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Continuous solutions of the functional equation
¢lf(®)] =F(z, p(#) with the function f() decreasing

by J. KORDYLEWSKI (Krakéw)

The present paper contains results regarding the existence of con-
tinuous solutions of the functional equation

(1) plf@)] =TF (w7 'P(m)) )

where @(#) denotes the unknown function and f(x) and F(», y) are given
funetions, the funetionf () being decreasing. In some very simple partic-
ular cases of equation (1) corresponding results have been obtained by
‘W. Chayoth [1].

Analogous results for equation (1) with the function f() increasing
have been proved by M. Kuezma and the author of this article in [2], [4]
and [5]. The present paper has arisen on the one hand in order to generalize
the results of W. Chayoth, on the other hand in order to transpose the
properties of equation (1) with the function f(2) increasing for the case
of the function f(x) decreaging. This last thing at the first moment did
not seem to be immediately obtainable. It has turned out, however, that
equation (1) with the function f(2) decreasing is in a certain sense equi-
valent to an analogous eguation, but with a function f(x) increasing.
Consequently, theorems on continuous solutions of equation (1) with the
function f(x) decreasing can be derived from the eorresponding theorems
on equation (1) with the function f(x) increasing.

§ 1. Since in the sequel we shall make use of properties of the equation

(2) ylg(@)] = G(ws 1/)(:0)) ’

where y(2) denotes the nnknown function and g(«) and G(z, y) are given
funetions and the function g(z) is increasing, helow we shall give theorems
concerning the existence of continuous solutions of equation (2).

We make the following assumptions:

(I) The function g(«) is defined, continuous and strictly increasing
in an interval <a, 8>, moreover g(a) = a, g(B) = B, ¢(®) + = for w € (a, B).
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(IT) The function G(z,y) is defined and continuous in a region A
of the variables (#, y), normal with respect to the z-axis and possesses
the continuous derivative 8G9y different from zero in the region A.

(III) Ay # 0, @y = Ay for @ € (a, p), where A, denotes the projec-
tion on the y-axis of the intersection of the region A with the line # = const
and O, denotes the get of values of the function G(w,y) for y e 4, i.e.

— i@,y ed), Oo={z: N[y dp2=6,q)]}.
v

TaEOREM I, If hypotheses (I)-(IIT) are fulfilled, then

1° Equation (2) possesses infinitely many solutions that are continuous
in the interval (a, f).

2° If moreover there exist numbers y and O fulfilling the relations

(3) y=G,y), d=6(8,90),

then equation (2) may have a solution continuwous in the imterval (a, f)
or a, B). The number of solutions that are continuous in the interval (a, f>
and such that v (B) = 6 is given, according to assumptions on the funcmon g(w)
and the derivative Gylw,y) oG /oy in table 1; the number of solulions that
are continwous in the interval {a, B) and such that y(a) = y is given in table 2.
The empty places denote the cases in which we are not able to determine the
number of continuous solutions.

Table 1
|Gy(B, )] > 1

1Gyl, y)] = 1
in a neighbourhood of (8, d)

1G,(8,0) <1

|6y, )] < 1
in a neighbourhood of (8, d)

g(®) > = in (a, f) g{x) < x in (a, p)

exactly one infinitely many

at most one

infinitely many ‘ exactly one

at most one

Table 2 g(@) > in (o, f) g(x) < in (a, p)

[Gyla, M > 1

1Gy(z, 9)] = 1
in a peighbourhood of (a, »)

infinitely many exaotly one

at most one

|Gy(a: Y <1

|Gylz, )] <1
. in a neighbourhood of (a, y)

exactly one infinitely many

at most one
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Proof. Since g(w) #» for we(a,p), either g{)>a in (a, B) or
g(x) <o in (a, f).

In the case when g() > # in (a, ) the present theorem gathers the
results contained in theorems I and IV from [2], in the theorem from [4]
and in theorem IV from [5]. The case g(#) < # has not been dealt with
in the above papers, but it can be easily reduced to the case g(x) > 2.
Namely, let g(2) < # in (a, 8). Bquation (2) is equivalent to the equation

(4) y[h(@)] = H (h(z), p()) ,

where h(z) is the function inverse to the function g(z) and y = H(x, 2)
is the function inverse to the function # = G(z,y) with respect to the
second variable. From the fulfillment of hypotheses (I)-(ILI) and rela-
tions (3) for equation (2) follows the fulfillment of those for equation (4).
Since moreover apparently k(z)> 2 in (a, 8), we may apply to equation
(4) the already verified first part of this theorem. Taking into account
the fact that

Gylz, y) = with the substitution 2= G(#,¥)

1
Hyw, 2)
we obtain the validity of the present theorem also in the case g(z) < w.

§ 2. Now we pass to equatlon (1). We mtroduce the following defini-
{ion and hypotheses (i)-(iii

DEFINITION., We call an mterva,l {a, by a modulus-interval for the
function f(2) if f(<a, b)) = <a, b>.

HyporHESES. (i) The function f(») is defined, continuous and strictly
decreasing in a modulus-interval (a4, b> containing a finite number of
points fulfilling the equation

(8) fa) = o
(f{@) = f[f(»)] denotes here the second iteration of the function f).

(ii) The function F(z,y) is defined and continuous in a region 2
of the variables («, ), normal with respect to the z-axis and possesses
the continuous derivative oF/oy different from zero in the region .

(iii) @, # 0, I'y = Q4 for z € {a, b>, where 2, denotes the projection
on the y-axiy of the intersection of the region 2 with the line # = const
and I, denotes the set of values of the function F(wz,y) for y € 2,, ie.

Qo={y:(@,y) e, Ip=le ZEJEszﬁ (@, )1}

LEMMA I. Suppose that a function k(x) is defimed, continuous and
strictly increasing in am dnterval {a, b>. The necessary and sufficient con-
dition that the interval {a,b> be a modulus-interval for the function k(w)
18 that k(a) = a and %k(b) = b.
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The proof of this lemma ig to be found in [3].
LeMMA IX. If the function f() fulfills hypothesis (i), thesn
1° In the interval (a, b> ewists ewactly one root c of the equation

(8) fla) =,

ce(a, by and f(@)> 2 in (a,c) and f(x) <@ in (e, b).
2% a,b and ¢ are roots of equation (B).
3° In the intervals (a, > and (¢, b> are equally many roots a, and b,

of equation (B):
M=y < Uy < eee < Uy < By == 6 == by < by < s < byy <y = b,

ie. fia,) = a,, (b)) = b, end fXw) # x for @£ a, and @ F by, v=0,1,.., %
Moreover f(a,) =b,, f(b)= a for v=10,1,.., %
4° We have for v =10,1,..,2—1

(7) f((‘l’vﬂi (l,,)) = (byy byt , f((buy bv—l—l)) = (41, ) ,

fﬂ((bw bv-H)) = (bv’ bwl—l) .

Proof. 1° Since the interval <(a,d) iz a modulus-interval for the
decreasing function f(z), necessarily f(a) > a and f(b) < b. The function
h(#)2f(2)—» is continuous and decreasing in the interval (a,bd and
h(a) > 0, h(b) < 0. Consequently there exists exactly one ¢ e (a, b) such
that %(c) = 0. Thus f(¢) = ¢ and since the function f(z) is decreasing,
f(@) > e for # < ¢ and f(2) < ¢ for 2> c.

2° From hypothesis (i) it follows that the function f2(#) is increasing
in the interval <a,b)> and the latter is a modulus-interval for it. Thus
we have by lemma I f2(a) = a and f2(b) = b. Since f(c) = ¢, also f*(¢) = c.

3° From part 1° of this lemma it follows that f(<a, ¢>) = {¢, b> and
f(e, b)) = <a, €. Since from the fulfillment of equation (8) by & follows
it§ fulfillment by 72(z) and the relation f(F) = %, the intervals <a, ¢>
and (¢, b> must contain equal numbers of roots of equation (5). We bave
moreover on account of the fact that the function f(@) is deereasing

(9) f(a) =5, and

(8) fz((“v+11 ll,,)) = (Gyt1y G)

fb)=a, for »=0,1,..,%,.

4° Let @ € (@41, a,). The function f(#) is decreasing, consequently
fla) <f(@) <f(au), and Dby (9) f(@)e(b,bpys). Thus f((a,a))
C (b, by41). Similarly one can prove the inclusions (b, bys1) C f (@41, @),
7 (8 B,42)) C (@41, &)y (@415 %) C f((Byy byaa)). Hence follow relations (7).

Relations (8) are an immediate consequence of relations (7). This completes
the proof of the lemma.
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LemumA IIL If we pus
(10) 9@ EP@)  and  Cuy L, )
then from hypothesis (i) follows hypothesis (I).

Proof. Since the function f(#) is decreasing, the function g(a) is
increasing. Moreover we have by lemma II g(a,11) = (@) = Gor1,
g(a) = fAa,) = a, and g(2) = f2(2) +# o for @ € (@4, a,)-

LemMA IV, If we put
(11) G, ) EF (f(), Flw,y) wd AZQ,

then (with notation (10)) from hypotheses (ii) and (iii) follow hypotheses (IIL)
and (III).

Proof. Let us take an arbitrary point (#,y) e 4. Consequently
(#,9) e and F(»,y) has a meaning. We have further

P2, y) ely,

whence
. F(#,9) € Oy
i.e.

(f(w)aF(my y)) e
and

F(f(w), (x,y) = Gz, )

has a meaning. Since (2, y) has been an arbitrary point of the region 4,
the funection G(z,y) is defined in the region A. The continuity of the
function G(x,y) and the existence of the continuous derivative oG/dy
in the region A follow from the analogous properties of the function
F(x,y) in the region 2 and from the continuity of the function f(z).
Since oF/oy # 0 in Q we have

G (mw,y) oF (j(m)iF(m9 Z/)) oF (z, y) 0
By oy T 7

Thus hypothesis (II) is fulfilled. As it can be easily verified, 4, = £
and @, = Iy, and consequently also hypothesis (III) is fulfilled.

LevMA V. If hypotheses (i)-(iii) are fulfilled and the functions g(a)
and G, y) are defined with the aid of formulae (10) and (11) respectively,
then equations (1) and (2) are equivalent in a certain sense. The equivalence
is 1o be understood as follows:

1° If o function p(x) is defined and satisfies equation (1) in the set
(15 ) U (byy bysa), 768D, (Butay B) © (Dyy Bysrd, veSD. (@1 Gy v Dy Dua)s
then the fumction

(12) p@) L@ for

in 4.

€ (G, W) ,

resP. W€ Bupry Ge) y  TESP. B € (Byyry B)
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is defined and satisfies equation (2) in the interval (Gyy1, &), 168P. @41, a,),
resp. (Gyi1y &) (0 <y <n—1).

20 If & function y(x) is defined and satisfies equation (2) in the interval
(@y1y Gy)y 7€8P. {Uyyiy )y 768P. (i1, ), then the fumction ‘

p(w) for we (Byt1y @)
1) ()2 resp. @ €@y, ), TSP, X € (@ypr, @),
@)=
F(f-a), p[fH@)])  for  @e(b, b)),
I resp.  @e(by byyr>, vesp.  we by, byy),

is defined and sauisfies equation (1) in the set (@uiy, &) v (by, byyq), Tesp.
{Bys1y @) o (g byrdy 7ESD. (Gupry By U Kby b)) (0 S Sn—1). For the
interval (ay, ¢ we must assume additionally that the value d = yp(e) fulfills
the relation

(14) d=Fle,d).

Proof. 1° Let us suppose that a function ¢ () is defined and satisfies
equation (1) in the set (a,41, @,) v (b,, b,“) Let # € (@41, a). On account
of lemma II f(=) e (b,, b,41) and f2(w) € (4,41, a,). Since the function ¢(x)
is defined at the points @, f(x) and f2 ) and equation (1) is satisfied at
the points # and f(x), we have

olf(» J—F(”)¢(a")
and

plf(@)] = F (f(2), plf(2)]) .

Consequently
e[f(@)] = P (f(a), F (&, p(2)))

and taking into account (10), (11) and (12) we obtain

ylg(®)] = G (2, v(@) .

Consequently the function y(z) is defined and satisfies equation (2) at
the point @. S'nce @ has been an arbitrary point from the interval (a1, ),
the function y(#) is defined and satisfies equation (2) in the interval
(@41, ). If we replace the open interval by the closed ome, the proof
is a.na,logous

2° Now let us suppose that a function v(x) is defined and satisties
equaticn (2) in the interval (a,i1, @), Let @ € (a4, 4,). On account of
lemma IT f(x) € (4, by41). At the point ® the function v(z) is defined and
satisties equation (2), consequently y(x) and G(.'n, ¥(x)) have a meaning.
By lemma. IV also F (#, p(#)) has a meaning, We have ‘according to (13)

p(@) = yp(z)
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and
plf (@)] = F (2, p(x)) .

olf (@)] = F (2, p(a))

and thus the function ¢(x) is defined and satisfies equation (1) at the
point . S'nce 2 has been an arbitrary point from the interval (@,41, @),
the function ¢(x) is defined and satisfies equation (1) in the interval
(av+17 a).

Now let € (b, b,4+1). On account of lemma II f-(z) e
7(®) € (@41, ). At the points f~*(x) and f
satisfies equation (2), consequently [f(x
have a meaning and

g (f-X@)] = G(f~
By lemma IV also F(f-l @), p[f~()

ylf (@) = F (@, F (fX
We have further according to (13)

= F (f~(a), p[f*=)))

Hence

(@41, @) and
) the function y(2) is defined and
ﬂP[f ~Y(&)] and & (f~(z),p[~4=)])

(@), plf-4(@)]) -

]) has a meaning and

@), p[f4(@)])) -

and
p[f(2)] = y[f(2)] -

Hence
plf(@)] =T (2, p())

and thus the function ¢(x) is defined and satisfies equation (1) at the
point . Since = has been an arbitrary point from the interval (b,, by41),
the function @(x) is defined and satisfies equation (1) in the interval
(by, Bysy). Thus the function @(x) is defined and satisfies equation (1)
in the set (@41, @,) v (b, b4a). I we replace the open intervals by the
closed ones, the proof is analogous.

For the interval (ay, ¢} relations (13) twice define the value

(0) = ple),
v @ (o, v(0) .
But according to relation (14) it does not matter. This completes the

proof.
An jmmediate consequence of lemma V and theorem I is the following
TegorEM II. Let us assume that hypotheses (i)-(iii) are fulfilled and
let the sequences a,, b, be those occurring in lemma II. Then
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1° Bquation (1) possesses infinitely many solutions that are continuous

in the set
N1

U {(ﬂ/,, 1y Uy) w (b, bv-H)} .

20 If, moreover, numbers ¢, and d, (0<v<n) fulfill the velations
(18) dy = F(a,0), ¢ =Fb,d),
then equation (1) may possess solutions that are continuous ab the points a,
and b,. The number of solutions that are continwous in the seb (@1 yy)
U (by—1, Dyr1) and such that g(a,) = ¢, and ¢(b) =d, is given, aocowh‘n,q
to assumptions on the function f(x) and the devivative Fy(®,y) Eor/oy,
in table 3. As previously, the empty places denote the cases in which we are
not able to determine the number of continuous solutions.

f@) > () > w o) < w PHw) < w
. . M (G, @) | AN (@pdr, ) | D0 (Gopa, @) | 00 (G, o)
Table 3 ey >o (Pa)y<e [P >as | Pe) <o
in (ay, @oea) | In (as, @) | i (a0, @00) | 0 (a0, 01)
[Fylas, ) Fy(by, do)] > 1 inf. many | exact. one | inf. many | inf. many
| o, 9)Folf (@), Flw, 9))] > 1 at most one
in a neighb. of (m, &)
|Fylav, o) Fy(by, )] < inf. many | inf. many | exact. one | inf, many
|Fule, ) Fo(f (@), B, )] < 1 at most one

in a neighb. of (a, &)

Remark. In the case » = 0 one should take d = d, = ¢, and (a,, a—y)
v (b=1, by) = (ay, by). Then relations (15) reduce themselves to relations (14).
In the case v = n the seb (@41, Gne1) V (bn-1, Dny1) should be replaced by
the set {@u, ty—1) v (bu-1, bzp. In both these cases in table 3 only two
central columns are to be eonsidered.
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On continuous solutions of some functional equations
of the n-th order

by B. Cmoozewskr (Gliwice)

In the present paper we shall consider the following functional equa-
tions of the n-th order (for a definition of an order see M. Gherms-
nescu [2])

(1) p(@) = H(z, p[f(2)], ..., p[fal@)]) ,
(2) (P[fn ] = ( (m)i (p[fl(m)]: wery ‘P[fn——l(a7)]) B

In these equations flw) (4 =1, ., n), G(®, Yo, .o, Yn-1), H(%, Yy, .., Un)
denote known, real-valued functions of real variables, and ¢(x) denotes
the required function.

Bquations (1) and (2) are the particular cases of the equation

(3) F(z, p(@), g[fu@)], ..., @lfal@)]) = 0

(under suitable assumptions equations (1), (2) and (3) are equivalent).

J. Kordylewski and M. Kuezma proved in [5] that equation (3)
possesses an infinite number of solutions that are continuous in the open
interval (a, b). In that manner the authors received for the case of equa-
tion (3) the result, analogous to a part of their results for the equation

(4) F (2, ¢(2), plf(@)]) =

which they had published in [4].

M. Kuezma has expressed the conjecture that for equation (3)
are true also theorems about solutions continuous in the one-sided
clogsed interval (a, b> (or (a,d))—analogous to the theorems regarding
the solutions of equation (4) (see [4] and [6]).

Theorems 1-3 of the present paper (being the contents of §2) cor-
roborate partially M. Kuczma’s conjecture for equations (1) and (2).
In the proofs of these theorems we make use (in essential manner) of
results contained in the quoted paper [5]. In § 1 we formulate the assumyp-
tions and quote the results of the papers [5] and [7], in the formula,hon
as we shall need for the considerations in § 2.
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