove Theorem 8 we apply Theorem 7. Thus we define
below two bases of Fr+(§4(M)) which satisty (i) and (ii) of Theorem 7,
regpectively.

First, notice that there is function h(f) such that

(10,4) |W(x,t)| <h(®) for |e—uy|<l and 0<t< 400,
and
(10,5) [ h(s)ds < oo

(1) Under some additional assumptions the set ¢ reduces to a single integral
(see [6], p. 51). However, if we suppose (10,1) and (10,2) only then @ may contain more
than one integral (see example below). '
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400
Suppose f h(s)ds <1/2. Let us pub

0

B, = {0z 0<e<1/2, 7>7p}

where G‘n={(m,t): |6 —tnr] < 6~ f h(s)ds, t>r}, and
t

By = (Dt 0 <& <12, 7> 7}
where D, = {(w,t): [m*mM|<a+f h(s)ds,t>r}.
t

o]
Since f h(s)ds—0 ag t—-+oco thus each of B, and B, is & base of
i

Fr+(§z(M)). We are going to prove that B, satisties (i) and B, satistios
(ii) with respect to system (W). Let & = w(¢t) be arbitrary solution of (W),
Suppose N = (w(ty), ) € Cx for some 0 < e <1 and v > 7,. By the ine-
quality Dy|w(t)—ou| < |W(w(t), )] and by (10,4) we got

{10,6) —h(t) < Dy|wlt)—zp] < +R(E) i (w(t), 1) ¢ By.

By (10,6) we easily obtain that
t
(2w () — @ag] < | 0 (tg) —ae| + [ Bls)ds
(10,7) fo
= [442(t0)~mM]+f h(s)ds — f h(s)ds .
i i

. o0
Sinee (w(t), to) € O thus |w(te)—an| < s— f h(s)ds and therefore by
{10,7) we get that o

oo

\w(t)—-mM|<s-«fh(s)(ls for t>4.
i

The last means that IH{N) C 0, it N « C.r, that is B, verifies condition (i)
of Theorem 7. )

Similarly if N D, for some 0 < ¢ < 1/2 and 7 > 7, then by (10,6)
we get the inequality

b
(10,8) |0(8)— ae] < (to) —aag)+ [ B(s)dis
¢
for ¢ <ty if |w(t)—ax| < 1. It follows from (10,8) that

(10,9) [0()— @ar] < Jw(te) — 2] + [ Bis)ds— [ B(s)ds.
H to
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Since N € D, thus |w(ty)— var] < s-l—tf h(s)ds and therefore by (10,9) we
get the inequality

(10,10)

lw0(t) ~2u < [ h(s)ds+e.
t

The last inequality is valid in an interval (¢,%,) where ¢ > 7. But it is

eayy to see that ¢ is equal 7. Ience the left-hand half integral Im(N)

remains in D for » <t <% and any N e D,.. The last proves (ii) for B,.
By Theorem 7 wo get that thero iy a filter Gy filled up by integrals

of (W) which coincides asymptotically with §,(M) and by Theorem 4

we deduce that &y is the filter of neighbourhoods of some get @ filled np

by integrals of (W). The last finishes the proof of Theorem 8.

Remark 6. Notice that if the solution # = w(t) of (W) belongs to @
then limw (t) = #;. On the other hand, it is easy to prove that if limw(z)
{00 {00

= @y then the solution @ = w(t) belongs to @. Hence @ is composed of
all integrals of (W) having &y as a limit at infinity. Also by (10,1) and
(10,2) one may conclude that every integral of (W) has a limit as {—>+-oo.
Therefore the set of all integrals of (W) we may divide into a sum of
closed sets Q(M), M « E", such that Q(M) coincides asymptotically with
I5(M). Theorem 6 shows some continuous dependence of @(3) with
respect to M. More exactly, if M,—M, ag p~>-+oco (p=1,2,..) then
every open set V filled up by integrals of (W) and containing (M)
contains also @ (M,) for sufficiently large p.
By Theorem 5 we get that every set @(M) is compact.

ExAMPLE 7. The following example shows that the set ¢ in Theo-
rem 8 may contain more than one integral. In the following  is a real
variable. Consider the equation

1+
1 2 (— exp (m—arctant))
2 = ! T-L8# explarctant)— exp (r— arc tant) @

if 2> exp(r—arctant),

{10,11)
it exp(aretant) < < exp(n—arctant),

1

= i < p t).
1+th if @ <exp(arctant)

One can eagily verify that

(=18

Annales Polonici Mathematici XI
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and therefore the assumptions (10,1) and (10,2) hold. However every
solution of (10,11) issuing from (w; 0) where 1 < @, < expm, tends to
expm/2 a8 t—>--oo.

At last we point out the following result as a simple consequence of
Theorems 8 and 5.

TaEoREM 9. Consider two systems

(L) dojdt = A(t)w
and
®) dojdt = A(t)o+ (@, 1) .

Let X (t) be the matriz-solution of (L) that s it satisfies the conditions
AX@)d =ARX(E) ond X(0)=1I,

where I denotes the unit-matris.

If
(10,12) X)) (X (0)y, 1) < gyl 5
where
{10,13) [ 9(s)ds <+ oo

then every integral of (L) coincides asymptotically with some set filled wp
by integrals of (P).

Proof. One can see immediately that the fransformation
(T) x=X()y,

carries system (L) into system (Z) and system (P) into the following one,

t=1

dylt = Wy, 1) = X (0)e(XW)y, 1) .

Hence by (10,12) we find ourselves in the case considered by Theo-

rem 8 and owing to this theorem and Theorem 3 we get Theorem 9.

11. In this section we deal with the special system of two differential
equations o

(®) dwjdt = R(w)

where = (2, ;) and R(w):(Rl(wl,ma),Rz(wl,wg)). We suppose tho
following hypothesis concerning (R).

Hyroramsis H;. 1. R(x) is of clags O for o< B? and R(x)#0
for |@| # 0, where || = Vai+a3.

2. Bach solution of (R) is periodic.

On other words (R) besides one singular point admits only cycles.
surrounding (0,0). :
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Some condition concerning the existence of systems (R) satisfying H,
is due to Z. Opial [8]. Opial’s condition is a generalization of some other
due to Filippov (for references see [8]).
Besides (R) we consider system

(®) dwjdt = 8 (@, 1)

and we suppose the following assumptions.
Hyroraests H,. I. S(»,t) is of class C* for # ¢ E* and ¢ > 0.
II. For every « e E? there exist the limits
38 (w,t) _ oR(x)
ow; o

limS(»,t) = R(w), lm (i=1,2)
t->4-00 o0
and the above covergence is almost uniform on E2.
III. For every fixed s> s, (s, is an appropriate constant) the
autonomous system

Q) dajdt = 8(w, 8) (°)

satisfies Hypothesis H; with the exception that the only one singular
point of (Q) must not be (0,0).
Exampie 8. The linear system.

(Ly) dw Jdt = a(t) 2y +b(t) 2,  dayfdt = c(t) @, —a(t)®,
where a(t), b(t), ¢(t) are of class C* and there exist the limits lima(f) = a,
Limb(t) = b, lime(t) = ¢ and a*+be < 0, satisfies Hypothesist—ﬁk:? Indeed,
EZ; is 8o s:ghw that for s> s, the characteristic roots of

a(t) ()

c(t) —al(t)

are purely imaginary and therefore any golution of linear system with
constant coefficients :

dwy/dt = a(8)w,+b(s) %, ' dwy| @t = c(s)x,— a(s) %,

is periodical. Under slightly general assumptions system (L;) was in-
vegtigated by T. Wazewski [12] and our regult given below is closely
connected with these of Wazewski’s note [12].

Tet O denote a traiectory of (R). Then P =9I X R (B=(— 00, + 00))
is a surface filled up by integrals of (R) when the last is congidered in
E? % R.

We prove now the following result, L

() (@) is a one-parameter family of autonomous gystems

depending “on s—the
parameter. The solutions of (Q) are funections of f.. . [ N

5*
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THEOREM 10. Consider systems (R) and (8) and suppose they satisfy
H, and H,, respectively.
Further suppose thai

(11,1) 88 (w, t)/et] < a(t)|@|
where
(11,2) [ als)ds < +oo.

Under these assumptions the following assertions hold.

a. To any set P =3 xR (%) there ewisis a set @ filled up by integrals
of (S) which coincides asymptotically with P.

b. Q is a compact set of integrals.

. If o sequence of trajectories Ty tends to 9o and Py =9, xR
(k=1,2,..) then the sequence of seis Qi coinciding asymptotically with Py
has the following property: every open set filled up by integrals of (S) con-
taining Q, contains also Qy for sufficiently large k.

Proof. Without loss of generality we may suppose that I passes
through (&, 0) where & >0 and that

Ry(&p, 0) > 0.
There is a positive constance 4, 4 < &, such that

(11,3) Ry2, 0) >y >0 for &—A<n<&+4d.

We introduce into consideration two auxiliary functions. The first
one K(z,,®,) is determined by the following conditions.

A. E(w,,®,) is determined in the zone of emission of interval
E—Ad <m < &+4, 2,=0 with regpect to the autonomous system (R).

B. K(@,, @) is constant along the trajectories of (R).

C. K(zy, 0) = @, for &§—4 <m < &+ 4.

The second function L(#;, %, 8) for any fixed and suitably large s is
determined by A, B and O provided that system (R) is replaced by (Q).
Hence L(w,, 2,,s) is determined for such s> s, for which

8y(@1,0,8) >0 on S—Ad<o<E+4.

Owing to H,.II such s, exists.
Since R(z) is of class C! thus K (w,, @,) is also of class O* with rospect
to #; and #, and owing to assumption B we have

0K (1, ,)

OK (y, @)
%, By(wy, @) + B —

Ryfay, ;) = 0.

{®) 9 may be a singular point (0,0). Then P is the straight line u, = @y = 0.
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Similarly, L(%,, ., s) is of class (* with respect to #, and 2, and for every
fixed s > s, we have

%wﬂ’_s)gl(mh . g)_;_@.(ﬁ.l’w?_’s) Sy(es, 22, 8) = 0.

(11,4) 8w, 815,

According to Hypothesis H,.IT and to A we get that if for some
% = (B, Ty) K (2, #;) is defined then there is § such that for s> § and
2 =% L(®y, 0, 8) is defined also and there exist the limits

lim L(&, &, §) = K (%, %), lLm 0L (@y, %y 8) _ 0K (%, Ty)

11,5
(11,8) 8400 §er+00 oy 0w

(4 =1, 2) and the above convergence is almost uniform with respect to Z.
Denote by (i, &, &, s) the solution of (Q) satisfying the initial

conditions
(P1(07 517 52; 3) = ‘51 and

Since 88/2s exists; thus the derivative

P20, &1, &ay 8) = &,.

op(t,2,0,8
Liadl bl 732’ ! )’:-'P(t:wl,s)

exists also, and (see for example [5], p. 168) for every fixed z, and s
y(t, @, 8) is a solution of linear system
2

8@y, ) 8) 8y(,, %2, 8)
oy e+ 08

(11,6)  duydt = (i=1,2)

k=1
where & = g(t, 2,, 0, 8) and (0, #,, 8) = 0. By the general form of solu-
tion of (11,6), by (11,1) and by H,.III we get the inequality

(11,7) |opfos| = |p(t, 2, 5)| < Mals)

where M is constant common for all &—4 < oy < &+ 4.
Owing to C we have

(11,8) L(‘Pl(tymu0;3)7%“7”1707'9)’3) =

Since there exist oL/ow; (i = 1,2) and dp/és thus it follows from (11,8)
that 6L/os exists also and
oL <91} op,

oL

om, 0s

By (11,3) we get that 8L/az; are bounded, therefore (11,9) and (11,7)
imply the following estimation

(11,10) |oL/jas| < M*a(s)
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where M* is the appropriate constant common for all (2, #,,s) for
which L(#,, @, §) is defined.

With the aid of K (y, %) and L(w,, @, 8) we defined now a basge
of Fr(P) and two bases B, and B, of Fr+(i}'3(1’)), satisfying the as-
sumptions (i) and (ii) of Theorem 7, respectively.

Let us notice that the set P is determined by

(11,11) K (3, @) = &,
The family of sets B, for 0 < & < 4 where

—oo <t < 4oo.

B, = {(w, t): |K(m1, w5)— & < &, —o0 <t < o0}
is a base of the filter of neighbourhoods of P and the family
B = {B,: 0<e< 4 and 7> 0} where
B, = {(w,1): (#,1) ¢ B, and {> 7}

is o base of Fr+(Jx(P)). Put

oo

(11,12) By = M* [ a(s)ds.
i

Consider now another families of sets

By={Ca: 0<e<d,v>7(e)} and By={Dgx: 0<e<d, v>7(e)}
‘where ‘
and O = {1, 1) &y— -+ B(t) <Ly, By, 1) <&+ &—B(1), 1>}

Do =[(2,8): &—e—B(t) < L@, 2, 1) < &+e+p1), t >},
7(e) is so chosen that e¢+B(t) <4 and e—fg(t) >0 for > v(e) and
0<e< 4
One can easily see that B, as well as B, satisfies (1,4) and (1,5) and
therefore they are bases of filter. We prove now that B, and B, are bases
of Fr+(§z(P)). Indeed, let B., be an arbitrary set of 8. By (11,4) we can
find e <& and 7 > 7 such that

(11,13) C:C B, D;:CB,.
By the same arguments to any e, v there are &* < ¢ and v* > v such that
(11,14) BusCOC, and BupsCD,.

Proposition 4, (11,13) and (11,14) imply that B, as well as B, is a base
of Br+(Fz(P)) which was to be proved. a

To finish the proof of Theorem 10 we will show that 9B, satisfies (i)
and B, satisties (ii) of Theorem 7. If we do so then the part a. of Theo-
rem 10 will follow Theorem 7 and 4, the part b. is a consequence of
Theorem 3 and part a., at last part c. results from a. and Theorem 6.

and
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.

Let (2,(2), @2(t)) e a solution of (S) and let

(11,15) (ot), ) ,t) € Ce for =1,

We are going to show that (11,15) holds for ¢ > {,, that is, that O, is
filled up by right-hand half integrals of (S) (see (i)). Owing to the defini-
tion of C., we must show the inequality

(11,16) —e+BEY <Aty <e—f() for t>1%,

where A(t) = L(y(t), #(t), 1) —&. By (11,15) we find (11,16) valid for
t = t,. Suppose for ¢ = t, > 1, (11.16) does not hold. There is &, <& < 1,
such that for t, <t < {, (11.16) holds and for ¢t =1, we have

(11,17) Aty = —e+B(t) or All) =e—f(t).
Since
' aL

M) = T (ml(t)7 2(t) t) 3

thus by (11,10) and (11,12) we get the inequality
(11,18) Bty < X)) < —p'(8)

which is true for t, <t < t,. By (11,18) we conclude that A(t)--B(?) is
decreaging and A(f)—B(f) is increasing for #, <t < {, and therefore by
(11,18) we get the inequality —s&-+f(ts) < A(t) < g— f(t;) which contra-~
diets (11,17). Hence (11,16) holds for all ¢ > t, and B, satisties condition (i)
of Theorem 7.

Consider now an arbitrary set D, and suppose (ml(tu), Zo(o), to) €D,.
In this case we have the inequality

(11,19) —BH)—e< At) < B(t)+e.

Using the analogous arguments as above one can prove that for v <t <t
A(t)—B(t) is increasing and A(t)+B(f) is decreasing function. Therefore
(11,19) holds also for v <t <t. The lagt shows that D,, is filled up by
left-hand half integrals of (S) provided (8) is congidered for &> 7. That
is, B, satisfies condition (ii) of Theorem 7.

Thus using Theorem 7 we conclude that there is & filter Gy filled
up by integrals of (S) which coincides asymptotically with ¥r(P). It follows
from Theorem 5 that ®g is a filter of neighbourhoods and therefore the
adherent set @ of Gg coincides asymptotically with P. Because of Theo-
rem 3 @ is compact and by Theorem 6 the property . is fullfilled. Hence
we find Theorem 10 completely proved.

ExampLe 9. The present example shows that under the agsumptions
of Theorem 10 any single non-trivial integral of (R) may not coincide
asymptotically with any integral of (8).
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As a system (R) let us take the following one

(11,20) dayfdt = — @y, dmyfdt = 2y

and as a system (8) this one

(11,21) dodt = — (1 +1ft)ay,  danldt = (1+1ft) ;.

One can easily verify that (11,20) satisfies I, and (11,21) satisfies I,
and the assumptions of Theorem 10. The sets P and @ are the same and
they present a cylinder

a:i—l—m:: n, —oo <Lt < foo.

We apply now to system (11,20) and (11,21) the transforination

(T) By = U COS (T tg), Ty = ysin(t-uy), t=1.

(T) carries integrals of (11,20) into the straight lines and integrals of
(11,21) into the curves of the form

Yy =@, Uy = 0-4Int.

Since for any b u, does not tend to finite limit ag t— - oo, thus any single

integral of (11,21) does not coincide asymptotically with some of (11,20).
Below we give a generalization of Theorem 10. -
THEOREM 11. Suppose system (R) satisfies Hj.
The assertions of Theorem 10 remain valid if:

() There is a sequence Su(x,t) such that

Su(, t)~>8 (2w, t) as

N+ 00

i almost uniformly with respect to x and uniformly with respect to t.
() Si(z,?) (n=1,2,..) satisfy H, and the convergences

8w, 1)

—_—

a; r%ai

OR ()

Sulz, t)—R(z),

(t=1,2; n=1,2,..) are uniform with respect to n.

a8,

(i) —a—tl”

< an(?) ] “I

where

oo
f an(8)ds < 400 (n=1,2,..).
(iv) The functions

Bult) = J’[f an(s)ds
t

tend to zero as ¢ approach imfinity wniformly with respect 10 n.
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Proof. Notice that each of systems

(Sw) dojdt = Su(z, 1)

fulfills hypothesis ot Theorem 10. Therefore, as in the proot of Theorem 10,
we can define functions Lu(®,, %, t), and the sets O and D}, in the same
way as L(®y, #:,1), Cn and D,. Owing to (i) La(wy, #;,t) tends, uni-
formly with respect to n, to K (%, #,) as ¢t—>-+oco. This and (iii) imply
that the relations, analogous to (11,13) and (11,14),

(n=1,2,..)

(11,22) 0:CBn, D3CB,,
(11,283) Boan COL,  Ben CDL

hold for every n and £,7 or &, 7* do not depend on » but only on ¢, 7.
Now let us put

B: = Z{(B,).

By (11,22) and (11,23) to any e, 7, there are g, 7 &, v* such that

BansCOECB, (n=1,2,..).
Thus
ZE(Buwwr) C Z4,(0%) = 05 C Bar.
Hence
Z5(Baw) CBy for n=1,2,..

The last and (i) imply that
(11,24) B = Z§(Bgr) C Ber

Since for every &,7 B,C B thus (11,25) shows that the family B*
={B::0<s<d,v>7(e)} is a base of Fr(Fx(P)). Because B* satisfy
(3,2) and (3,3) with regpect to system (S) thus B* is a base of asymptotic
boundary of a filter filled up by integrals of (S). Hence there is a filter Gg
filled up by integrals of (S) which coincides asymptotically with Fz(P).
Thig fact and some previous results of this paper imply Theorem 11.

Tet us obgerve that system (L) when a(t), b(f) and o(t) are continu-
ous and of bounded variation in (0, --oo) satisfies the hypothesis of Theo-
rem 11. Therefore the last result contains, as a special case, that of
Wazewski [12].
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Introduction. Le but de ce mémoire est d’étudier certains cas
du probléme d’existence et d’unicité, dans le domaine V

V{0<w<a,0‘<y<b,0<z<c}
des solutions de 1’équation
(1) Ugys = F(B, Yy &y U, U, Uy, Uy, Uy Unay Uyz)
avec les conditions initiales
@) w(0,y,2) =w(y,?), @ 0,2) =72, uy,0) =uwn7).

On supposera la fonction f assujettie & des conditions analogues & celles
qui ont été introduites dans les travaux de W. Walter [1] et [2]. Ces con-
ditions sont une certaine généralisation de celles que Nagumo et Osgood
avaient admises pour l’étude de l'unicité des solutions des équations
différentielles ordinaires. Nos recherches seront basées sur les mémoires
[1] et [2]. Aussi adoptons-nous plusieurs définitions et théordmes auxi-
linires qui y figurent. Quant aux méthodes introduites par ces auteurs,
quelques-unes ont pu &tre étendues, avec quelques modifications, au
probléme considéré.

Notre mémoire se compose de deux parties principales. Dans la
premiére nous oceupons du probldme d'unicité des solutions de 1’équa-
tion (1) lorsque les conditions (2) sont vérifiées. Ce probléme sera appelé
dans la suite probléme (A). La seconde partie du mémoire contient les
démonstrations d’existence des solutions relatives & des cas particuliers
de Péquation (1).

On trouvera dans les travaux [1] et [2] de W. Walter un comple
rendu de la bibliographie des problémes respectifs comcernant Péquation
différentielle du second ordre de la forme

{*) Uy = [{®, Y5 2, ey Uy) -
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