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and hence, by (3),
If—Hle = I( [ If@&)—Hk(@é)|dg) = (7)) = 1(1f) = Ifla-
:4

This proves that |flle = dist{f, K}. Now, by (3), |Ifle = llgllejzz and
hence |gligz = llgllea-
Proof of (b). By the triangle inequality it suffices to verify that

zllg+Pllem = xllglen +xlhllez -

Let 7, teL*(@) be such that 7 = g, I = h, where the supports S,, §,
satisfy 8, H ~ S,H = @. Then the inequality we wish to prove is equiva-
lent to i

() dist{r+1t, K} > dist{r, K}+ dist{z, K}.

Tt is easily seen that if % <X, then the restricted functions % = k|8, H
and %% = k| S,H also belong to K, and this implies that

I+ t— Tl = {7 — K|+ i— 10| + %R — ) _
> r— kg4 [i— Kl > dist {7, k) + dist {t, K} .

Hence (5) follows and the proof of Theorem 4 is complete.
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ON THFE ALGEBRAS L, OF LOCALLY COMPACT GROUPS

BY

W. ZELAZEO (WARSAW)

Let G be locally compact group, and g its left invariant Haar measure.
Let L, be the Banach space of complex functions defined on &, for which

I = [IF P du) < oo

It is well known that I, is a Banach algebra if multiplication is
defined as the convolution

frg(t) = [fEz)g()du (o).

Tt is also known that if the group @ is compact, then the space L, is also
a Banach algebra with the same multiplication (see [1], - 156). Here
I shall prove that this theorem and the converse theorem hold for all
p >1. More precisely I shall prove

TeroreM 1. If the locally compact group G is compact, then for every p,
1 < p < oo, the space Ly, is a Banach algebra under convolution.

TuEORBM 2. If for a locally compact abelian group the space L, is
a Banach algebra under convolution, and 1 < p < oo, then the group G
8 compact.

The following simple remark is useful in the proofs:

Let X be a Banach space with the norm [z|, and B a defnse' linear
subspace, which is at the same time an algebra with the multiplication xy.
Then

(A) X is a Banach algebra with the same multiplication if and only
if there ewists such a number ¢ >0 that

loyll < Clalllyll  for every @, yeR.

Or, what is equivalent,
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(A") The multiplication xy cannot be extended onto X im such o way
that X is & Banach algebra if and only if for every & > 0 there ewist such
z,yeR that
) lall <e, lyi<e and foy| =0 >0.

Now we pass to the easy

Proof of theorem 1. If the group & is compact, then we may
assume that u(G) = 1. Hence (see [1], p. 156)

(2) I < by L <p,
for every complex function defined on @, and
(3) R=IL,~L,CL,,

We also have (see [1], p. 121-122)

(4) If<gll < Ifllullgl,  for every fel,, geR,.
And by (2), (3), and (4) we get

IF+gly < Iflbllgl,  for  f,geR.

Hence, by the remark (A), L, is a Banach algebra, q.e. d.

Proof of theorem 2. At the beginning we assume that u(f) =1
for every te@G (= @ is discrete). We shall prove the following remark

(B) If 1 <p < o0, and L, is a Banach algebra, then the group G is
finite.

Indeed, in this case the algebra L, is a commutative Banach algebra
with the unit element (the unity of algebra L, is the characteristic function
of the unit element of the group @), and by the Gelfand theory there
exists a non-zero multiplicative linea.r functiona.l F. The functional F
may be written in the form F(f f f(t)g(t)dt, where the function ¢ is
a member of L,, 1/p+1/q = 1. 011 the othel ha,nd for the diserete group
we have L CL,. ’l‘he functional F restricted to I, may be written in the
form F(f) = [f(8)x(t)ds for feL,, where x(4) is the character of the group
G 3] It follows tha.t g =¢ and yeL,. But if p > 1, then ¢ < co, and
therefore the group @ must be finite, because ||y|l4 = f% DA == () <oo.

By (B) and (A') we get the following remark:

B) If the discrete abelian group G is infinite, then for a given p,
1 < p < oo, and for every s > 0, there ewist two funclions x, y with a compact
(= finite) support and a C > 0, such that for the norm |a|, inequalities
(1) hold.

Now let ¢ be an arbitrary locally compact abelian group. Let V
be any compact neighbourhood of the unit ¢ of ¢. Let @, be the sub-
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group of G generated by V. The structure of &, is well known by a certain
theorem of Pontriagin (see [2], p . 274). It follows from this theorem
that G, is either compact or it contains such an element a that the sub-
group generated by a is discrete and infinite. We shall discuss these two
cases.

10 Let Gy be a compact subgroup of G Then u(G,) < oo. On the
other hand, u(Gy) > u(V) >0, and we may assume that u(l,) = 1.
Let L, be the Banach algebra of the group &. We shall congider the sub-
algebra Ly C L, of all feL, which are constant on the cosets 1y, te@.
The subalgebra L, is isometric with the algebra I, of the diserete group
GGy, and by the remark (B) the number of cosets must be finite,
whence the group & must be compact.

20 Let ae@, and the subgroup generated by a be discrete. It is to
be shown that L, is not a Banach algebra if 1 < p < co. It may easily
be proved that in G there exists a symmetric neighbourhood U of the
unit e such that for integer m, n

(5) AP Ad" T =06 i om £,

where @ denotes the void set.
‘We may assume that p(U) < 1.

Let (a,), (Bu); n =0, 41, +2, ..., be two finite sequences of complex
numbers such that '

(Sat)™ <o (S0ef7 < (b=,

Yn = 2 anfkﬂkﬁ

k

where

their existence, for every ¢ >0, is proved by the remark (B’).
We put

) = 3 antyrng®, 90 = 2 Bostns 0,

ki3
where

1 for ted,
0 for t¢Ad.
We have using (5)

(6) Il = ”Z O, 2y (t ol dt)up (2 lowl” s (Up)l ’

o\1/
<(Ylap)" <o and gl <o
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On the other hand
=f*g = Z an.g——’“fXa—'"U(tT‘l)xa’“’U(T)dT

nk

= 2 o"B_rp(

=D a,frpu(@ UL~ T)

nl

(7 h(t)

@'Ut~d"U)

= tufonpla’Ui~ T)

ns

= 2 /L(a/sUt [a} U)Z anﬁsw-n

= D ysu(a’Tt~ T).

But, as is well known, the function ¢(t) = (Ut ~ U) is continuous, and
@(e) = u(U). Therefore there exists such a neighbourhood V of e that

w(U)

<p(t)>T for teV.

Hence

#(U)

2270 for  tea”V.
2

(8) u(@'Ut~ U) =

By (5) the functions ¢,() = @(a’t) have disjoint supports and by
(6), (7), and (8) we have

s = || 3 vt ], = (f | X vagatt)P at] ™
2| m(t)mv)””
> [ Awaf”
ﬂ,,,,
> (3 P 200
1jp U
=(§ "J’s!p) —!—"—(2—)

Hence, by (A"), L, is not & Banach algebra, q.e. d.

(
=

w(U)

up
V)y?® = 5

a(V)? > 0.

icm
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In case p = 2 the proof of theorem 2 may be obtained in another
way, where the form of the group @ need not be discussed. To this aim
let us assume that the space L, of locally compact abelian group & is
a Banach algebra with convolution. By Raikov’s inequality (see [3],
p. 45, formula (6.1)) we get

(o "H—Jﬂl{ﬂfﬂg
Vil = TR where f* = fzf;;;*f,

which holds for every function from I, ~ L, satistying f(i™') = f(¢),
te@, e. g. for a characteristic function of a compact symmetric neighbour-
hood of e. Hence algebra L, is not radical, and there exists a non-zero
multipliea.tive linear functional F. The functional F' may be written in
the form F(f) = [f(t)p(t)di, where ¢ is a member of L,. By the multi-
plicativity of F and the Fubini theorem we have

F(frg) = [o(t) [flrN)g(@)ar = [[o0p)f(t)g(p)dtdp
= [fyp(t)ar[g(p)o(p)dp

for every f, gel,.
It follows that

{9) @(pt) = p(p)p(f) a. e (uXp).

Since ¢ is not a. e. equal to zero, there is a set € C & such that

[pmdt £0 and [grpdt < co.
(o} C

Let Q C G be any set of o-finite measure u such that the (o-finite)
support of ¢ is contained in . Then, by Fubini’s theorem and by (9),

o > [pepdt = [ [ot)p(x)dvdt
s cQ

= ‘j'frp(t-c"l)qv(r) drdt
oxQ

= [[o® dfdt~#Q)f<p

CxQ
So we get u(Q) = [prpdi/[pdt. Hence u(@) < oo, and the group &
¢ bl

is compact.
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A PROOF OF A THEOREM OF ZELAZKO ON IP-ALGEBRAS
BY

K. TRBANTK (WROCLAW)

Let G be a locally compact Abelian topological group. For each
p =1, we define the space IP (@) as the space of all measurable complex-
valued functions f on & such that |f|” is integrable with respect to the
Haar measure m on G. Obviously, I’ (§) is 2 Banach space under the norm

Il = ([1f (@) (az))™".

@

In the sequel we shall denote by fg the convolution of functions f and g,
i e.

(fo) (@) = [F)glay ym(dn) (2.

In this note we shall give a simple proof of the following theorem,
proved by W. Zelazko in paper [3]:

If, for a number p >1, I7(&) is a topological ring under the con-
volution multiplication, then @ is a compact group.

Proof. Let R be the extension of L,(G) to a topological ring with
a unit element (see [1], p. 158). The norm in R, which is an extension
of the norm in L” (@), will hencetorth be denoted by || [|,. It is well known
that the norm

&Y A1 =

e

sup  [Ifgll
R l0ly=1

makes B a normed ring (see [1], p. 168).

Tirst we shall prove that the ring L”(¢) admits & non-trivial conti-
nous homomorphism into the complex field. To prove this it is sufficient
to ghow that IP(G) contains an element which does not belong to the
radical of R. . i
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