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J. Kordylewski proved in [3] a theorem about the existence of con-
tinous solutions of equation (25), under assumptions (on the function F)
weaker than in the quoted paper [5].

If we ghall accept assumptions named in [3], then our theovems
will stay true for suitable particular cases of equation (25). Proofs do not
change in any essential manner.
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On some extensions of Cauchy’s condensation theorem

by C. T. RayacopAL (Madras, India)

1. Introduction. A. Alexiewicz ([1], p. 83) has proved by func-
tional analysis the following theorem, and has shown that the case by =1
of the theorem at once completes and extends the familiar condensation
theorem (test) of Cauchy ([1], p. 80).

THEOREM L. (1) Let @ >0,b0,>0 (n=1,2,..) be given positive
sequences and {en} an arbitrary positive sequence tending monotonically
to 0. Then the series

(&) Danew, (B)  Dbata
=1L n=1

are either both comvergent or both divergent if amd only if

(1) 0 < fipg Dot et tba

——— e < 00
oo @1+ lat ..ty !

i.e. the two limits in (1) are both finite and strictly positive.

This note gives a simple proof of Theorem I not depending on func-
tional analysis and deduces from the theorem the following extension of
Cauchy’s condensation test, due in effect to O. Szasz ([4], p. 1397,
Theorem 1).

TemoreM II. Let {f(n)} be a positive sequence quasi-monotonic de-
creasing in the semse that there is am a >0 such that

(2) frn41) < (L+am)f(n) for

Let {1z} be amy scquence of positive integers such that

n > nla) .

(3) An/’OO ) mvn—ln/}ﬂ—l < 00,
N+00

() Added 17th October 1960. After I had sent the MS of this paper to
Professor Alexiewicz, I found in the review of his paper [1] by D. Gaier, in Zbl. fiir
Math. 77 (1958), p. 277, a proof of the simpler ‘if’ or sufficiency part of Theorem I in
the case b, = 1 which is the same as the proof in this paper.
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Then the series

s

i)

n=1

D) U= Anes)f(2)

n=1

and (4 = 0)
are either both convergent or both divergent, the condition on An/hy,_y in (3)
being indispensable for this conclusion in its entirety.

The present note also exhibits the results of working with a real
sequence instead of the {b,} of Theorem I, in Theorem IIT which follows
and Theorerns IIX', III" of §3.

THEOREM ITI. Let {an}, {un} be sequences of which the first is positive
and the second only real. Let {e,} be any sequence tending monotonically to 0.

Then the series
oo
Z Un En,
ne=1

have either both finite swms, or both infinite sums in the sense that the partial
sums of each tend to oo, if

@ e, (U)

n=1

0<E—rﬁu1+ua+...+uﬂ,< ,

) nooo G+ Ap .o - dy
(or alternatively, —co < Ew < 0).

siroo Oy Qg+ ..~ iy

A consequence of Theorem IIT is the second extension of Cauchy’s
condensation test given below.

" THEOREM IV. Let {f(n)} be a positive monotonic decreasing sequence.
Let {An} be a sequence of positive integers satisfying (3) and {un} any real
sequence such that

0 < Im% < oo,
(or alternatively, — oo < m#& < 0).
n-+00 /v

Then the series

D) and (= ) fn) (g = 0)
n=1 . om=l

have either both finite sums or both infinite sums.

2. Lemmas. The proofs of Theorems I, ITT depend on the following

simple lemmas established mainly by wusing Abel’s method of partial
summation.
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LevmmA 1. If {dx} 4s an arbitrary monotonic increasing divergent
sequence and {uz} s a sequence, supposed to be real for simplicity, such

foad
that ), a 18 convergent, then
n=1

Hm (uy Ay Uy Ay + oo+ U An) A7 = 0.

N0
This result, together with a converse of it, is well-known (e.g. [3],
‘orollary of Theorem 1).

LEMMA 2. If {as}, {e} are positive sequences and &\ 0, then the
series

D3

(A) Z Unén o (A-’) (“1'+‘--- +a'ﬂ)<€ﬂ_£n+l)
n=1

n

[J
=

are either both convergent or both divergent.

Proof. By partial summation,

n n—1
(6) Y e = Dyt ot @) &)+ (@ + o Oa)en, N2
r=1 r=1
Tt series (A) is convergent, then so is (A’) by the use in (6) of Lemma 1
With % = @geq and Ay = 1/e,. On the other hand, if (A) is divergent
and (A’) convergent, then necessarily (@, ...+ as)en—oco, ie. given any
G > 0, we can find n,(G) so that

(4ot an)en > G for  u>mng,
or J
N ¢ ¥
\! £
2, (@y+ oo+ ) (&p— 1) 27 (&r—&r41) = G(l-——MBNH)—aG
r=no-+1 notl L St mo+1

a8 N —>co. Thus our assumption, that (A') iy’ convergent when (A) is not,
leads to a contradiction and so completes the proof.
The proof of the above lemma suffices to establish the following.

LEMMA 2a. If {us} 48 @ real sequence, {ex} & positive sequence such
that en™ 0, then the series

(-]

2 (g ... 4 tn) (en— En1)

n=1

o0
) Dlwnen, (U)
nm=l
are 80 related that the comvergence of (U) implies that of (U') while the con-
vergence of (U") implies that of (U) when (1w, + ...+ tn)en cOnvVerges, meces-
sarily to 0.
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00
LEMMA 3. If {as}, {ex} are positive sequences such that en\0, 3 aye,
converges, and if {u,} is a real sequence such that "

i |2y =+ .. - thn |

7
( ) N-200 a1+...+(1/71

< oo,

o0
then D, tnen CONDErgES.
n=1

Lemma 3 is due to Th. Kaluza in the case a, =1 ([3], Satz 20) and
follows from Lemmas 2, 2a. Using the notation of these lemmas, we see
that the convergence of series (A) ensures that of (A'), that of (A’) ensures
the absolute convergence of (U’) on account of (7), and finally the con-
vergence of (U’) ensures that of (U) since, by (7) and Lemma 1,

lim (g + ...+ ) en = lm (@ + ... +an)en = 0.
n—00 N—>00

The next lemma contains a result complementary to the preceeding
lemma.

LeMMA 4. If {an}, {ex} are positive sequences such that

o0
&0, 2 Onen diverges ,

n=1
and {uy} is any real sequence, then
2 s Uy Uy
Mzurea-l<hma .’
(8) ]im'j:' N-r00 1++ n

00 o Myt U
rgl Gt 21]:210 —d::i' vobay”
This lemma is one part of a result of mine proved elsewhere ([3],
p. 169, Remark (2) following Lemma 1). The part in guestion is that,
if {Mn}, {An} are positive monotonic increasing divergent sequences, and {Uy}
is any real sequence, then

N

2 ( Ur—' Ur-l) Mr

r=1

n
2 (/1,.—,/1,._1)]&[,

r=1
2
Z ( Ur"‘ Ur—l) -Mr

N—00 kil
g{ (Ap— Apy) M,
(8) is simply the above inequality with

My =g, dn =+ dantn,  Un=u + ..+ Unty .
Before closing this section two remarks may be inserted.

< Iim
N-+00

51

— Uy .
A (U= Ay = 0).

n

:
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Remark 1. In Lemmas 2-4, and in results based on them, the
assumption that & 0 can clearly be replaced by the assumption that {en}
is a null sequence which is ultimately monotonic decreasing.
Remark 2. A necessary and sufficient condition for a positive
sequence {f(n)} to be quasi-monotonic according to (2) with a certain
a> 0 is the existence of a >0 such that

(2" fn+1) < (1 +1/n)f(n)

or {f(n)/n#} is ultimately monotonic decreasing. In fact, from (2) fol-
lows (2') for any B> a and from (2') follows (2) for any a > .

for all large »,

3. Proofs of Theorems I-IV and su[,\plementaalrjv theorems.
Proof of Theorem I. After Lemma 2, we have only to prove that,
for the series

@A) D@t ma—es),  (B) Y (Bt tba) (en ens)

to be either both convergent or both divergent, with every sequence {en}

as specified in the theorem, condition (1) is both necessary and sufficient.
The proof of sufficieney is obvious. To prove necessity, we may show

as below that, given positive sequences {as}, {b,} for which (1) does not

hold, i.e. for which

— byt Dy

lim —————— = o0,
nroo Ay <o COn

Jigg it e Do

or e SRR
o0 Gy vee T O

9) either =0,

we can choose {&x} 80 that &, 0 and one of the two series (A%, (B") con-
verges while the other diverges. Suppose, for instance, that the first
alternative of (9) obtains. Then, given k> 1, we can successively define
positive integers 1 = 1y, 7y, My, ... 80 that 7, is the least integer greater

than #m,—; for which

by+...+b
._L'.*'__.“f_"'_>7c', r=1.

al‘f“-‘-‘{"an,

If now we define {e,} as follows:

oo

-
k(@ A+ oo - tn,)

ral

(10) on = ij L
K (@y 4 oo - Ony)

for 1<n<n,

for M <NnE N,

r=2
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it is clear that the series (A’'), (B') are:

1,1
(@ + ... + an,) (En,— Enpsr) = T T <o,

De

.,
1
P

De

Byt oo + o) (en,— Enpir) > L+ 1+ = 00

+
J

1

When the second alternative of (9) obtains, we interchange {a.} and {b,}
in the above argument, so that finally, under the first (or second) alter-
native of (9), there is an {e,} such that 0 and (A’) converges (or di-
verges) while (B’) diverges (or converges). This is what we set out to
prove. The preceeding proof shows that we can separate Theorem I into
two parts as follows:

THEOREM I'. For every monotonic decreasing mull sequence {en}, the
convergence of series (B) of Theorem I follows from that of series (A) if and
only if

, byt ot ba
1 Tim A T
( ) 712’?0 a/1+ +an e

TeROREM I". For every monotonic decreasing null sequence {e}, the
divergence of series (B) of Theorem I follows from that of series (A) if and
only if
(1 lim b+ .. +bn

>0.
o0 Oy + o+ Oy

Deduction of Theorem IT from Theorem I f(n) being subject
to (2), in the light of Remarks 1, 2 at the end of §2, we can choose

& = f(n)/n?, where f> «, in Theorem I. We can further choose, in
Theorem T,

(1) - n=n, b= {“‘m" me) B A m= )
0 it om s A,

and prove Theorem IL by combining statements (14}, (15), (16) below
where L = Tim A,/ ;.

n—>00

Firstly, whether L is finite or not, (11) gives, for Ay, < < Ay,

f = u
D e he) B N ) = 2 i g g
bt ot by =" =

m—1

D = h VB HL i A <n< iy,

r=1

(12)

UG+t ay =

(-00) .

ﬁ+1
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Hence
= b+ b
13 lim 222 2 g
(13) n—»ma1+-~-+a'n\ﬁ+ s

and Theorem I’ above shows that,
(14) whether L < coor L = oo,

Zf('n) < oo ensures 2 An— A1) f (An) < 00

n=1 n=1
Secondly, when L = oo, we let m—»oco through a sequence of values
for which Ap/Ay—y—>co and, taking » = 1,—1 in (12), we obtain
o by by
lim 20V TAml
mroo Oy e+ gy
which violates condition (1) of the last Theorem I and shows that,

00 o

(15) when L = oo, Zf(n) = co cannot always ensure Z(An—ln,l) f(An)=c0
=1 n=1

Lastly, when L < oo and Ay <0 < Ay, n—>o00, we get from (12):

m—1 Amey

— 8
b1+...+b,n>,§ L

A‘Inl[H.1
oty PP+, :1"+ A (&) ’

i.c,
bt b

lim 2 TR S L=+ |

0 Oy + eee 7+ O
And so Theorem I' shows that,

o0
(16)  when L < oo, 2]‘( = oo ensures 2 n—1)f(An) = oo.
n=1 =l

This completes the proof of Theorem IL.

Proof of Theorem IIL. The convergence (or divergence) of
series (A), under condition (4), implies the convergence (or divergence
to £ oo) of geries (U) in consequence of Lemma 3 (or Lemma 4). After
this it is obvious that the convergence (or non-convergence) of (U), under (4),
implies the convergence (or divergence) of (A), the non-convergence
of (U) being necessarily divergence to d-oo.

Remarks on Theorem III

(1) Suppose that one of the limits in (4) is non-finite, e.g.

B Uy .. +Mm
%9 nliitoloaj,‘f’ +an
(9) is simply the first alternative of (9) with b, replaced by %s; hence,
exactly as in the proof of Theorem I, we can first define by (10) a se-
Annales Polonici Mathematici XI 10
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quence {g;} in which &0 and then a series (A’) which converges and
secures, by Lemma 2, the convergence of series (A) as defined in Theo-
rems I, IIL. Also, series (TU"), obtained with u, instead of s in series (B’)
of the proof of Theorem I, diverges to co like series (B'); and

Uy oo U, > K@+ b O) >0 B8 r—>o00.

Hence identity (6), with a, replaced by %, shows that
(1e8y 4 o Uy 80y) F (Unget1 Epgtr - oo = Yng ) + o
or that series (U) as defined in Theorem III cannot converge.

Combining the argument used above with Lemma 3, we get the
following result supplementary to Theorem ITX.

THEOREM ITI'. Let {an}, {un} be given real sequences of which the
first is positive. Then, for every monotowic decreasing null sequence {e,},
the convergence of series (U) as defined im Theorem III follows from that
of series (A) as defined there, if and only if

fim |“1+ +’“n|
ng?o [ +am

= 00,

< oo.
(ifa) Suppose that

Uyt +"/m|
9”3; l 1
( ) oty
Then, given k>1, we can successively determine positive integers
1 = ngy, Ny, My, ... 80 that n, is the least integer greater than n,—; (r = 1)
for which

Hm %+ ...+ ta| = o0, lim
« N=>00

ﬂ—)OO a’l

I'u1+ “]‘un,]
PR ’
|2+ oo A | < l

G+t K
‘Next we can define a monotonic decreasing null sequence {s,} in terms
of {luy+...4un|}, exactly as we defined {e,} in terms of {a,+...+an}
in (10). For this {e:}, series (A’) as defined in the proof of Theorem I is
divergent, like the series (B') in that proof, and so series (A) as defined
in Theorems I, III is also divergent by Lemma 2. Furthermore,

|+ oo Uy | > 0

[ty ooty > g+ oty (r=2).

00 oo 00
2 J9y 4 oo Un| (En— Epp1) = Z [9g oo Aty | (En,— Enppa) = 1

n=1 re=1 el %;7
1
[y 4 oo+ Uy |, < P —~0 as
Consequently, by (6) with a, replaced by u,
(Ugey + oo = Umyeny) + (U 18ng 1 - oo A Ungng) -+ oov 1§ convergent,

and hence series (U) as defined in Theorem IIT cannot be divergent to - oco.

=00,
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(iib) Suppose that

(9”b) Hm (ty + ... 4 #a] < o0,
n—00

2 ap = 00,

n=1

with the implication that the lower limit in (9"a) is again zero. From
the first condition of (9"'b), we can find a subsequence {my} of {n} and
a number K > 0 such that

[y 4ty + .. b, | < K5 . )
while, from the second condition of (9”b), we can choose in succession
positive integers n, (r = 1,2, ...) belonging to {m.} such that =, is the
least integer greater than #,-, (r > 1,7, = 1) which makes, for a given
k>1,

ay+ G+ ...+ ag, > KE .
If then {e,;} is defined:

= for <N < N,

it is easy to prove as in (iia), in regard to series (A) and (U) defined as in
Theorem IIT, that the first is divergent and the second is not so either
to +oo0 or to —oo.

(iia) and (iib) above cover all the cases im which the lower limit
in (9’a) is zero and the divergence of Za, is assumed (either explicitly
or implicitly) as a necessary pre-condition for the divergence of series (A)
as defined in Theorem IIT. Hence (iia) and (iib), in conjunction with
Lemma 4, establish the following complement to Theorem III'.

THEOREM IIT". Let {as}, {un} be given real sequences of which the
first is positive. Then, for every monotonic decreasing null sequence {en},
the divergence to +oo of series (U) as defined in Theorem III follows from
the divergence of series (A) as defined there, if and only of

Deduction of Theorem IV from Theorem III. We choose,
in Theorem III,

en = f(In), Apyy by = pin— in—1 ,
8o that (4) takes the form (5), and appeal to the case ¢ = 0 of Theorem II.

An additional theorem may be stated in conelusion since Corollary V
following this theorem presents an interesting complement to Theorem II.

10%

Uy = An—
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TaEOREM V. (a) If {ea}, {e:} are positive sequences such that e, 0,

00 0
Y anen converges, then 3 (—1)""*(ay+ ... +an)en converges.
=l n=1

(b) If {bn} is another positive

— byt b

im e

n-»rglo%'f‘---‘i'“n

then Y (— 1" (b ... - bu) & also
=l

Proof. (a) follows from Lemma 3 with Uy = (~1)"7 (ay -+ ... + ).

sequence such that
< 00,

converges.

00
(b) follows from (a) since  buey is convergent by Lemma 8 agaiu.
n-1

Theorem V gives rise to the following result, proved by Th. Ka-
luza ([2], Satz 23) by a different method in the particular case A = .
COROLLARY. If B> 0 and {f(n)nf} is ultimately positive monotonic
decreasing, or equivalently {f(n)} is positive quasi-monotonic decreasing,

ed
and if D, f(n) is convergent, {dn} is a sequence of positive integers monotonic

=1
00
increasing and unbounded, then D (—1)" " nf(dn) Is convergent.
n=}

Proof. Recalling Remark 1 at the end of § 2, we have only to choose,
in Theorem V ag modified by that remark,

BB i =y,
0 it nosE Ay

This choice is justitied since, arguing as we did with (11), we find that (13)
holds for the above {b,} as well as for the {b,} in (11).

&n =z%’§z, =P, ba ={
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Perturbations non linéaires qui n’augmentent
pas la croissance maximale des intégrales

par Z. SzuyDT (Krakow)

1. Envisageons le systdme d’équations différentielles linéaires, écrit
sous la forme vectorielle

dow
(1) =AM,
et le systéme perturbé
d
@) Y= AWy+it,y) -
dt

On suppose que A (t) est une matrice carrée dont les éléments ag(t)
sont des fonctions de f, continues pour i > 0.
Soit X () la matrice vérifiant les conditions
ax

e _4mx,

- X(0)=TI

(I matrice unité) .

Nous I’appellerons matrice fondamentale du systéme (1).
Soient ||z} et || X} les normes du vecteur @ = (@, ..., @) o de la ma-
trice X = (), données respectivement par les formules

M=$Mhﬂﬂ=gmw

Dans cette note nous allons considérer le probléme suivant.
ProRLEME Q. Correspond-il & chaque intégrale y(t) du systéme (2) au
moins ume intégrale x(t) du systéme (1) telle que

(3) y() = o (t) +o (IX (B)f) ¢

Dans le cag ol le probldme Q admet une réponse affirmative, chaque
intégrale y(¢) du systéme (2) vérifie la relation (%)

(4) y(® =o(X @), -

(1) Cette relation a été étudiée dans [2]. Nous reviendrons sur ce sujet dans le
emme 2 et dans la remarque 1 de cette note.
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