1:14

S. ŚWIERCZKOWSKI

and hence, by (3),

$$||f-k||_G = I\left(\int\limits_{\widetilde{H}} |f(x\xi)-k(x\xi)| \, d\xi\right) \geqslant I(|\widetilde{f}|) = \widetilde{I}(|f|) = ||f||_G.$$

This proves that $||f||_G = \text{dist}\{f, K\}$. Now, by (3), $||f||_G = ||g||_{G/H}$ and hence $||g||_{G/H} = _K ||g||_{G/H}$.

Proof of (b). By the triangle inequality it suffices to verify that

$$|g+h|_{G/H} \geqslant |g|_{G/H} + |g|_{G/H}.$$

Let $r, t \in L^1(\mathcal{G})$ be such that $\overline{r} = g$, $\overline{t} = h$, where the supports S_r, S_t satisfy $S_r H \cap S_t H = \emptyset$. Then the inequality we wish to prove is equivalent to

(5)
$$\operatorname{dist}\{r+t, K\} \geqslant \operatorname{dist}\{r, K\} + \operatorname{dist}\{t, K\}.$$

It is easily seen that if $k \in K$, then the restricted functions $k^{(r)} = k | S_r H$ and $k^{(t)} = k | S_t H$ also belong to K, and this implies that

$$\begin{split} \|r+t-k\|_G &= \tilde{I}(|r-k^{(r)}|+|t-k^{(t)}|+|k-k^{(r)}-k^{(t)}|) \\ &\geqslant \|r-k^{(r)}\|_G + \|t-k^{(t)}\|_G \geqslant \operatorname{dist}\{r,\,k\} + \operatorname{dist}\{t,\,K\} \,. \end{split}$$

Hence (5) follows and the proof of Theorem 4 is complete.

REFERENCES

- [1] P. R. Halmos, Measure theory, New York 1951.
- [2] L. H. Loomis, An introduction to abstract harmonic analysis, New York 1953.
- [3] A. M. Macbeath and S. Świerczkowski, Measures in homogeneous spaces, Fundamenta Mathematicae 49 (1960), p. 15-24.
- [4] H. Reiter, Über L¹-Räume auf Gruppen I, Monatshefte für Mathematik 58 (1954), p. 73-76.
- [5] A. Weil, L'intégration dans les groupes topologiques et ses applications, Paris 1938.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 23. 3. 1960; en version modifiée le 1. 4. 1960

COLLOQUIUM MATHEMATICUM

VOL. VIII

1961

FASC. 1

ON THE ALGEBRAS L, OF LOCALLY COMPACT GROUPS

 \mathbf{BY}

W. ZELAZKO (WARSAW)

Let G be locally compact group, and μ its left invariant Haar measure. Let L_p be the Banach space of complex functions defined on G, for which

$$||f||_p^p = \int |f(t)|^p d\mu(t) < \infty.$$

It is well known that L_1 is a Banach algebra if multiplication is defined as the convolution

$$f*g(t) = \int f(t\tau^{-1})g(\tau) d\mu(\tau).$$

It is also known that if the group G is compact, then the space L_2 is also a Banach algebra with the same multiplication (see [1], p. 156). Here I shall prove that this theorem and the converse theorem hold for all p>1. More precisely I shall prove

THEOREM 1. If the locally compact group G is compact, then for every p, $1 \leq p \leq \infty$, the space L_p is a Banach algebra under convolution.

THEOREM 2. If for a locally compact abelian group the space L_p is a Banach algebra under convolution, and 1 , then the group G is compact.

The following simple remark is useful in the proofs:

Let X be a Banach space with the norm $\|x\|$, and R a dense linear subspace, which is at the same time an algebra with the multiplication xy. Then

(A) X is a Banach algebra with the same multiplication if and only if there exists such a number C>0 that

$$||xy|| \leqslant C ||x|| ||y||$$
 for every $x, y \in R$.

Or, what is equivalent,

(A') The multiplication xy cannot be extended onto X in such a way that X is a Banach algebra if and only if for every $\varepsilon>0$ there exist such $x,y\in R$ that

(1)
$$||x|| < \varepsilon$$
, $||y|| < \varepsilon$ and $||xy|| \geqslant C > 0$.

Now we pass to the easy

Proof of theorem 1. If the group G is compact, then we may assume that $\mu(G) = 1$. Hence (see [1], p. 156)

(2)
$$||f||_1 \leqslant ||f||_p, \quad 1 \leqslant p,$$

for every complex function defined on G, and

$$(3) R = L_{\infty} \cap L_{\mathbf{1}} \subset L_{\mathbf{p}},$$

We also have (see [1], p. 121-122)

(4)
$$||f*g||_p \leqslant ||f||_1 ||g||_p \quad \text{for every} \quad f \in L_1, \ g \in R_p.$$

And by (2), (3), and (4) we get

$$||f*g||_p \leqslant ||f||_p ||g||_p$$
 for $f, g \in \mathbb{R}$.

Hence, by the remark (A), L_p is a Banach algebra, q. e. d.

Proof of theorem 2. At the beginning we assume that $\mu(t) = 1$ for every $t \in G$ ($\equiv G$ is discrete). We shall prove the following remark

(B) If $1 , and <math>L_p$ is a Banach algebra, then the group G is finite.

Indeed, in this case the algebra L_p is a commutative Banach algebra with the unit element (the unity of algebra L_p is the characteristic function of the unit element of the group G), and by the Gelfand theory there exists a non-zero multiplicative linear functional F. The functional F may be written in the form $F(f) = \int f(t) g(t) dt$, where the function g is a member of L_q , 1/p+1/q=1. On the other hand, for the discrete group we have $L_1 \subset L_p$. The functional F restricted to L_1 may be written in the form $F(f) = \int f(t) \chi(t) dt$ for $f \in L_1$, where $\chi(t)$ is the character of the group G [3]. It follows that $\chi = g$ and $\chi \in L_q$. But if p > 1, then $q < \infty$, and therefore the group G must be finite, because $\|\chi\|_q^p = \int \chi(t)^q dt = \mu(G) < \infty$.

By (B) and (A') we get the following remark:

(B') If the discrete abelian group G is infinite, then for a given p, $1 , and for every <math>\varepsilon > 0$, there exist two functions x, y with a compact (\equiv finite) support and a C > 0, such that for the norm $||x||_p$ inequalities (1) hold.

Now let G be an arbitrary locally compact abelian group. Let V be any compact neighbourhood of the unit e of G. Let G_0 be the sub-

group of G generated by V. The structure of G_0 is well known by a certain theorem of Pontriagin (see [2], p. 274). It follows from this theorem that G_0 is either compact or it contains such an element a that the subgroup generated by a is discrete and infinite. We shall discuss these two cases.

1º Let G_0 be a compact subgroup of G. Then $\mu(G_0) < \infty$. On the other hand, $\mu(G_0) \geqslant \mu(V) > 0$, and we may assume that $\mu(G_0) = 1$. Let L_p be the Banach algebra of the group G. We shall consider the subalgebra $L'_p \subset L_p$ of all $f \in L_p$ which are constant on the cosets tG_0 , $t \in G$. The subalgebra L'_p is isometric with the algebra l_p of the discrete group G/G_0 , and by the remark (B) the number of cosets must be finite, whence the group G must be compact.

 2^{o} Let $a \in G$, and the subgroup generated by a be discrete. It is to be shown that L_{p} is not a Banach algebra if 1 . It may easily be proved that in <math>G there exists a symmetric neighbourhood U of the unit e such that for integer m, n

(5)
$$a^n U^2 \cap a^m U^2 = \emptyset \quad \text{if} \quad m \neq n,$$

where Ø denotes the void set.

We may assume that $\mu(U) \leq 1$.

Let (a_n) , (β_n) , $n=0,\pm 1,\pm 2,\ldots$, be two finite sequences of complex numbers such that

$$\left(\sum \left|a_n\right|^p\right)^{\!1/p} < arepsilon, \quad \left(\sum \left|eta_n\right|^p\right)^{\!1/p} < arepsilon, \quad \left(\sum \left|\gamma_n\right|^p\right)^{\!1/p} = 1,$$

where

$$\gamma_n = \sum_k a_{n-k} \beta_k,$$

their existence, for every $\varepsilon > 0$, is proved by the remark (B').

We put

$$f(t) = \sum_{n} a_n \chi_{a-n_U}(t), \quad g(t) = \sum_{n} \beta_{-n} \chi_{a^n_U}(t),$$

where

$$\chi_A(t) = \begin{cases} 1 & \text{for } t \in A, \\ 0 & \text{for } t \notin A. \end{cases}$$

We have using (5)

(6)
$$||f||_{p} = \left(\int \left|\sum_{n} \alpha_{n} \chi_{a^{-n}U}(t)\right|^{p} dt\right)^{1/p} = \left(\sum_{n} |a_{n}|^{p} \mu(U)^{p}\right)^{1/p}$$

$$\leq \left(\sum_{n} |a_{n}|^{p}\right)^{1/p} < \varepsilon \quad \text{and} \quad ||g||_{p} < \varepsilon.$$

ALGEBRAS Lp

119

On the other hand

(7)
$$h(t) = f * g = \sum_{nk} \alpha_n \beta_{-k} \int \chi_{a^{-n}U}(t\tau^{-1}) \chi_{a^kU}(\tau) d\tau$$

$$= \sum_{nk} \alpha^n \beta_{-k} \mu(a^n U t \cap a^k U)$$

$$= \sum_{nk} \alpha_n \beta_{-k} \mu(a^{n-k} U t \cap U)$$

$$= \sum_{ns} \alpha_n \beta_{s-n} \mu(a^s U t \cap U)$$

$$= \sum_{s} \mu(a^s U t \cap U) \sum_{n} \alpha_n \beta_{s-n}$$

$$= \sum_{s} \gamma_s \mu(a^s U t \cap U).$$

But, as is well known, the function $\varphi(t) = \mu(Ut \cap U)$ is continuous, and $\varphi(e) = \mu(U)$. Therefore there exists such a neighbourhood V of e that

$$\varphi(t) \geqslant \frac{\mu(U)}{2}$$
 for $t \in V$.

Hence

(8)
$$\mu(a^s U t \cap U) \geqslant \frac{\mu(U)}{2} \quad \text{for} \quad t \in a^{-s} V.$$

By (5) the functions $\varphi_s(t) = \varphi(a^s t)$ have disjoint supports and by (6), (7), and (8) we have

$$\begin{split} \|h\|_p &= \Big\| \sum_s \gamma_s \varphi_s(t) \Big\|_p = \Big(\int \Big| \sum_s \gamma_s \varphi_s(t) \Big|^p \ dt \Big)^{1/p} \\ &= \Big(\sum_s |\gamma_s|^p \int |\varphi_s(t)|^p \ dt \Big)^{1/p} \\ &\geqslant \Big(\sum_s |\gamma_s|^p \int_{a^{-s}V} \varphi_s^p(t) \ dt \Big)^{1/p} \\ &\geqslant \Big(\sum_s |\gamma_s|^p \mu(V) \frac{\mu(U)^p}{2^p} \Big)^{1/p} \\ &= \Big(\sum_s |\gamma_s|^p \Big)^{1/p} \frac{\mu(U)}{2} \mu(V)^{1/p} = \frac{\mu(U)}{2} \mu(V)^{1/p} > 0 \,. \end{split}$$

Hence, by (A'), L_p is not a Banach algebra, q. e. d.

In case p=2 the proof of theorem 2 may be obtained in another way, where the form of the group G need not be discussed. To this aim let us assume that the space L_2 of locally compact abelian group G is a Banach algebra with convolution. By Raikov's inequality (see [3], p. 45, formula (6.1)) we get

$$\sqrt[n]{\|f^n\|_2}\geqslant \sqrt[n]{\frac{\|f\|_2^2}{\|f^2\|_2}}\cdot \frac{\|f^2\|_2}{\|f\|_2}, \quad \text{ where } \quad f^n=\underbrace{f*f*\dots *f}_{n\text{ times}},$$

which holds for every function from $L_1 \cap L_2$ satisfying $f(t^{-1}) = f(t)$, $t \in G$, e.g. for a characteristic function of a compact symmetric neighbourhood of e. Hence algebra L_2 is not radical, and there exists a non-zero multiplicative linear functional F. The functional F may be written in the form $F(f) = \int f(t) \varphi(t) dt$, where φ is a member of L_2 . By the multiplicativity of F and the Fubini theorem we have

$$F(f*g) = \int \varphi(t) \int f(t\tau^{-1}) g(\tau) d\tau = \int \int \varphi(tp) f(t) g(p) dt dp$$
$$= \int f(t) \varphi(t) dt \cdot \int g(p) \varphi(p) dp$$

for every f, $g \in L_2$.

It follows that

(9)
$$\varphi(pt) = \varphi(p)\varphi(t)$$
 a. e. $(\mu \times \mu)$.

Since φ is not a. e. equal to zero, there is a set $C \subset G$ such that

$$\int\limits_{C} arphi(t) \, dt \,
eq 0 \qquad ext{and} \quad \int\limits_{C} arphi st arphi \, dt < \infty \, .$$

Let $Q \subset G$ be any set of σ -finite measure μ such that the (σ -finite) support of φ is contained in Q. Then, by Fubini's theorem and by (9),

$$\begin{split} \infty > & \int_{C} \varphi * \varphi \, dt = \int_{C} \int_{Q} \varphi(t\tau^{-1}) \varphi(\tau) \, d\tau \, dt \\ = & \int_{C \times Q} \varphi(t\tau^{-1}) \varphi(\tau) \, d\tau \, dt \\ = & \int_{C \times Q} \varphi(t) \, d\tau \, dt = \mu(Q) \int_{C} \varphi(t) \, dt. \end{split}$$

So we get $\mu(Q)=\int_C \phi*\phi\,dt/\int_C \phi\,dt$. Hence $\mu(G)<\infty$, and the group G is compact.

120 W. ŻELAZKO

REFERENCES

- [1] L. H. Loomis, An introduction to abstract harmonic analysis, Toronto-New York-London 1953.
 - [2] Л. С. Понтрягин, Непрерывные группы, Москва 1954.
- [3] Д. А. Райков, Гармонический анализ на коммутативных группах с мерой Хаара и теория характеров, Труды Математического Института им. Стеклова XIV, Москва-Ленинград 1945.
 - [4] R. Sikorski, Funkcje rzeczywiste, tom II, Warszawa 1958.

Reçu par la Rédaction le 20. 10. 1959

COLLOQUIUM MATHEMATICUM

VOL. VIII

1961

FASC. 1

A PROOF OF A THEOREM OF ZELAZKO ON LP-ALGEBRAS

В

K. URBANIK (WROCŁAW)

Let G be a locally compact Abelian topological group. For each $p \geqslant 1$, we define the space $L^p(G)$ as the space of all measurable complex-valued functions f on G such that $|f|^p$ is integrable with respect to the Haar measure m on G. Obviously, $L^p(G)$ is a Banach space under the norm

$$||f||_p = \left(\int\limits_{\alpha} |f(x)|^p m(dx)\right)^{1/p}.$$

In the sequel we shall denote by fg the convolution of functions f and g, i. e.

$$(fg)(x) = \int_G f(y) g(xy^{-1}) m(dx) \quad (x \in G).$$

In this note we shall give a simple proof of the following theorem, proved by W. Żelazko in paper [3]:

If, for a number p > 1, $L^p(G)$ is a topological ring under the convolution multiplication, then G is a compact group.

Proof. Let R be the extension of $L_p(G)$ to a topological ring with a unit element (see [1], p. 158). The norm in R, which is an extension of the norm in $L^p(G)$, will henceforth be denoted by $\| \cdot \|_p$. It is well known that the norm

(1)
$$||f|| = \sup_{g \in R, ||f||_{L^{p}} = 1} ||fg||_{2^{p}}$$

makes R a normed ring (see [1], p. 168).

First we shall prove that the ring $L^p(G)$ admits a non-trivial continuous homomorphism into the complex field. To prove this it is sufficient to show that $L^p(G)$ contains an element which does not belong to the radical of R.