

COLLOQUIUM MATHEMATICUM

VOL. VIII

1961

FASC. 1

SELF-DEPENDENT ELEMENTS IN ABSTRACT ALGEBRAS

pv

W. NITKA (WROCŁAW)

This paper is a contribution to the study of the general notion of independence introduced by E. Marczewski ([1], see also [2]).

Let us consider an arbitrary non-empty set A. Let A be a class of A-valued functions of finitely many variables running over A such that 1° the functions defined by the formula $f(x_1, \ldots, x_n) = x_k$ $(n = 1, 2, \ldots; k = 1, 2, \ldots, n)$ belong to A; 2° A is closed with respect to the superposition of functions. The system (A, A) will be called an algebra.

By $A^{(0)}$ we shall denote the set of the values of all constant functions belonging to A. Further, by $A^{(n)}$ $(n \ge 1)$ we shall denote the class of all functions of n variables belonging to A.

A set $I \subset A$ is called a set of *independent* elements if for every finite system of different elements $a_1, \ldots, a_n \in I$ and every pair of functions $f, g \in A^{(n)}$ the equality

$$f(a_1,\ldots,a_n)=g(a_1,\ldots,a_n)$$

implies f = g; otherwise I is a set of dependent elements.

An element $a \in A$ is called *self-dependent* if the one-element set $\{a\}$ is a set of dependent elements, i. e. whenever there exist two functions g, $h \in A^{(1)}$ such that g(a) = h(a) and $g \neq h$.

If an algebra contains at least two elements, then all values of constant functions are self-dependent.

The following theorem is a direct consequence of the definition of $A^{(0)}$:

Theorem 1. The set $A^{(0)}$ is a subalgebra, i. e. for every $f \in A^{(n)}$ we have the relation

$$f(c_1,\ldots,c_n)\in A^{(0)}$$

whenever $c_1, \ldots, c_n \in A^{(0)}$.

We remark that the set of all self-dependent elements is not necessarily a subalgebra (see for example Theorem 4).

THEOREM 2. If the subalgebra generated by a self-dependent element is finite, then all its elements are self-dependent.

Proof. Let a_0 be a self-dependent generator of the finite subalgebra $A_0 = \{a_0, a_1, \ldots, a_n\}$. We assume that $a_i \neq a_j$ whenever $i \neq j$ $(i, j = 0, 1, \ldots, n)$. Moreover, every element a_k $(k = 0, 1, \ldots, n)$ can be represented as $a_k = f_k(a_0)$, where $f_k \in A^{(1)}$ and f_0 is the identity function. By hypothesis there exist two functions g, $h \in A^{(1)}$ such that $g \neq h$ and $g(a_0) = h(a_0)$. Since $g(a_0) \in A_0$, there exists an index r $(0 \leq r \leq n)$ for which $g(a_0) = h(a_0) = a_r$. Hence all the functions

$$f_0, f_1, \ldots, f_{r-1}, g, h, f_{r+1}, \ldots, f_n$$

are different. Since subalgebra A_0 contains n+1 elements and for every element $a_k \in A_0$ all n+2 elements of the system

$$f_0(a_k), f_1(a_k), \ldots, f_{r-1}(a_k), g(a_k), h(a_k), f_{r+1}(a_k), \ldots, f_n(a_k)$$

belong also to A_0 , we infer that at least two elements of this system are equal. Consequently, we have proved the existence of a pair of functions $g_1, h_1 \in A^{(1)}$ $(g_1 \neq h_1)$ such that $g_1(a_k) = h_1(a_k)$. Thus all elements of A_0 are self-dependent.

THEOREM 3. There exist a finite algebra generated by a non-self-dependent element a_0 such that all other its elements are self-dependent.

Proof. Let A be the three-elements set $\{0,1,2\}$. We define the functions f_0,f_1,f_2 as follows: $f_0(x)=x$ for any $x \in A$, $f_1(0)=f_1(1)=1$, $f_1(2)=2,f_2(0)=f_2(1)=2,f_2(2)=1$. Let A be the class of all functions f of the form

$$f(x_1, x_2, ..., x_n) = f_j(x_k)$$
 $(1 \leqslant k \leqslant n; j = 0, 1, 2).$

Since the class A is closed with respect to the superposition, the system (A, A) is an algebra.

The element 0 is a generator of our algebra. In fact, we have the equalities $0 = f_0(0)$, $1 = f_1(0)$ and $2 = f_2(0)$. Since f_0 , f_1 and f_2 are the only functions belonging to $A^{(1)}$, the last equalities imply that the element 0 is not self-dependent. Finally, the equalities $f_0(1) = f_1(1)$ and $f_0(2) = f_1(2)$ imply that the elements 1 and 2 are self-dependent. The theorem is thus proved.

As is shown by the following theorem, the assumption of finiteness of an algebra in Theorem 2 is essential:

THEOREM 4. There exists an algebra generated by a self-dependent element a_0 such that all its elements different from a_0 are non-self-dependent.

Proof. Let A be the set of all zero-one systems $\langle i_1, i_2, ..., i_n \rangle$ satisfying the condition $i_1 = 1$ if n > 1. For any finite system of in-

dices j_1,j_2,\ldots,j_k $(j_s=0\,,1;\ s=1\,,2\,,\ldots,k)$ we define the function f_{j_1,j_2,\ldots,j_k} by the formula

$$(*) \quad f_{i_1,i_2,...,i_k}(\langle i_1,\,i_2,...,\,i_n\rangle) = \begin{cases} \langle 1,j_2,\,...,j_k\rangle \text{ if } \langle i_1,\,...,\,i_n\rangle = \langle 0\rangle,\\ \langle i_1,\,...,\,i_n,\,j_1,\,...,\,j_k\rangle \text{ in other cases}. \end{cases}$$

Let A be the class of all functions of the form

$$f(x_1, \ldots, x_n) = f_{j_1, j_2, \ldots, j_k}(x_r) \quad (1 \leqslant r \leqslant n)$$

or

$$f(x_1,\ldots,x_n)=x_r \quad (1\leqslant r\leqslant n).$$

It is easy to see that the class A is closed with respect to the superposition of functions. Thus the system (A, A) is an algebra.

First of all we shall prove that the element $\langle 0 \rangle$ is a self-dependent generator of our algebra. Denoting by e the identity function which of course belongs to A we have the equality $\langle 0 \rangle = e(\langle 0 \rangle)$. Further, for every element $\langle 1, j_1, \ldots, j_n \rangle \in A$ we have the equality

$$f_{1,j_1,\ldots,j_n}(\langle 0 \rangle) = \langle 1,j_1,\ldots,j_n \rangle.$$

Consequently, $\langle 0 \rangle$ is a generator of our algebra. Since $f_0 \neq f_1$ and $f_0(\langle 0 \rangle) = \langle 1 \rangle = f_1(\langle 0 \rangle)$, the element $\langle 0 \rangle$ is self-dependent.

Now we shall prove that all other elements are non-self-dependent. By formula (*) every function belonging to A is uniquely determined by its value on an arbitrary element $\langle i_1, \ldots, i_n \rangle \neq \langle 0 \rangle$. Hence it follows that all these elements are non-self-dependent, which completes the proof of our Theorem.

Remark. The last algebra contains an infinite set of independent elements. For instance, all the elements $\langle 1, 0, 1 \rangle$, $\langle 1, 0, 0, 1 \rangle$, $\langle 1, 0, 0, 1 \rangle$, ... are independent.

REFERENCES

[1] E. Marczewski, A general scheme of the notions of independence in mathematics, Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques 6 (1958), p. 731-736.

[2] — Independence in algebras of sets and Boolean algebras, Fundamenta Mathematicae 48 (1960), p. 135-145.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 1. 10. 1959